Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coherent manipulation of single collective excitations in a cold atomic ensemble

An Zi-Ye Wang Xu-Jie Yuan Zhen-Sheng Bao Xiao-Hui Pan Jian-Wei

Citation:

Coherent manipulation of single collective excitations in a cold atomic ensemble

An Zi-Ye, Wang Xu-Jie, Yuan Zhen-Sheng, Bao Xiao-Hui, Pan Jian-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Single photons are the best carriers of quantum information for long-distance transmission. Nevertheless, maximal achievable distance is limited by the exponential decay of photons as a function of link length. The protocol of quantum repeater provides a promising solution by replacing direction transmission with segmented entanglement distribution and entanglement connection via swapping. The quantum repeater necessitates a key element of quantum memory for making efficient interconnections. An atomic ensemble is very suitable for this purpose due to the collective enhanced interaction. Single photons are stored as collective excitations in an atomic ensemble. Thus a comprehensive study of the physics relating to collective excitations is crucially important for improving the quantum memory performance and its reachable applications in quantum repeater and quantum network. In this article, we review our experimental work on cold atomic ensembles in recent years, focusing on the coherent manipulation of collective excitations. We first briefly introduce the general concept of collective excitations and the preparation process through spontaneous Raman scattering, and we review our experimental work on extending the coherence time, such as suppressing motional dephasing by increasing the spin-wave wavelength, by confining atoms with a three-dimensional optical lattice. Afterwards, we discuss about the retrieval process of collective excitations and review our experiments on using a ring-cavity enhanced setup to improve the retrieval efficiency. The coherent qubit operation in a quantum memory is very useful for enabling new functionalities for a quantum network, in a subsequent section, we thus review our work on developing Raman-based coherent operations for single excitations. Afterwards, we mention our experiments on creating a pair of atom-photon entanglement by interfering two modes of a collective excitation. Improving the entanglement preparation efficiency is crucially important, and Rydberg-based interaction provides a promising solution. Our experimental work in this direction is also reviewed. Additionally, as an application in coherent manipulation with collective excitations, we show several experiments on using excitations in remote atomic memories and demonstrating basic functionality of quantum repeater and quantum network. In short, significant progress has been made in the coherent manipulation of single collective excitations in cold atomic ensembles, and further improvement will be accelerated by the Rydberg-enabled interactions; practical applications in quantum repeater and quantum network is foreseeable in the near future.
      Corresponding author: Bao Xiao-Hui, xhbao@ustc.edu.cn;pan@ustc.edu.cn ; Pan Jian-Wei, xhbao@ustc.edu.cn;pan@ustc.edu.cn
    • Funds: Project supported by National Key R&D Program of China (Grant No. 2017YFA0303902) and the National Natural Science Foundation of China (Grant No. 11474269).
    [1]

    Briegel H J, Dr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [2]

    Duan L M, Lukin M, Cirac J I, Zoller P 2001 Nature 414 413

    [3]

    Kuzmich A, Bowen W, Boozer A, Boca A, Chou C, Duan L M, Kimble H 2003 Nature 423 731

    [4]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33

    [5]

    Felinto D, Chou C, de Riedmatten H, Polyakov S, Kimble H 2005 Phys. Rev. A 72 053809

    [6]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95

    [7]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517

    [8]

    Zhao R, Dudin Y, Jenkins S, Campbell C, Matsukevich D, Kennedy T, Kuzmich A 2009 Nat. Phys. 5 100

    [9]

    Radnaev A, Dudin Y, Zhao R, Jen H, Jenkins S, Kuzmich A, Kennedy T 2010 Nat. Phys. 6 894

    [10]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381

    [11]

    Lundblad N, Schlosser M, Porto J 2010 Phys. Rev. A 84 051606(R)

    [12]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379

    [13]

    Simon J, Tanji H, Thompson J K, Vuletić V 2007 Phys. Rev. Lett. 98 183601

    [14]

    Rui J, Jiang Y, Yang S J, Zhao B, Bao X H, Pan J W 2015 Phys. Rev. Lett. 115 133002

    [15]

    Jiang Y, Rui J, Bao X H, Pan J W 2016 Phys. Rev. A 93 063819

    [16]

    Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 98 240502

    [17]

    Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505

    [18]

    Bao X H, Yong Q, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008 Phys. Rev. Lett. 101 190501

    [19]

    Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nat. Photon. 5 628

    [20]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501

    [21]

    Saffman M, Walker T G, Mölmer K 2010 Rev. Mod. Phys. 82 2313

    [22]

    Zhao B, Mller M, Hammerer K, Zoller P 2010 Phys. Rev. A 81 052329

    [23]

    Han Y, He B, Heshami K, Li C Z, Simon C 2010 Phys. Rev. A 81 052311

    [24]

    Dudin Y, Kuzmich A 2012 Science 336 887

    [25]

    Li J, Zhou M T, Jing B, Wang X J, Yang S J, Jiang X, Mölmer K, Bao X H, Pan J W 2016 Phys. Rev. Lett. 117 180501

    [26]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098

    [27]

    Bao X H, Xu X F, Li C M, Yuan Z S, Lu C Y, Pan J W 2012 Proc. Natl. Acad. Sci. U.S.A. 109 20347

    [28]

    Zhao T M, Zhang H, Yang J, Sang Z R, Jiang X, Bao X H, Pan J W 2014 Phys. Rev. Lett. 112 103602

  • [1]

    Briegel H J, Dr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [2]

    Duan L M, Lukin M, Cirac J I, Zoller P 2001 Nature 414 413

    [3]

    Kuzmich A, Bowen W, Boozer A, Boca A, Chou C, Duan L M, Kimble H 2003 Nature 423 731

    [4]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33

    [5]

    Felinto D, Chou C, de Riedmatten H, Polyakov S, Kimble H 2005 Phys. Rev. A 72 053809

    [6]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95

    [7]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517

    [8]

    Zhao R, Dudin Y, Jenkins S, Campbell C, Matsukevich D, Kennedy T, Kuzmich A 2009 Nat. Phys. 5 100

    [9]

    Radnaev A, Dudin Y, Zhao R, Jen H, Jenkins S, Kuzmich A, Kennedy T 2010 Nat. Phys. 6 894

    [10]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381

    [11]

    Lundblad N, Schlosser M, Porto J 2010 Phys. Rev. A 84 051606(R)

    [12]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379

    [13]

    Simon J, Tanji H, Thompson J K, Vuletić V 2007 Phys. Rev. Lett. 98 183601

    [14]

    Rui J, Jiang Y, Yang S J, Zhao B, Bao X H, Pan J W 2015 Phys. Rev. Lett. 115 133002

    [15]

    Jiang Y, Rui J, Bao X H, Pan J W 2016 Phys. Rev. A 93 063819

    [16]

    Zhao B, Chen Z B, Chen Y A, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 98 240502

    [17]

    Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505

    [18]

    Bao X H, Yong Q, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008 Phys. Rev. Lett. 101 190501

    [19]

    Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nat. Photon. 5 628

    [20]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501

    [21]

    Saffman M, Walker T G, Mölmer K 2010 Rev. Mod. Phys. 82 2313

    [22]

    Zhao B, Mller M, Hammerer K, Zoller P 2010 Phys. Rev. A 81 052329

    [23]

    Han Y, He B, Heshami K, Li C Z, Simon C 2010 Phys. Rev. A 81 052311

    [24]

    Dudin Y, Kuzmich A 2012 Science 336 887

    [25]

    Li J, Zhou M T, Jing B, Wang X J, Yang S J, Jiang X, Mölmer K, Bao X H, Pan J W 2016 Phys. Rev. Lett. 117 180501

    [26]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098

    [27]

    Bao X H, Xu X F, Li C M, Yuan Z S, Lu C Y, Pan J W 2012 Proc. Natl. Acad. Sci. U.S.A. 109 20347

    [28]

    Zhao T M, Zhang H, Yang J, Sang Z R, Jiang X, Bao X H, Pan J W 2014 Phys. Rev. Lett. 112 103602

  • [1] Liang Peng-Jun, Zhu Tian-Xiang, Xiao Yi-Xin, Wang Yi-Yang, Han Yong-Jian, Zhou Zong-Quan, Li Chuan-Feng. Concentration-dependent optical and spin inhomogeneous linewidth of europium-doped yttrium orthosilicate crystals. Acta Physica Sinica, 2024, 73(10): 100301. doi: 10.7498/aps.73.20240116
    [2] Xiao Yi-Xin, Zhu Tian-Xiang, Liang Peng-Jun, Wang Yi-Yang, Zhou Zong-Quan, Li Chuan-Feng. Optical and hyperfine spectroscopic investigations on europium ions doped in yttrium orthosilicate waveguides fabricated by focused ion beam milling. Acta Physica Sinica, 2024, 73(22): 220303. doi: 10.7498/aps.73.20241070
    [3] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [4] Wang Yun-Fei, Zhou Ying, Wang Ying, Yan Hui, Zhu Shi-Liang. Performance and application analysis of quantum memory. Acta Physica Sinica, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [5] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [6] Xing Xue-Yan, Li Xia-Xia, Chen Yu-Hui, Zhang Xiang-Dong. Optical echo memory based on photonic crystal cavities. Acta Physica Sinica, 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [7] Zhou Pai, Li Xia-Xia, Xing Xue-Yan, Chen Yu-Hui, Zhang Xiang-Dong. Quantum memory and manipulation based on erbium doped crystals. Acta Physica Sinica, 2022, 71(6): 064203. doi: 10.7498/aps.71.20211803
    [8] Li Li-Juan, Ming Fei, Song Xue-Ke, Ye Liu, Wang Dong. Review on entropic uncertainty relations. Acta Physica Sinica, 2022, 71(7): 070302. doi: 10.7498/aps.71.20212197
    [9] Yuan Liang, Wen Ya-Fei, Li Ya, Liu Chao, Li Shu-Jing, Xu Zhong-Xiao, Wang Hai. Optical cavity enhancement experiment of Duan-Lukin-Cirac-Zoller writing excitation process in atomic ensemble. Acta Physica Sinica, 2021, 70(7): 070302. doi: 10.7498/aps.70.20201394
    [10] Li Zong-Feng, Liu Duan-Cheng, Zhou Zong-Quan, Li Chuan-Feng. Atomic frequency comb optical memory in EuCl3·6H2O crystal. Acta Physica Sinica, 2021, 70(16): 160302. doi: 10.7498/aps.70.20210648
    [11] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [12] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [13] Yang Tian-Shu, Zhou Zong-Quan, Li Chuan-Feng, Guo Guang-Can. Multimode solid-state quantum memory. Acta Physica Sinica, 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [14] Wang Ye, Zhang Jing-Ning, Kim Kihwan. Single-ion qubit with coherence time exceeding 10 minutes. Acta Physica Sinica, 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [15] Deng Rui-Jie, Yan Zhi-Hui, Jia Xiao-Jun. Analysis of electromagnetically induced transparency based on quantum memory of squeezed state of light. Acta Physica Sinica, 2017, 66(7): 074201. doi: 10.7498/aps.66.074201
    [16] Sun Ying, Zhao Shang-Hong, Dong Chen. Long distance measurement device independent quantum key distribution with quantum memories. Acta Physica Sinica, 2015, 64(14): 140304. doi: 10.7498/aps.64.140304
    [17] Bian Cheng-Ling, Zhu Jiang, Lu Jia-Wen, Yan Jia-Lu, Chen Li-Qing, Wang Zeng-Bin, Ou Ze-Yu, Zhang Wei-Ping. Experimental research on retrieval efficiency of atomic spin wave based on electromagnetically induced transparency. Acta Physica Sinica, 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [18] Yu Zi-Fa, Wu Jian-Peng, Wang Peng-Cheng, Zhang Jiao-Jiao, Tang Rong-An, Xue Ju-Kui. Collective excitations of superfluid Fermi gas in an anharmonic potential. Acta Physica Sinica, 2012, 61(1): 010301. doi: 10.7498/aps.61.010301
    [19] SUN XIN. THE COLLECTIVE EXCITATION IN CHARGED SURFACE LAYER. Acta Physica Sinica, 1978, 27(6): 752-755. doi: 10.7498/aps.27.752
    [20] XU GONG-OU, WANG SHUN-JIN, LIU DUN-HUAN, YANG YA-TIAN, MAO MING-DE. THE GENERATOR COORDINATE METHOD AND NUCLEAR COLLECTIVE MOTIONS (Ⅱ)——MULTIPOLE AND PAIRING EXCITATIONS IN EVEN-EVEN NUCLEI. Acta Physica Sinica, 1976, 25(3): 226-234. doi: 10.7498/aps.25.226
Metrics
  • Abstract views:  8604
  • PDF Downloads:  263
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2018
  • Accepted Date:  05 September 2018
  • Published Online:  20 November 2019

/

返回文章
返回