Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Collective excitation dynamics in spin-orbit coupled Bose gases

Zheng Honyan Yuan Zizhou Qu Xiaoxu Xu Wenyu Chen Xiao-Long

Citation:

Collective excitation dynamics in spin-orbit coupled Bose gases

Zheng Honyan, Yuan Zizhou, Qu Xiaoxu, Xu Wenyu, Chen Xiao-Long
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • By numerically solving the static and time-dependent Gross-Pitaevskii equations, we systematically investigate the ground-state properties and collective excitations of a weakly interacting Bose gas with the Raman-type spin-orbit coupling in one dimension. Our analysis focuses on three distinct quantum phases—the stripe phase, plane-wave phase, and zero-momentum phase—characterizing their key static properties, such as condensate momentum, spin polarization, and ground-state energy. Using time-dependent simulations, we explore the dynamics of total-density collective modes, including the dipole mode, which drives harmonic oscillations of the atomic cloud's center of mass, and the breathing mode, responsible for periodic expansion and contraction of the density profile. The modes' frequencies exhibit a non-monotonic dependence on the Rabi frequency across the three phases and are significantly suppressed at the transition point between the plane-wave and the zero-momentum phases. Additionally, we study spin-dependent collective excitations, particularly the spin-dipole and spin-breathing modes, governed by the time-dependent spin density distribution $(\delta n(x, t) \equiv n_\uparrow(x, t)-n_\downarrow(x, t)$) as shown in the following figure. Our results reveal that two spin oscillation modes exist only in the stripe and zero-momentum phases, with frequencies remarkably higher in the latter. Notably, in the stripe phase, mode frequencies decrease monotonically with increasing Rabi frequency, whereas they rise linearly in the zero-momentum phase. The spin-dipole mode induces rigid, out-of-phase oscillations of the two spin components, while the spin-breathing mode modulates the spin density distribution periodically. These findings offer fundamental theoretical insights into the dynamic behavior of spin-orbit-coupled quantum gases, particularly regarding spin-related collective excitations, and provide valuable guidance for future cold-atom experiments.
  • 图 1  拉曼型自旋-轨道耦合玻色气体三种基态物相 ST、PW 以及 ZM 中 (a)凝聚体动量$ P_x $; (b) 自旋极化率$ \langle\sigma_z\rangle $; (c)能量E, 随拉比频率Ω的变化行为. (a)中插图表示各物相中典型密度分布, 其中蓝色实线、红色虚线分别表示自旋向上和自旋向下组分的密度分布. (c)中插图为帮助判断相变类型的能量关于拉比频率的导数$ dE/d\Omega $. 图中竖划线和竖点线分别表示本文理论框架确定的ST-PW和PW-ZM相变点处拉比频率$ 2.08 E_{\rm{r}} $和$ 3.95 E_{\rm{r}} $

    Figure 1.  (a) The condensate momentum $ P_x $, (b) the spin polarization $ \langle\sigma_z\rangle $, and (c) the energy E in the ST, PW, and ZM phases, as functions of the Rabi frequency Ω in the Raman-type spin-orbit coupled Bose gases. The insets in (a) denote the typical density distribution in respective phases, where the density distributions of the spin-up and spin-down components are indicated by the blue-solid and red-dashed lines, respectively. The insets in (c) denote the derivative of the energy with respect to the Rabi frequency $ dE/d\Omega $ to determine the type of phase transitions. The vertical dashed and dotted lines indicate the critical Rabi frequencies of the ST-PW and PW-ZM phase transitions, respectively, determined by our numerical calculations.

    图 2  条纹相中偶极, 呼吸, 自旋-偶极以及自旋-呼吸四种模式对应观测量的含时演化行为

    Figure 2.  Time-dependent observables of the dipole, breathing, spin-dipole, and spin-breathing modes in the stripe phase.

    图 3  偶极, 呼吸, 自旋-偶极及自旋-呼吸四种集体激发模式频率$ \omega_{d, b, sd, sb} $与拉比频率Ω的关系

    Figure 3.  Collective excitation frequencies $ \omega_{d, b, sd, sb} $ of the dipole mode, breathing mode, spin-dipole mode, and spin-breathing mode, as functions of the Rabi frequency Ω.

    图 4  偶极模式(第一行)和呼吸模式(第二行)中的典型密度动力学特征: (a), (c) $ \Omega=1.0 E_r $处的条纹相; (b), (d) $ \Omega=3.0 E_r $处的平面波相. 其中, 三种颜色线分别表示$ 0, T/4, T/2 $三个时间点的密度分布

    Figure 4.  Typical density evolution of dipole-mode (top panel) and breathing-mode (bottom panel) oscillations: (a), (c) stripe phase at $ \Omega=1.0 E_r $; (b), (d) plane-wave phase at $ \Omega=3.0 E_r $. Here, three colorful lines indicate the density distributions at $ 0 $, $ T/4 $, and $ T/2 $ of one full period T.

    图 5  $ \Omega=1.0 E_r $处条纹相中自旋-偶极振荡动力学. 不同颜色曲线分别表示不同自旋分量的密度分布

    Figure 5.  Oscillating behavior of the spin-dipole mode in the stripe phase at $ \Omega=1.0 E_r $. Here, the colorful lines indicate the spin-up and spin-down density distributions.

    图 6  $ \Omega=1.0 E_r $处条纹相中自旋-呼吸振荡动力学. 不同颜色曲线分别表示不同自旋分量的密度分布

    Figure 6.  Oscillating behavior of the spin-breathing mode in the ST phase at $ \Omega=1.0 E_r $. Here, the colorful lines indicate the spin-up and spin-down density distributions.

    图 7  自旋-偶极模式(第一行)和自旋-呼吸模式(第二行)中自旋密度分布$ \delta n(x, t)\equiv n_\uparrow(x, t)-n_\downarrow(x, t) $的t-x平面等高图: (a), (c) $ \Omega=1.0 E_r $处的条纹相; (b), (d) $ \Omega=5.0 E_r $处的零动量相. 其中, (a)—(d)中色条表示范围分别为: [–15, 15], [–0.1, 0.1], [–10, 15], [–0.14, 0]

    Figure 7.  Contour plots of time-dependent spin density $ \delta n(x, t)\equiv n_\uparrow(x, t)-n_\downarrow(x, t) $ of spin-dipole mode (top panel) and spin-breathing mode (bottom panel) in the t-x plane: (a), (c) stripe phase at $ \Omega=1.0 E_r $; (b), (d) zero-momentum phase at $ \Omega=5.0 E_r $. Color scales: (a): –15 to 15; (b): –0.1 to 0.1; (c): –10 to 15; (d): –0.14 to 0.

    表 1  四种集体激发模式(偶极, 呼吸, 自旋-偶极, 自旋-呼吸)所对应的激发方式以及观测量. 其中, $x_0$和α均为小量以使得系统被微弱地扰动

    Table 1.  Exciting approaches and observables for four collective excitation modes, including dipole mode, breathing mode, spin-dipole mode, and spin-breathing mode. Here, $x_0$ and α are both small enough to perturb the systems slightly.

    集体激发模式 $ V_1(x) $ 物理观测量
    偶极模式 $ \dfrac{1}{2} m\omega_x^{2} (x-x_0)^2 $ $ \left\langle x\right\rangle $
    呼吸模式 $ \dfrac{1}{2} m(1+\alpha )^2\omega_x^{2} x^2 $ $ \left\langle x^2\right\rangle $
    自旋-偶极模式 $ \dfrac{1}{2} m\omega_x^{2} (x-\sigma_{z}x_0)^2 $ $ \left\langle\sigma_{z}x \right\rangle $
    自旋-呼吸模式 $ \dfrac{1}{2} m(1+\sigma_{z} \alpha )^2\omega_x^{2} x^2 $ $ \left\langle\sigma_{z}x^2\right\rangle $
    DownLoad: CSV
  • [1]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [2]

    Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523Google Scholar

    [3]

    Goldman N, Juzeliūnas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401Google Scholar

    [4]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [5]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [6]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [7]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [8]

    Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [9]

    Chen H R, Lin K Y, Chen P K, Chiu N C, Wang J B, Chen C A, Huang P, Yip S K, Kawaguchi Y, Lin Y J 2018 Phys. Rev. Lett. 121 113204Google Scholar

    [10]

    Zhang D, Gao T, Zou P, Kong L, Li R, Shen X, Chen X L, Peng S G, Zhan M, Pu H, Jiang K 2019 Phys. Rev. Lett. 122 110402Google Scholar

    [11]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271-276

    [12]

    Galitski V, Spielman I B 2013 Nature 494 49-54

    [13]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [14]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [15]

    Ho T L, Zhang S 2011 Phys. Rev. Lett. 107 150403Google Scholar

    [16]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301Google Scholar

    [17]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402Google Scholar

    [18]

    Gong M, Tewari S, Zhang C 2011 Phys. Rev. Lett. 107 195303Google Scholar

    [19]

    Hu H, Jiang L, Liu X J, Pu H 2011 Phys. Rev. Lett. 107 195304Google Scholar

    [20]

    Yu Z Q, Zhai H 2011 Phys. Rev. Lett. 107 195305Google Scholar

    [21]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [22]

    Khamehchi M A, Zhang Y, Hamner C, Busch T, Engels P 2014 Phys. Rev. A 90 063624Google Scholar

    [23]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nat. Phys. 10 314-320

    [24]

    Ji S C, Zhang L, Xu X T, Wu Z, Deng Y, Chen S, Pan J W 2015 Phys. Rev. Lett. 114 105301Google Scholar

    [25]

    Zhu Q, Zhang C, Wu B 2012 EPL 100 50003Google Scholar

    [26]

    Zhang Y C, Yu Z Q, Ng T K, Zhang S, Pitaevskii L, Stringari S 2016 Phys. Rev. A 94 033635Google Scholar

    [27]

    Yu Z Q 2017 Phys. Rev. A 95 033618Google Scholar

    [28]

    Chen X L, Wang J, Li Y, Liu X J, Hu H 2018 Phys. Rev. A 98 013614Google Scholar

    [29]

    Chen X L, Liu X J, Hu H 2022 Phys. Rev. A 106 023302Google Scholar

    [30]

    Meng Z, Huang L, Peng P, Li D, Chen L, Xu Y, Zhang C, Wang P, Zhang J 2016 Phys. Rev. Lett. 117 235304Google Scholar

    [31]

    Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y, Liu X J, Chen S, Pan J W 2018 Phys. Rev. Lett. 121 250403Google Scholar

    [32]

    Zhang J Y, Yi C R, Zhang L, Jiao R H, Shi K Y, Yuan H, Zhang W, Liu X J, Chen S, Pan J W 2023 Phys. Rev. Lett. 130 043201Google Scholar

    [33]

    Martone G I, Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. A 86 063621Google Scholar

    [34]

    Zheng W, Yu Z Q, Cui X, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007Google Scholar

    [35]

    Chen X L, Liu X J, Hu H 2017 Phys. Rev. A 96 013625Google Scholar

    [36]

    Chen L, Pu H, Yu Z Q, Zhang Y 2017 Phys. Rev. A 95 033616Google Scholar

    [37]

    Rajat, Roy A, Gautam S 2022 Phys. Rev. A 106 013304Google Scholar

    [38]

    Liang J C, Zhang A X, Xue J K 2024 Phys. Rev. A 109 053307Google Scholar

    [39]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F Ç, Jamison A O, Ketterle W 2017 Nature 543 91Google Scholar

    [40]

    Léonard J, Morales A, Zupancic P, Esslinger T, Donner T 2017 Nature 543 87Google Scholar

    [41]

    Geier K T, Martone G I, Hauke P, Stringari S 2021 Phys. Rev. Lett. 127 115301Google Scholar

    [42]

    Geier K T, Martone G I, Hauke P, Ketterle W, Stringari S 2023 Phys. Rev. Lett. 130 156001Google Scholar

    [43]

    Li Y, Martone G I, Stringari S 2012 EPL 99 56008Google Scholar

    [44]

    Sartori A, Marino J, Stringari S, Recati A 2015 New J. Phys. 17 093036Google Scholar

    [45]

    Bienaimé T, Fava E, Colzi G, Mordini C, Serafini S, Qu C, Stringari S, Lamporesi G, Ferrari G 2016 Phys. Rev. A 94 063652Google Scholar

    [46]

    Fava E, Bienaimé T, Mordini C, Colzi G, Qu C, Stringari S, Lamporesi G, Ferrari G 2018 Phys. Rev. Lett. 120 170401Google Scholar

    [47]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463Google Scholar

    [48]

    Menotti C, Stringari S 2002 Phys. Rev. A 66 043610Google Scholar

    [49]

    Pitaevskii L, Stringari S 2016 Bose-Einstein Condensation and Superfluidity, vol. 164 of International Series of Monographs on Physics (Oxford University Press, Oxford), pp 401–424

  • [1] LI Rui, DOU Ronglong, GAO Ting, LI Qinan, SONG Chaoqun. Theoretical study on excited states of ICl+ molecular ion considering spin-orbit coupling. Acta Physica Sinica, doi: 10.7498/aps.74.20250510
    [2] FAN Jingtao, JIA Suotang. Dynamical response of spin frequency spectrum in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.74.20241783
    [3] Wang Huan, He Xia-Yao, Li Shuai, Liu Bo. Quench dynamics of a spin-orbital coupled Bose-Einstein condensate with nonlinear interactions. Acta Physica Sinica, doi: 10.7498/aps.72.20222401
    [4] Li Xin-Yue, Qi Juan-Juan, Zhao Dun, Liu Wu-Ming. Soliton solutions of the spin-orbit coupled binary Bose-Einstein condensate system. Acta Physica Sinica, doi: 10.7498/aps.72.20222319
    [5] Qiu Xu, Wang Lin-Xue, Chen Guang-Ping, Hu Ai-Yuan, Wen Lin. Dynamics of spin-tensor-momentum coupled Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.72.20231076
    [6] Yuan Jia-Wang, Chen Li, Zhang Yun-Bo. Adiabatic elimination theory of multi-level system in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.72.20231052
    [7] Ma Yun-E, Qiao Xin, Gao Rui, Liang Jun-Cheng, Zhang Ai-Xia, Xue Ju-Kui. Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.71.20220697
    [8] Li Ji, Liu Bin, Bai Jing, Wang Huan-Yu, He Tian-Chen. Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap. Acta Physica Sinica, doi: 10.7498/aps.69.20200372
    [9] Wen Lin, Liang Yi, Zhou Jing, Yu Peng, Xia Lei, Niu Lian-Bin, Zhang Xiao-Fei. Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.68.20182013
    [10] An Zi-Ye, Wang Xu-Jie, Yuan Zhen-Sheng, Bao Xiao-Hui, Pan Jian-Wei. Coherent manipulation of single collective excitations in a cold atomic ensemble. Acta Physica Sinica, doi: 10.7498/aps.67.20181183
    [11] Li Ji, Liu Wu-Ming. Ground state of spin-orbit coupled rotating two-component Bose-Einstein condensate in gradient magnetic field. Acta Physica Sinica, doi: 10.7498/aps.67.20180539
    [12] He Li, Yu Zeng-Qiang. Landau critical velocity of spin-orbit-coupled Bose-Einstein condensate across quantum phase transition. Acta Physica Sinica, doi: 10.7498/aps.66.220301
    [13] Li Zhi, Cao Hui. Klein tunneling in spin-orbit coupled Bose-Einstein condensate scattered by cusp barrier. Acta Physica Sinica, doi: 10.7498/aps.63.110306
    [14] Li Zhi, Wang Jian-Zhong. Barrier scattering properties in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.62.100306
    [15] Yu Zi-Fa, Wu Jian-Peng, Wang Peng-Cheng, Zhang Jiao-Jiao, Tang Rong-An, Xue Ju-Kui. Collective excitations of superfluid Fermi gas in an anharmonic potential. Acta Physica Sinica, doi: 10.7498/aps.61.010301
    [16] Yan Dong, Song Li-Jun, Chen Dian-Wei. Spin squeezing of two-component Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.58.3679
    [17] Wang Hai-Lei, Yang Shi-Ping. Switch effect of Bose-Einstein condensates in a triple-well potential. Acta Physica Sinica, doi: 10.7498/aps.57.4700
    [18] Wang Zhi-Xia, Zhang Xi-He, Shen Ke. Anti-control of chaos in Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.57.7586
    [19] Li Ju-Ping, Tan Lei, Zang Xiao-Fei, Yang Ke. Dynamics of dipolar spinor condensates in the external magnetic field. Acta Physica Sinica, doi: 10.7498/aps.57.7467
    [20] Wang Guan-Fang, Liu Hong. Irregular spin tunneling for Bose-Einstein condensates in a sweeping magnetic field. Acta Physica Sinica, doi: 10.7498/aps.57.667
Metrics
  • Abstract views:  276
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2025
  • Accepted Date:  02 May 2025
  • Available Online:  10 May 2025

/

返回文章
返回