Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structured beam designed by ray-optical Poincaré sphere method and its propagation properties

Zhang Shu-He Shao Meng Zhou Jin-Hua

Citation:

Structured beam designed by ray-optical Poincaré sphere method and its propagation properties

Zhang Shu-He, Shao Meng, Zhou Jin-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Structured beam plays an important role in optical communication, microscopy and particle manipulations. Traditionally, structured beam can be obtained by solving Helmholtz wave equation. This method involves complex mathematical procedures, and the properties of solved light beam are obscure. It is worth noting that the structured beam can also be constructed by ray-optical Poincaré sphere method: this method is a rather intuitive and convenient for designing the structured beam with novel properties. This method also provides a ray-based way to study the propagation properties of structured beam. In this paper, the ray-optical Poincaré sphere method combined with plum-blossom curve is used to build a family of structured beams. The optical field distributions on beam waist, including intensity and phase, are calculated by the ray-optical Poincaré sphere method. The shape of inner and outer caustics of optical field are also detailed in order to demonstrate the self-healing or non-diffraction features of beams. By using angular spectrum diffraction, the free space evolutions of such structured beams are demonstrated. The results show that the structured beam turns to be the well-known Laguerre-Gaussian beam when the leaf number of plum-blossom curve is 0. While the leaf number equals 1, the structured beam has non-diffraction property, for its inner caustic concentrates onto two points. In geometrical optics sight, all light rays are tangent to the inner caustic, and the optical fields carried by rays interfere near the caustic, leading the beam to possess a self-healing capacity. The self-healing property is demonstrated in terms of rays. With the beam's propagating, rays which launch from the inner side of beam gradually reach the outer side of beam. On the contrary, the rays launching from the inner side of beam arrive at the outer side of beam. When the center of beam is blocked, the inner rays are also blocked. After propagating, outer side rays will reach the inner side, fill up the hole of beam, and recover the injury of optical field. Furthermore, we demonstrate the structured beam with a 5leave plum-blossom curve. In this case, the inner caustic of this beam turns into a decagonal star structure; our simulation results show that this beam has relatively strong self-healing capability. Theoretically, one can simply change the parameters of plum-blossom curve or choose other kind of Poincaré sphere curve to create more complex structured beams.
      Corresponding author: Zhou Jin-Hua, zhoujinhua@ahmu.edu.cn
    • Funds: Project supported by the Scientific Research Foundation of the Institute for Translational Medicine of Anhui Province, China (Grant No. 2017zhyx25), the Key Project of Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant No. KJ2016A361), and the Grants for Scientific Research of BSKY from Anhui Medical University, China (Grant No. XJ201518).
    [1]

    Simpson N B, Dholakia K, Allen L, Padgett M J 1997 Opt. Lett. 22 52

    [2]

    Gutiérrez-Vega J C, Bandres M A 2005 J. Opt. Soc. Am. A 22 289

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [4]

    Penciu R S, Paltoglou V, Efremidis N K 2015 Opt. Lett. 40 1444

    [5]

    Bandres M A, Gutiérrez-Vega J C 2004 Opt. Lett. 29 144

    [6]

    Bandres M A, Gutiérrez-Vega J C 2004 J. Opt. Soc. Am. A 21 873

    [7]

    Wang J 2016 Photon. Res. 4 B14

    [8]

    Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photon. 4 780

    [9]

    Lei M, Zumbusch A 2010 Opt. Express 18 19232

    [10]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [11]

    Woerdemann M, Alpmann C, Esseling M, Denz C 2013 Laser Photon. Rev. 7 839

    [12]

    Dholakia K, Čižmár T 2011 Nat. Photon. 5 335

    [13]

    Dietrich M 1972 Light Transmission Optics (New York: van Nostrand Reinhold) pp230-238

    [14]

    Vainshtein L A 1964 Sov. Phys. Jetp. 18 471

    [15]

    Chen Y Q, Wang J H 2004 Laser Principle (Hangzhou: Zhejiang Universir publisher) pp55-159 [陈钰清, 王静环 2004 激光原理 (杭州: 浙江大学出版社) 第55–159页]

    [16]

    Alonso M A, Dennis M R 2017 Optica 4 476

    [17]

    Alonso M A, Forbes G W 2002 Opt. Express 10 728

    [18]

    Goodman J W 1968 Introduction to Fourier Optics (New York: McGraw-Hill) pp55-61

    [19]

    Li M 2006 M. S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese) [黎茂 2006 硕士学位论文 (成都: 电子科技大学)]

    [20]

    Anguiano-Morales M, Martínez A, Iturbe-Castillo M D, Chávez-Cerda S, Alcalá-Ochoa N 2007 Appl. Opt. 46 8284

    [21]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp349-352

    [22]

    Vaveliuk P, Martínez-Matos ó, Ren Y X, Lu R D 2017 Phys. Rev. A 95 063838

    [23]

    Zhang S H, Zhou J H, Gong L 2018 Opt. Express 26 3381

    [24]

    Zhang S H, Liang Z, Zhou J H 2017 Acta Phys. Sin. 66 048701 (in Chinese) [张书赫, 梁振, 周金华 2017 物理学报 66 048701]

    [25]

    McNamara D A, Pistorius C W I, Malherbe J A G 1990 Introduction to the Uniform Geometrical Theory of Diffraction (Norwood: Artech House) pp263-288

    [26]

    Alonso M A 2013 J. Opt. Soc. Am. A 30 1223

  • [1]

    Simpson N B, Dholakia K, Allen L, Padgett M J 1997 Opt. Lett. 22 52

    [2]

    Gutiérrez-Vega J C, Bandres M A 2005 J. Opt. Soc. Am. A 22 289

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [4]

    Penciu R S, Paltoglou V, Efremidis N K 2015 Opt. Lett. 40 1444

    [5]

    Bandres M A, Gutiérrez-Vega J C 2004 Opt. Lett. 29 144

    [6]

    Bandres M A, Gutiérrez-Vega J C 2004 J. Opt. Soc. Am. A 21 873

    [7]

    Wang J 2016 Photon. Res. 4 B14

    [8]

    Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photon. 4 780

    [9]

    Lei M, Zumbusch A 2010 Opt. Express 18 19232

    [10]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [11]

    Woerdemann M, Alpmann C, Esseling M, Denz C 2013 Laser Photon. Rev. 7 839

    [12]

    Dholakia K, Čižmár T 2011 Nat. Photon. 5 335

    [13]

    Dietrich M 1972 Light Transmission Optics (New York: van Nostrand Reinhold) pp230-238

    [14]

    Vainshtein L A 1964 Sov. Phys. Jetp. 18 471

    [15]

    Chen Y Q, Wang J H 2004 Laser Principle (Hangzhou: Zhejiang Universir publisher) pp55-159 [陈钰清, 王静环 2004 激光原理 (杭州: 浙江大学出版社) 第55–159页]

    [16]

    Alonso M A, Dennis M R 2017 Optica 4 476

    [17]

    Alonso M A, Forbes G W 2002 Opt. Express 10 728

    [18]

    Goodman J W 1968 Introduction to Fourier Optics (New York: McGraw-Hill) pp55-61

    [19]

    Li M 2006 M. S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese) [黎茂 2006 硕士学位论文 (成都: 电子科技大学)]

    [20]

    Anguiano-Morales M, Martínez A, Iturbe-Castillo M D, Chávez-Cerda S, Alcalá-Ochoa N 2007 Appl. Opt. 46 8284

    [21]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp349-352

    [22]

    Vaveliuk P, Martínez-Matos ó, Ren Y X, Lu R D 2017 Phys. Rev. A 95 063838

    [23]

    Zhang S H, Zhou J H, Gong L 2018 Opt. Express 26 3381

    [24]

    Zhang S H, Liang Z, Zhou J H 2017 Acta Phys. Sin. 66 048701 (in Chinese) [张书赫, 梁振, 周金华 2017 物理学报 66 048701]

    [25]

    McNamara D A, Pistorius C W I, Malherbe J A G 1990 Introduction to the Uniform Geometrical Theory of Diffraction (Norwood: Artech House) pp263-288

    [26]

    Alonso M A 2013 J. Opt. Soc. Am. A 30 1223

  • [1] Xu Ming-Wei, Du Kang, Li Ke, Wang Fei-Xiang, Xiao Ti-Qiao. High sensitivity tracking of free-moving targets in time-varying complex backgrounds. Acta Physica Sinica, 2023, 72(15): 150701. doi: 10.7498/aps.72.20230360
    [2] Wu Chang-Mao, Tang Xiong-Xin, Xia Yuan-Yuan, Yang Han-Xiang, Xu Fan-Jiang. High precision ray tracing method for space camera in optical design. Acta Physica Sinica, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [3] Luo Liang, Xia Hui, Liu Jun-Sheng, Fei Jia-Le, Xie Wen-Ke. Cellular automata ray tracing in two-dimensional aero-optical flow fields. Acta Physica Sinica, 2020, 69(19): 194201. doi: 10.7498/aps.69.20200532
    [4] Zhang Shu-He, Shao Meng, Zhang Sheng-Zhao, Zhou Jin-Hua. Light rays in Fourier domain. Acta Physica Sinica, 2019, 68(21): 214202. doi: 10.7498/aps.68.20190839
    [5] Cao Chao, Liao Zhi-Yuan, Bai Yu, Fan Zhen-Jie, Liao Sheng. Initial configuration design of off-axis reflective optical system based on vector aberration theory. Acta Physica Sinica, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [6] Yan Xiong-Wei, Wang Zhen-Guo, Jiang Xin-Ying, Zheng Jian-Gang, Li Min, Jing Yu-Feng. Analysis of laser diode array pump coupling system based on microlens array. Acta Physica Sinica, 2018, 67(18): 184201. doi: 10.7498/aps.67.20172473
    [7] Zhang Shu-He, Liang Zhen, Zhou Jin-Hua. Using quaternions to analyze the trapping force of an ellipsoidal bead. Acta Physica Sinica, 2017, 66(4): 048701. doi: 10.7498/aps.66.048701
    [8] Ding Hao-Lin, Yi Shi-He, Zhu Yang-Zhu, Zhao Xin-Hai, He Lin. Experimental investigation on aero-optics of supersonic turbulent boundary layers at different light incident angles. Acta Physica Sinica, 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [9] Zhang Xiao-Hui, Zhang Shuang, Sun Chun-Sheng. Modeling of Gaussian laser beam reflection from rough sea surface. Acta Physica Sinica, 2016, 65(14): 144204. doi: 10.7498/aps.65.144204
    [10] Lü Xiang-Bo, Zhu Jing, Yang Bao-Xi, Huang Hui-Jie. An approach for calculating the optical structure based on ybar-y diagram. Acta Physica Sinica, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [11] Wang Mei-Jie, Jia Wei-Guo, Zhang Si-Yuan, Qiao Hai-Long, Yang Jun, Zhang Jun-Ping, Menke Nei-Mu-Le. Influence of Raman effect on the state of polarization evolution in a low-birefringence fiber. Acta Physica Sinica, 2014, 63(10): 104204. doi: 10.7498/aps.63.104204
    [12] Wang Chi, Bi Shu-Bo, Wang Li, Xia Xue-Qin, Ding Wei, Yu Ying-Jie. Field-tracing based numerical simulation technique for the investigation of ultra-small self-focusing optical fiber probe. Acta Physica Sinica, 2013, 62(2): 024217. doi: 10.7498/aps.62.024217
    [13] Sun Jin-Xia, Pan Guo-Qing, Liu Ying. Third-order aberrations of a plane symmetric optical system. Acta Physica Sinica, 2013, 62(9): 094203. doi: 10.7498/aps.62.094203
    [14] Chen Can, Tong Ya-Jun, Xie Hong-Lan, Xiao Ti-Qiao. Study of the focusing properties of Laue bent crystal by ray-tracing. Acta Physica Sinica, 2012, 61(10): 104102. doi: 10.7498/aps.61.104102
    [15] Hu Yao, Wang Xiao, Zhu Qi-Hua. Comparison of grating mosaic error tolerance among three types of laser pulse compressor configurations. Acta Physica Sinica, 2011, 60(12): 124205. doi: 10.7498/aps.60.124205
    [16] Cen Zhao-Feng, Li Xiao-Tong. Light transmission in thermal stress-induced birefringent medium. Acta Physica Sinica, 2010, 59(8): 5784-5790. doi: 10.7498/aps.59.5784
    [17] Wu Feng-Tie, Jiang Xin-Guang, Liu Bin, Qiu Zhen-Xing. Geometric optics analysis on self-reconstruction of the nondiffracting beam generated from an axicon. Acta Physica Sinica, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [18] Ye Fan, Xue Fei-Biao, Guo Cun, Li Zheng-Hong, Yang Jian-Lun, Xu Rong-Kun, Zhang Fa-Qiang, Jin Yong-Jie. Utilization of convex crystal spectrograph to obtain monochromatic X-ray images of Z-pinch plasmas. Acta Physica Sinica, 2008, 57(3): 1792-1795. doi: 10.7498/aps.57.1792
    [19] He Kai-Hua, Zheng Guang, Lü Tao, Chen Gang, Ji Guang-Fu. Effect of high pressures on structural, electronic and optical properties of BN nanotube. Acta Physica Sinica, 2006, 55(6): 2908-2913. doi: 10.7498/aps.55.2908
    [20] Wu Peng-Ju, Li Yu-De, Lin Xiao-Yan, Liu An-Dong, Sun Tian-Xi. Simulation of x-ray transmission through a capillary. Acta Physica Sinica, 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
Metrics
  • Abstract views:  7659
  • PDF Downloads:  115
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2018
  • Accepted Date:  29 September 2018
  • Published Online:  20 November 2019

/

返回文章
返回