Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pressure-Modulated Bistable Switching Materials

En Chen Ting Wen Chuanlong Lin Yonggang Wang

Citation:

Pressure-Modulated Bistable Switching Materials

En Chen, Ting Wen, Chuanlong Lin, Yonggang Wang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Bistable switching materials that enable reversible transitions between distinct stable states have emerged as a transformative platform for next-generation information technologies, optoelectronics, and quantum control. The application of high pressure serves as a powerful and precisely tunable stimulus for manipulating crystal structures, electronic configurations, and crystal fields, thereby enabling deterministic switching of diverse physical properties. This review systematically examines recent advances in pressure-induced bistable transitions, encompassing nonlinear optical switching via symmetry breaking, luminescence and color transitions mediated by bandgap engineering, insulator-metal transitions driven by electronic correlation effects, semiconductor carrier-type inversion, and spin crossover phenomena. Through comprehensive analysis integrating in situ high-pressure characterization techniques including synchrotron X-ray diffraction, vibrational spectroscopy, spatially resolved photoluminescence mapping, nonlinear optical microscopy, and transport measurements, we establish quantitative correlations between structural evolution, local coordination changes, and macroscopic switching responses. These multimodal investigations reveal fundamental mechanisms governing bistable transitions, particularly highlighting the critical roles of pressure-controlled symmetry breaking, coordination reconstruction, lone-pair stereochemical activity, and electronic correlation tuning. Notably, certain material systems exhibit extended multistate switching characteristics on complex energy landscapes, offering promising avenues for advanced applications in high-density data storage beyond conventional bistability. However, practical implementation faces significant challenges including the relatively high switching pressures required, limited reversibility in some systems, and difficulties in device integration. To solve current challenges, we proposed potential solutions including the development of diamond anvil cell-integrated micro/nanoelectrodes, fiber-optic coupled on-chip high-pressure cells, and strategies to reduce switching pressures to practical ranges. This work provides fundamental insights into the mechanisms of pressure-driven state switching while simultaneously outlining practical pathways toward realizing devices and reconfigurable optoelectronic systems. The integration of advanced in situ characterization techniques with theoretical understanding offers a robust framework for both fundamental research and technological applications of bistable switching materials under pressure.
  • [1]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [2]

    Burr G W, Breitwisch M J, Franceschini M, Garetto D, Gopalakrishnan K, Jackson B, Kurdi B, Lam C, Lastras L A, Padilla A, Rajendran B, Raoux S, Shenoy R S 2010 J. Vac. Sci. Technol. B 28 223

    [3]

    Chen Y 2020 IEEE Trans. Electron Devices 67 1420

    [4]

    Nilges T, Lange S, Bawohl M, Deckwart J M, Janssen M, Wiemhöfer H D, Decourt R, Chevalier B, Vannahme J, Eckert H, Weihrich R 2009 Nat. Mater. 8 101

    [5]

    Guin S N, Pan J, Bhowmik A, Sanyal D, Waghmare U V, Biswas K 2014 J. Am. Chem. Soc. 136 12712

    [6]

    Dutta M, Sanyal D, Biswas K 2018 Inorg. Chem. 57 7481

    [7]

    Xiao C, Qin X, Zhang J, An R, Xu J, Li K, Cao B, Yang J, Ye B, Xie Y 2012 J. Am. Chem. Soc. 134 18460

    [8]

    Shi Y, Assoud A, Sankar C R, Kleinke H 2017 Chem. Mater. 29 9565

    [9]

    Roy P, Waghmare V, Tanwar K, Maiti T 2017 Phys. Chem. Chem. Phys. 19 5818

    [10]

    Roy P, Maiti T 2018 J. Phys. D: Appl. Phys. 51 065104

    [11]

    Zhang Y, Zhang W, Li S H, Ye Q, Cai H L, Deng F, Xiong R G, Huang S D 2012 J. Am. Chem. Soc. 134 11044

    [12]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151

    [13]

    Varela H, Huguenin F, Malta M, Torresi R M 2002 Quim. Nova 25 287

    [14]

    Pan C Y, Yang X R, Xiong L, Lu Z W, Zhen B Y, Sui X, Deng X B, Chen L, Wu L M 2020 J. Am. Chem. Soc. 142 6423

    [15]

    Irie M, Fukaminato T, Matsuda K, Kobatake S 2014 Chem. Rev. 114 12174

    [16]

    Katsonis N, Kudernac T, Walko M, Van Der Molen S J, Van Wees B J, Feringa B L 2006 Adv. Mater. 18 1397

    [17]

    Ohkoshi S I, Imoto K, Tsunobuchi Y, Takano S, Tokoro H 2011 Nat. Chem. 3 564

    [18]

    He R Q, Zeng Y Y, Leng H J, Wang R J, Peng F, Liang H, Fang L M 2025 Chin. J. High Press. Phys. 39 90202 (in Chinese) [何瑞琦,曾莹莹,冷浩杰,王润基,彭放,梁浩,房雷鸣 2025 高压物理学报 39 90202]

    [19]

    Tian R F, Ye P D, Chen Y X, Jin M L, Li X 2024 Chin. J. High Press. Phys. 38 050104 (in Chinese) [田瑞丰,叶鹏达,陈宇翔,金美玲,李翔 2024 高压物理学报 38 050104]

    [20]

    Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103 (in Chinese) [刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘 国端, 寇自力 2017 物理学报 66 038103]

    [21]

    Duan D F, Ma Y B, Shao Z J, Xie H, Huang X L, Liu B B, Cui T 2017 Acta Phys. Sin. 66 036102 (in Chinese) [段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田 2017 物理学报 66 036102]

    [22]

    Cheng J G 2017 Acta Phys. Sin. 66 037401 (in Chinese) [程金光 2017 物理学报 66 037401]

    [23]

    Zhang K X, Guo J N, Wang Y L, Wu X Y, Huang X L, Cui T 2025 Chin. Phys. Lett. 42 110704

    [24]

    Mao H G, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007

    [25]

    Zhao L, Wu N N, Chen H X, Li M Z, Liang X B 2025 Chin. J. High Press. Phys. 39 90203 (in Chinese) [赵亮,吴楠楠,陈慧轩,李明哲,梁晓波 2025 高压物理学报 39 90203]

    [26]

    Xu T C, Deng Y H, Hong C, Huang H J, Xu F 2025 Chin. J. High Press. Phys. 39 031101 (in Chinese) [徐天成,邓袁昊,洪晨,黄海军,徐丰 2025 高压物理学报 39 031101]

    [27]

    Li X D, Li H, Li P S 2017 Acta Phys. Sin. 66 036203 (in Chinese) [李晓东, 李晖, 李鹏善 2017 物理学报 66 036203]

    [28]

    Huang X L, Wang X, Liu M K, Liang Y F, Liu B B, Cui T 2017 Acta Phys. Sin. 66 037403 (in Chinese) [黄晓丽, 王鑫, 刘明坤, 梁永福, 刘冰冰, 崔田 2017 物理学报 66 037403]

    [29]

    Rueff J P, Kao C C, Struzhkin V V, Badro J, Shu J, Hemley R J, Mao H K 1999 Phys. Rev. Lett. 82 3284

    [30]

    Wang Y G, Bai L G, Wen T, Yang L X, Gou H Y, Xiao Y M, Chow P, Pravica M, Yang W G, Zhao Y S 2016 Angew. Chem. 128 10506

    [31]

    Kawakami T, Tsujimoto Y, Kageyama H, Chen X Q, Fu C L, Tassel C, Kitada A, Suto S, Hirama K, Sekiya Y, Makino Y, Okada T, Yagi T, Hayashi N, Yoshimura K, Nasu S, Podloucky R, Takano M 2009 Nat. Chem. 1 371

    [32]

    Lin J F, Vankó G, Jacobsen S D, Iota V, Struzhkin V V, Prakapenka V B, Kuznetsov A, Yoo C S 2007 Science 317 1740

    [33]

    Shi Y, Ma Z W, Zhao D L, Chen Y P, Cao Y, Wang K, Xiao G J, Zou B 2019 J. Am. Chem. Soc. 141 6504

    [34]

    Fang Y Y, Zhang L, Wu L Y, Yan J J, Lin Y, Wang K, W. L. Mao, Zou B 2019 Angew. Chem., Int. Ed. 58 15249

    [35]

    Jiang D Q, Jiang X X, Zhang X, Li C, Liu K, Ma Y Y, Cheng H M, Pei T Y, Wen T, Lin Z S, Li F F, Wang Y G 2024 J. Am. Chem. Soc. 146 23508

    [36]

    Naumov P G, Baskakov A O, Starchikov S S, Lyubutin I S, Ogarkova Y L, Lyubutina M V, Barkalov O I, Medvedev S A 2020 JETP Lett. 111 456

    [37]

    Wu Z, Wang Y X, Dou Y J, Zhou L, Zhu J 2023 Nano Research Energy 2 e9120080

    [38]

    Li S J, Dong Q, Feng J, Wang Y J, Hou M Q, Deng W, Susilo R A, Li N N, Dong H L, Wan S, Gao C X, Chen B 2021 Inorg. Chem. 60 7857

    [39]

    Li C, Liu K, Jin C, Jiang D Q, Jiang Z M, Wen T, Yue B B, Wang Y G 2022 Inorg. Chem. 61 11923

    [40]

    Li C, Liu K, Peng S, Feng Q, Jiang D Q, Wen T, Xiao H, Yue B B, Wang Y G 2023 Chem. Mater. 35 1449

    [41]

    Wang Y G, Zhou Z Y, Wen T, Zhou Y N, Li N N, Han F, Xiao Y M, Chow P, Sun J L, Pravica M, Cornelius A L, Yang W G, Zhao Y S 2016 J. Am. Chem. Soc. 138 15751

    [42]

    Wang Y G, Ying J J, Zhou Z Y, Sun J L, Wen T, Zhou Y N, Li N N, Zhang Q, Han F, Xiao Y M, Chow P, Yang W G, Struzhkin V V, Zhao Y S, Mao H K 2018 Nat. Commun. 9 1914

    [43]

    Jiang D Q, Song H M, Wen T, Jiang Z M, Li C, Liu K, Yang W G, Huang H W, Wang Y G 2022 Angew. Chem., Int. Ed. 61 e202116656

    [44]

    Hao M N, Chen X, Ying T P, Chai C C, Lu J L, Li Q, Liu Z L, Yang M Z, Wang J J, Sun R J, Jia D H, Wang X Y, Gou H Y, Guo J G, Jin S F, Chen X L 2024 J. Am. Chem. Soc. 146 11465

    [45]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118

    [46]

    Chen J, Hu C L, Kong F, Mao J G 2021 Acc. Chem. Res. 54 2775

    [47]

    Li Y, Yang G, Dreger Z A, White J O, Drickamer H G 1998 J. Phys. Chem. B 102 5963

    [48]

    Bayarjargal L, Winkler B 2014 Z. Kristallogr. 229 92

    [49]

    Qu J, Wang Y M, Li Z Y, Li M T, Pei T Y, Li N N, Jiang D Q, Yang B, Li B, Ye M Y, Zhu P W, Wang Y G, Liu G, Wang X, Yang W G 2025 J. Am. Chem. Soc. 147 6717

    [50]

    Bu K J, Fu T H, Du Z W, Feng X, Wang D, Li Z Y, Guo S H, Sun Z D, Luo H, Liu G, Ding Y, Zhai T Y, Li Q, Lü X J 2023 Chem. Mater. 35 242

    [51]

    Jiang D Q, Jiang Z M, Song H M, Wang P, Luo H, Li C, Liu K, Wen T, Yang W G, Zhao Y S, Wang Y G 2021 Chem. Mater. 33 2929

    [52]

    Ye L T, Zhou W J, Huang D J, Jiang X, Guo Q B, Cao X Y, Yan S H, Wang X Y, Jia D H, Jiang D Q, Wang Y G, Wu X Q, Zhang X, Li Y, Lei H C, Gou H Y, Huang B 2023 Nat. Commun. 14 5911

    [53]

    Xie Z K, Luo R, Ying T P, Gao Y R, Song B Q, Yu T X, Chen X, Hao M N, Chai C C, Yan J S, Huang Z H, Chen Z G, Du L J, Zhu C Q, Guo J G, Chen X L 2024 Nat. Chem. 16 1803

    [54]

    Zou B Y, Han Y X, Yang Z H, Wang Q L, Wang G Y, Zhang G Z, Li Y W, Liu C L 2024 APL Mater. 12 030601

    [55]

    Liu K, Li C, Jiang D Q, Ma Y Y, Wen T, Yue B B, Wang Y G 2023 J. Mater. Chem. C. 11 15833

    [56]

    Liu S, Sun S S, Gan C K, Granados del Águila A, Fang Y N, Xing J, Thu Ha Do T, White T J, Li H G, Huang W, Xiong Q H 2019 Sci. Adv. 5 eaav9445

    [57]

    Ma Y Y, Wen T, Liu K, Li C, Jiang D Q, Chen E, Pei T Y, Lin C L, Wang Y G 2024 J. Mater. Chem. C 12 2379

    [58]

    Yu X H, Fang Y Y, Sun X N, Xie Y, Liu C L, Wang K, Xiao G J, Zou B 2024 Angew. Chem., Int. Ed. 63 e202412756

    [59]

    Zhu Z K, Li Z Y, Kong L P, Liu G 2024 Chin. J. High Press. Phys. 38 050101 (in Chinese) [朱 智凯,栗中杨,孔令平,刘罡 2024 高压物理学报 38 050101]

    [60]

    Ma Z W, Liu Z, Lu S Y, Wang L R, Feng X L, Yang D W, Wang K, Xiao G J, Zhang L J, Redfern S A T, Zou B 2018 Nat. Commun. 9 4506

    [61]

    Xu T G, Zhai C G, Liu Z Y, Yang X Y, Hu S H, Shang Y C, Yue L, Dong J J, Liu R, Li Q J, Yao M G, Liu B B 2025 Nat. Commun. 16 3550

    [62]

    Yao X R, Li H Q, Li Z Q, Huang X P, Zhao Y S, Liu X X, Zhu P W, Liu B B, Cui T, Sun C, Bao Y J 2020 J. Phys. Chem. C 124 7523

    [63]

    Liu S, Li C Y, Figiel J J, Brueck S R J, Brener I, Wang G T 2015 Nanoscale 7 9581

    [64]

    Gao X J, Wang Q, Zhang Y, Cui C L, Sui N, Chi X C, Zhang H Z, Zhou Q, Bao Y J, Wang Y H 2020 J. Phys. Chem. C 124 11239

    [65]

    Yao X R, Li R Y, Zhang Z H, Wei X M, Gai X M, Zhu J M, Yu H Y, Wang X, Bao Y J 2024 J. Phys. Chem. Lett. 15 12619

    [66]

    Yao X R, Yang F, Ma Y, Dong Y L, Chen L Q, Dong X J, Huo S Y, Wang X, Bao Y J 2025 J. Phys. Chem. C 129 10987

    [67]

    Huang Y D, Yang L, Liu C, Liu X X, Liu J S, Huang X P, Zhu P W, Cui T, Sun C, Bao Y J 2019 J. Phys. Chem. Lett. 10 610

    [68]

    Liu C, Li Z Q, Yang L, Yao X R, Li H Q, Liu X X, Zhao Y S, Zhu P W, Cui T, Sun C, Bao Y J 2019 J. Phys. Chem. C 123 30221

    [69]

    Zeng Q R, Zhang Y J, Zhuang Y K, Yang L F, Wang Q M, Sun Y 2025 Chin. Phys. B 34 096102

    [70]

    Yu Z H, Ye Y G, Yang P T, Wang Y M, Chen L C, Li C L, Yuan J, Liu Z Y, Shen Z W, Wang S J, Li M T, Chu C Y, Wang X, Li J, Wang L, Yang W G, Guo Y F 2025 Chin. Phys. B 34 088102

    [71]

    Jiao Y Y, Liu Z Y, Wang N N, Wang B S, Sun J P, Cheng J G 2025 Chin. Phys. Lett. 42 057404

    [72]

    Zhao Z, Zhang H J, Yuan H T, Wang S B, Lin Y, Zeng Q S, Xu G, Liu Z X, Solanki G K, Patel K D, Cui Y, Hwang H Y, Mao W L 2015 Nat. Commun. 6 7312

    [73]

    Wang X F, Chen X L, Zhou Y H, C. Park, Chao A, Zhou Y, Zhang R R, Gu C C, Yang W G, Yang Z R 2017 Sci. Rep. 7 46694

    [74]

    Chi Z H, Zhao X M, Zhang H D, Goncharov A F, Lobanov S S, Kagayama T, Sakata M, Chen X J 2014 Phys. Rev. Lett. 113 036802

    [75]

    Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D, Lin J F 2014 Nat. Commun. 5 3731

    [76]

    Nayak A P, Yuan Z, Cao B X, Liu J, Wu J J, Moran S T, Li T S, Akinwande D, Jin C Q, Lin J F 2015 ACS Nano 9 9117

    [77]

    Xiang Z J, Ye G J, Shang C, Lei B, Wang N Z, Yang K S, Liu D Y, Meng F B, Luo X G, Zou L J, Sun Z, Zhang Y, Chen X H 2015 Phys. Rev. Lett. 115 186403

    [78]

    Balchan A S, Drickamer H G 1961 J. Chem. Phys. 34 1948

    [79]

    Sakai N, Takemura K, Tsuji K 1982 J. Phys. Soc. Jpn. 51 1811

    [80]

    Ishikawa T, Mukai K, Tanaka Y, Sakata M, Nakamoto Y, Matsuoka T, Shimizu K, Ohishi Y 2013 High Pressure Res. 33 186

    [81]

    Desgreniers S, Vohra Y K, Ruoff A L 1990 J. Phys. Chem. 94 1117

    [82]

    Pasternak M P, Rozenberg G K, Machavariani G Y, Naaman O, Taylor R D, Jeanloz R 1999 Phys. Rev. Lett. 82 663

    [83]

    Badro J, Fiquet G, Struzhkin V V, Somayazulu M, Mao H K, Shen G Y, Le Bihan T 2002 Phys. Rev. Lett. 89 205504

    [84]

    Mattila A, Rueff J P, Badro J, VankóG, Shukla A 2007 Phys. Rev. Lett. 98 196404

    [85]

    Lyubutin I S, Ovchinnikov S G, Gavriliuk A G, Struzhkin V V 2009 Phys. Rev. B 79 085125

    [86]

    Li C, Liu K, Yan H C, Zhang L, Jiang D Q, Wen T, Yue B B, Wang Y G 2024 Adv. Mater. 36 2407922

    [87]

    Shchennikov V V, Morozova N V, Ovsyannikov S V 2012 J. Appl. Phys. 111 112624

    [88]

    Singh A K, Ramani G 1978 Rev. Sci. Instrum. 49 1324

    [89]

    Shchennikov V V, Ovsyannikov S V, Manakov A Y 2010 J. Phys. Chem. Solids 71 1168

    [90]

    Shchennikov V V, Ovsyannikov S V, Bazhenov A V 2008 J. Phys. Chem. Solids 69 2315

    [91]

    Morozova N V, Shchennikov V V, Ovsyannikov S V 2015 J. Appl. Phys. 118 225901

    [92]

    Goni A R, Syassen K 1998 Semicond. Semimet. 54 247

    [93]

    Mujica A, Rubio A, Muñ Oz A, Needs R J 2003 Rev. Mod. Phys. 75 863

    [94]

    Ovsyannikov S V, Shchennikov V V 2004 Solid State Commun. 132 333

    [95]

    Ding J C, Liu C D, Xi L L, Xi J Y, Yang J 2021 J. Materiomics 7 310

    [96]

    Saleem M, Ullah F, Qureshi M T, Abdel Hameed R S, Abdallah M, Farghaly O, Othman M, Atta A 2022 J. Alloy. Compd. 921 166175

    [97]

    Shchennikov V V, Ovsyannikov S V 2007 Phys. Stat. Sol. (b) 244 437

    [98]

    Khan H U, Inam F, Karim A, Bhatti A S 2024 J. Non. Cryst. Solids 646 123236

    [99]

    Shchennikov V V 2002 Defect Diffus. Forum 275 208

    [100]

    Morozova N V, Korobeinikov I V, Kurochka K V, Ovsyannikov S V, 2020 J. Appl. Phys. 128 245902

    [101]

    Shchennikov V V, Ovsyannikov S V 2003 Solid State Commun. 126 373

    [102]

    Ohtani A, Seike T, Motobayashit M, Onodera A 1982 J. Phys. Chem. Solids 43 627

    [103]

    Li M T, Zhang D J, Han J, Fang Y F, Li N N, Liu X Q, Wang B H, Yan L M, Chen F, Li Y L, Yang W G 2021 Phys. Rev. B 104 054511

    [104]

    Korobeinikov I V, Morozova N V, Shchennikov V V, Ovsyannikov S V 2017 Sci. Rep. 7 44220

    [105]

    Shchennikov V V, Ovsyannikov S V, Derevskov A Y 2002 Phys. Solid State 44 1762

    [106]

    Ovsyannikov S V, Shchennikov V V, Popova S V, Derevskov A Y 2003 Phys. Stat. Sol. (b) 235 521

    [107]

    Ovsyannikov S V, Shchennikov V V 2007 Appl. Phys. Lett. 90 122103

    [108]

    Ovsyannikov S V, Korobeinikov I V, Morozova N V, Misiuk A, Abrosimov N V, Shchennikov V V 2012 Appl. Phys. Lett. 101 062107

    [109]

    Ovsyannikov S V, Wu X, Garbarino G, Núñez-Regueiro M, Shchennikov V V, Khmeleva J A, Karkin A E, Dubrovinskaia N, Dubrovinsky L 2013 Phys. Rev. B 88 184106

    [110]

    Ovsyannikov S V, Karkin A E, Morozova N V, Shchennikov V V, Bykova E, Abakumov A M, Tsirlin A A, Glazyrin K V, Dubrovinsky L 2014 Adv. Mater. 26 8185

    [111]

    Morozova N V, Korobeinikov I V, Kurochka K V, Titov A N, Ovsyannikov S V 2018 J. Phys. Chem. C 122 14362

    [112]

    Zhang J K, Han Y H, Liu C L, Ren W B, Li Y, Wang Q L, Su N N, Li Y Q, Ma B H, Ma Y Z, Gao C X 2011 J. Phys. Chem. C 115 20710

    [113]

    Gao Y, Gu Y S, Zhuang T, Tian L H, Gu G R, Piao H G, Wu B J, Han Y H 2025 AIP Adv. 15 025316

    [114]

    Daly M S, Lubczynski W, Warburton R J, Symons D M, Lakrimi M, Dalton K S H, Van Der Burgt M, Nicholas R J, Mason N J, Walker P J 1995 J. Phys. Chem. Solids 56 453

    [115]

    Errandonea D, Segura A, Martínez-García D, Muñoz-San Jose V 2009 Phys. Rev. B 79 125203

    [116]

    Li Y Q, Gao Y, Han Y H, Liu C L, Peng G, Wang Q L, Ke F, Ma Y Z, Gao C X 2015 Appl. Phys. Lett. 107 142103

    [117]

    Zhang J K, Liu C L, Zhang X, Ke F, Han Y H, Peng G, Ma Y Z, Gao C X 2013 Appl. Phys. Lett. 103 082116

    [118]

    Zhang G Z, Wu B J, Wang J, Zhang H W, Liu H, Zhang J K, Liu C L, Gu G R, Tian L H, Ma Y Z, Gao C X 2017 Sci. Rep. 7 2656

    [119]

    Wen T, Wang Y G, Li N N, Zhang Q, Zhao Y S, Yang W G, Zhao Y S, Mao H K 2019 J. Am. Chem. Soc. 141 505

    [120]

    Li C, Liu K, Jiang D Q, Wen T, Chen E, Ma Y Y, Yue B B, Chu S Q, Wang Y G 2023 Chem. Mater. 35 4821

    [121]

    Yue L, Tian F Y, Liu R, Li Z L, Li R X, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Zhang L J, Liu B B 2025 Natl. Sci. Rev. 12 nwae419

    [122]

    Maltempo M M, Moss T H, Spartalian K 1980 J. Chem. Phys. 73 2100

    [123]

    Grunert C M, Reiman S, Spiering H, Kitchen J A, Brooker S, Gütlich P 2008 Angew. Chem. 120 3039

    [124]

    Bengtson A, Li J, Morgan D 2009 Geophys. Res. Lett. 36 L15301

    [125]

    Kuzmann E, Homonnay Z, Klencsár Z, Szalay R 2021 Molecules 26 1062

    [126]

    Bhide V G, Rajoria D S, Rao G R, Rao C N R 1972 Phys. Rev. B 6 1021

    [127]

    Gütlich P, Garcia Y, Goodwin H A 2000 Chem. Soc. Rev. 29 419

    [128]

    Real J A, Gaspar A B, Carmen Muñoz M 2005 Dalton Trans. 2062

    [129]

    Romanini M, Wang Y X, Gürpinar K, Ornelas G, Lloveras P, Zhang Y, Zheng W, Barrio M, Aznar A, Gràcia-Condal A, Emre B, Atakol O, Popescu C, Zhang H, Long Y, Balicas L, Lluís Tamarit J, Planes A, Shatruk M, Mañosa L 2021 Adv. Mater. 33 2008076

    [130]

    Hembacher S, Giessibl F J, Mannhart J 2004 Science 305 380

    [131]

    Lin J F, Struzhkin V V, Jacobsen S D, Hu M Y, Chow P, Kung J, Liu H Z, Mao H K, Hemley R J 2005 Nature 436 377

    [132]

    Speziale S, Milner A, Lee V E, Clark S M, Pasternak M P, Jeanloz R 2005 Proc. Natl. Acad. Sci. 102 17918

  • [1] ZHAO Tingting, LI Mei, Peng Shang, ZHAO Bohao, FENG Qi, CHEN Yanlong, YUAN Jun, Han Yingxue, AN Jiao, WANG Hao, JIANG Sheng, LIN Chuanlong. Mechanoluminescence under High Pressure: Summary and Prospects. Acta Physica Sinica, doi: 10.7498/aps.75.20251312
    [2] YIN Xuetong, LIAO Dunyuan, PAN Dong, WANG Peng, LIU Bingbing. Room-temperature photoluminescence in GaAsSb nanowires under high-pressure. Acta Physica Sinica, doi: 10.7498/aps.74.20250042
    [3] ZHAO Shijie, MA Haonan, LIU Xia. Research progress of regulation of physical properties of two-dimensional materials based on thermal scanning probe lithography. Acta Physica Sinica, doi: 10.7498/aps.74.20241590
    [4] LI Kuan, CUI Guoliang, LIU Meizhuang, XU Xiaozhi. Modulating phase structures and physical properties of two-dimensional transition metal dichalcogenides. Acta Physica Sinica, doi: 10.7498/aps.74.20251141
    [5] LI Chenkai, ZHU Jinlong. Optoelectronic properties of high pressure regulated transition metal chalcogenides and their heterostructures. Acta Physica Sinica, doi: 10.7498/aps.74.20250498
    [6] WU Shuying, MA Shuailing, ZHAO Chunyan, LI Shixin, YE Meiyan, QI Mengyao, ZHAO Xingbin, WANG Lingrui, CUI Tian. Pressure-modulated bandgap and optoelectronic properties in lead-free double perovskite Cs2TeCl6. Acta Physica Sinica, doi: 10.7498/aps.74.20250693
    [7] Guo Lin, Yang Xiao-Fan, Cheng Er-Jian, Pan Bing-Lin, Zhu Chu-Chu, Li Shi-Yan. Pressure-induced superconductivity in triangular lattice spin liquid candidate NaYbSe2. Acta Physica Sinica, doi: 10.7498/aps.72.20230730
    [8] Han Xiang-He, Huang Zi-Hao, Fan Peng, Zhu Shi-Yu, Shen Cheng-Min, Chen Hui, Gao Hong-Jun. Research progress of surface atomic manipulation and physical property regulation of low-dimensional structures. Acta Physica Sinica, doi: 10.7498/aps.71.20220405
    [9] Yao Pan-Pan, Wang Ling-Rui, Wang Jia-Xiang, Guo Hai-Zhong. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure. Acta Physica Sinica, doi: 10.7498/aps.69.20200988
    [10] Zhu Lu-Yao, Wang Peng, Zhai Chun-Guang, Hu Kuo, Yao Ming-Guang, Liu Bing-Bing. Effect of pressure on structure and fluorescence of phthalocyanine. Acta Physica Sinica, doi: 10.7498/aps.68.20190559
    [11] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181651
    [12] Dong Jia-Jun, Yao Ming-Guang, Liu Shi-Jie, Liu Bing-Bing. Studies of quasi one-dimensional nanostructures at high pressures. Acta Physica Sinica, doi: 10.7498/aps.66.039101
    [13] Li Xiao-Dong, Li Hui, Li Peng-Shan. High pressure single-crystal synchrotron X-ray diffraction technique. Acta Physica Sinica, doi: 10.7498/aps.66.036203
    [14] Bai Jun-Xue, Guo Wei-Ling, Sun Jie, Fan Xing, Han Yu, Sun Xiao, Xu Ru, Lei Jun. Research on the relationship between ideality factor and number of units of GaN-based high voltage light-emitting diode. Acta Physica Sinica, doi: 10.7498/aps.64.017303
    [15] Wu Bao-Jia, Li Yan, Peng Gang, Gao Chun-Xiao. Electrical transport properties of InSe under high pressure. Acta Physica Sinica, doi: 10.7498/aps.62.140702
    [16] Zhang Pin-Liang, Gong Zi-Zheng, Ji Guang-Fu, Liu Song. First-principles study of high-pressure physical properties of α-Ti2Zr. Acta Physica Sinica, doi: 10.7498/aps.62.046202
    [17] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, doi: 10.7498/aps.62.049101
    [18] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, doi: 10.7498/aps.60.050702
    [19] Wu Bao-Jia, Han Yong-Hao, Peng Gang, Liu Cai-Long, Wang Yue, Gao Chun-Xiao. Research of in-situ electrical property of micron dimension ZnO under high pressure. Acta Physica Sinica, doi: 10.7498/aps.59.4235
    [20] Sun Bo, Liu Shao-Jun, Zhu Wen-Jun. The division of iron's core and valence states under high pressures via first-principles calculation. Acta Physica Sinica, doi: 10.7498/aps.55.6589
Metrics
  • Abstract views:  11
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  06 December 2025
  • /

    返回文章
    返回