搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受飞行里德堡自旋控制的光学涡旋非互易传播

王奕璇 刘一谋 吴金辉

引用本文:
Citation:

受飞行里德堡自旋控制的光学涡旋非互易传播

王奕璇, 刘一谋, 吴金辉

Non-reciprocal propagation of optical vortices controlled by flying Rydberg spins

WANG Yixuan, LIU Yimou, WU Jinhui
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 自旋原子团与里德堡原子系综通过位置依赖的非共振偶极交换相互作用相耦合,构成具有偶极交换诱导透明的复合量子系统。飞行自旋原子团与目标里德堡原子系综具有宏观相对运动,诱导目标里德堡原子系综产生光学非互易性。涡旋光束不仅携带轨道角动量且具有复杂的三维空间结构,其与位置依赖的相干原子系统的耦合有望展现出新颖的物理现象。本文深入探讨了受飞行自旋原子团控制的里德堡原子系综中涡旋光束非互易传播的动态调控。通过分步傅里叶传播方法,对探测光束在系综中的空间演化进行了详细分析,结果表明自旋原子团运动速度以及探测场失谐是影响涡旋光束非互易性的关键因素。通过对二者进行协同调节,可以灵活控制涡旋光束二维波阵面经非互易传输后的强度和相位分布。本研究不仅拓宽了非互易光学器件设计和优化思路,同时指出此类光学非互易调控可作为二维涡旋光束整形的潜在技术手段,其在光信息处理和量子通信等领域具有潜在应用价值。
    This paper investigates the dynamic control of non-reciprocal propagation for vortex beams in a Rydberg atomic ensemble mediated by flying spin atomic clusters. The system comprises a target Rydberg atomic ensemble with a five-level N-type structure and two flying spin atomic clusters moving at velocity v, coupled via position-dependent non-resonant dipole-exchange interactions to form a hybrid quantum system exhibiting dipole-exchange-induced transparency. The macroscopic relative motion between the flying spin clusters and the stationary target ensemble induces optical non-reciprocity. Utilizing the split-step Fourier propagation method combined with the superatom model, we perform numerical simulations to analyze the spatial evolution of a probe Laguerre-Gaussian (LG) vortex beam. To quantify nonreciprocity, we introduce the LG nonreciprocity index CLG, defined via the normalized mean absolute intensity difference between output spots for left and right incidence. Our findings show that the spin cluster velocity v and the probe detuning (∆p) are key parameters governing the non-reciprocal response. By tuning v and ∆p, we can flexibly manipulate both the intensity and phase profile of the transmitted two-dimensional vortex wavefront. In the presence of dipole-exchange interaction, the output spot undergoes marked stretching deformation, departing from an ideal annular shape, and its stretching direction (e.g., along x or y) can be precisely switched via parameter adjustment. Moreover, the input direction of the probe beam influences the output phase pattern, producing counterclockwise phase rotation for left incidence and clockwise rotation for right incidence. This work reveals a dynamic control mechanism for non-reciprocal propagation of structured light via macroscopic motion of spin clusters and underscores the potential of dipole-exchange-induced transparent systems for designing nonreciprocal optical devices. The results provide a theoretical foundation for optical information processing and quantum communication, and suggest a viable technique for two-dimensional vortex beam shaping with broad application prospects.
  • [1]

    Potton R J 2004 Rep. Prog. Phys. 67 717

    [2]

    Krasnok A, Alù A 2022 ACS Photonics 9 2

    [3]

    Tripathi A, Ugwu C F, Asadchy V S, Faniayeu I, Kravchenko I, Fan S, Kivshar Y, Valentine J, Kruk S S 2024 Nat. Commun. 15 5077

    [4]

    Li R, Xue J, Song D, Li X, Wang D, Yang B, Zhou H 2025 Acta Phys. Sin. 74 044203 (in Chinese) [李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛 2025 物理学报 74 044203]

    [5]

    Zhao X, Wu K, Chen C, Bifano T G, Anderson S W, Zhang X 2020 Adv. Sci. 7 2001443

    [6]

    Pan R K, Tang L, Xia K 2024 Phys. Rev. A 110 043505

    [7]

    Li B, Huang R, Xu X, Miranowicz A, Jing H 2019 Photon. Res. 7 630

    [8]

    Ren Y l, Ma S l, Xie J k, Li X k, Cao M t, Li F l 2022 Phys. Rev. A 105 013711

    [9]

    You Y, Jia Z, Chen B, Peng Y 2023 Phys. Rev. A 107 053710

    [10]

    Sedov E, Glazov M, Kavokin A 2022 Phys. Rev. Appl. 17 024037

    [11]

    Jing Z, Ma C, Li P, Yu P, Neogi A, Wang Z 2024 Appl. Phys. Lett. 124 171701

    [12]

    Hafezi M, Rabl P 2012 Opt. Express 20 7672

    [13]

    Zhou Y, Ruesink F, Gertler S, et al 2024 Phys. Rev. X 14 021002

    [14]

    Li Z H, Zheng L L, Zhu G L, Wu Y, Lu X Y 2024 Phys. Rev. A 110 013515

    [15]

    You Y, Hu Y, Lin G, Qi Y, Niu Y, Gong S 2021 Phys. Rev. A 103 063706

    [16]

    Shen Z, Zhang Y L, Chen Y, Xiao Y F, Zou C L, Guo G C, Dong C H 2023 Phys. Rev. Lett. 130 013601

    [17]

    Otterstrom N T, Kittlaus E A, Gertler S, Behuning R O, Lentine A L, Rakich P P 2019 Optica 6 1117

    [18]

    Zhang W, Hou R, Wang T, Liu S, Zhang S, Wang H F 2024 Phys. Rev. A 110 023723

    [19]

    Ullah M, Mikki S 2024 Phys. Rev. B 109 214303

    [20]

    Dong F A, Zhang W Q, Atakaramian S, Afshar V S 2023 Opt. Laser Technol. 160 109060

    [21]

    Fan S, Qi Y, Niu Y, Gong S 2022 Chin. Opt. Lett. 20 012701

    [22]

    Zheng J C, Zheng X W, He X L, Qiao Y F, Yao X Y, Pan X F, Ren Y M, Huo X W, Li P B 2025 Quantum Sci. Technol. 10 035005

    [23]

    Xiang Y, Zuo Y, Xu X W, Huang R, Jing H 2023 Phys. Rev. A 108 043702

    [24]

    Wang H, Fan F, Li P, Xue Q, Tan Z, Zhao D, Zhao H, Yang Q, Wen Q, Chang S 2025 Laser Photonics Rev. 19 2500375

    [25]

    Peng W, Wang B 2025 Appl. Phys. Lett. 126 253907

    [26]

    Kang T, Zhang T, Zhang F, Pu M, Chen L, Bao H, Chen S, Du A, Long L, Guo Y, Xu M, Luo X 2025 Adv. Funct. Mater. 35 2504593

    [27]

    Shi H, Xiong Z, Chen W, Xu J, Wang S, Chen Y 2019 Opt. Express 27 28114

    [28]

    Lu T X, Li Z S, Chen L S, Wang Y, Xiao X, Jing H 2025 Phys. Rev. A 111 013713

    [29]

    Wu J H, Artoni M, La Rocca G C 2014 Phys. Rev. Lett. 113 123004

    [30]

    Wu J H, Artoni M, La Rocca G C 2015 Phys. Rev. A 91 033811

    [31]

    Wu J H, Artoni M, La Rocca G C 2017 Phys. Rev. A 95 053862

    [32]

    Chang Z G, Niu Y P, Zhang J T, Gong S Q 2012 Chin. Phys. B 21 114210

    [33]

    Zhang X J, La Rocca G C, Artoni M, Wang H H, Wu J H 2021 Phys. Rev. A 103 062205

    [34]

    Zhao H M, Zheng D D, Zhang X J, Wu J H 2024 New J. Phys. 26 043018

    [35]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [36]

    Yang L, Zhang L, Li X, Li X, Guo Q, Han L, Fu G 2006 Acta Phys. Sin. 55 5206 (in Chinese) [杨丽 君, 张连水, 李晓莉, 李晓著, 郭庆林, 韩理, 傅广生 2006 物理学报 55 5206]

    [37]

    Horsley S A R, Wu J H, Artoni M, La Rocca G C 2013 Phys. Rev. Lett. 110 223602

    [38]

    Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys. Rev. Lett. 123 033902

    [39]

    Liu L, Niu Y, Gong S 2025 Appl. Phys. Lett. 126 241101

    [40]

    Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, Gong S 2018 Nat. Photonics 12 744

    [41]

    Li J F, Wang Y F, Huang P S, Su K Y, Peng Y Q, Zhang S, Yan H, Zhu S L 2023 Phys. Rev. Appl. 20 014027

    [42]

    Cai J, Jiao Y, Hao L, Xue Y, Zhao J, Jia S 2018 Acta Phys. Sin. 67 093201 (in Chinese) [蔡佳蓓, 焦 月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂 2018 物理学报 67 093201]

    [43]

    Sinclair J, Angulo D, Lupu-Gladstein N, Bonsma-Fisher K, Steinberg A M 2019 Phys. Rev. Res. 1 033193

    [44]

    An Z Y, Lu B W, Li J, Yang C W, Li L, Bao X H, Pan J W 2025 Phys. Rev. Lett. 134 230803

    [45]

    Li D, Xu B, Qin K, Jia X, Zhao C, Zhou Y, Xu Z 2025 Photonics 12 204

    [46]

    Zheng D D, Zhao H M, Zhang X J, Wu J H 2022 Phys. Rev. A 106 043119

    [47]

    Zheng D D, Zhang Y, Liu Y M, Zhang X J, Wu J H 2023 Phys. Rev. A 107 013704

    [48]

    Petrosyan D 2017 New J. Phys. 19 033001

    [49]

    Bao X Q, Tian X D, Li D X, Liu Y M 2024 Opt. Express 32 25661

    [50]

    Dutton Z, Ruostekoski J 2004 Phys. Rev. Lett. 93 193602

    [51]

    Ruseckas J, Juzeliūnas G, Öhberg P, Barnett S M 2007 Phys. Rev. A 76 053822

    [52]

    Chen Q F, Shi B S, Zhang Y S, Guo G C 2008 Phys. Rev. A 78 053810

    [53]

    Ding Q, Pan J 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁琴峰, 潘继雄 2011 物理学报 60 094204]

    [54]

    Hamedi H R, Ruseckas J, Juzeliūnas G 2018 Phys. Rev. A 98 013840

    [55]

    Hamedi H R, Ruseckas J, Paspalakis E, Juzeliūnas G 2019 Phys. Rev. A 99 033812

    [56]

    Hamedi H R, Paspalakis E, Žlabys G, Juzeliūnas G, Ruseckas J 2019 Phys. Rev. A 100 023811

    [57]

    Mahmoudi M, Sabegh Z A, Mohammadi M, Mahmoudi M, Hamedi H R 2020 Phys. Rev. A 101 063811

    [58]

    Wang Z, Zhang Y, Paspalakis E, Yu B 2020 Phys. Rev. A 102 063509

    [59]

    Asadpour S H, Paspalakis E, Hamedi H R 2021 Phys. Rev. A 103 063705

    [60]

    Meng C, Shui T, Yang W X 2023 Phys. Rev. A 107 053712

    [61]

    Babiker M, Power W, Allen L 1994 Phys. Rev. Lett. 73 1239

    [62]

    Lembessis V E, Babiker M 2010 Phys. Rev. A 82 051402

    [63]

    Moretti D, Felinto D, Tabosa J 2009 Phys. Rev. A 79 023825

    [64]

    Veissier L, Nicolas A, Giner L, Maxein D, Sheremet A S, Giacobino E, Laurat J 2013 Opt. Lett. 38 712

    [65]

    Radwell N, Clark T, Piccirillo B, Barnett S, Franke-Arnold S 2015 Phys. Rev. Lett. 114 123603

    [66]

    Sharma S, Dey T N 2017 Phys. Rev. A 96 033811

    [67]

    Hamedi H R, Kudriašov V, Ruseckas J, Juzeliūnas G 2018 Opt. Express 26 28249

    [68]

    Abdurazakov O, Li C, Shim Y P 2023 Phys. Rev. B 108 125435

    [69]

    Das B K, Granados C, Krüger M, Chiappina M F 2024 Phys. Rev. Res. 6 043244

    [70]

    Abadi M G G, Mahmoudi M 2022 Sci. Rep. 12 5972

    [71]

    Cronin-Golomb M 2025 Photonics 12 113

    [72]

    Chen D, Jiang D, Xiao Z 2025 Photonics 12 566

    [73]

    Petrosyan D, Otterbach J, Fleischhauer M 2011 Phys. Rev. Lett. 107 213601

    [74]

    Gallagher T F, Pillet P 2008 In Adv. At. Mol. Opt. Phys., vol. 56 (Elsevier Inc.), pp 161–216

    [75]

    Yan D, Cui C L, Liu Y M, Song L J, Wu J H 2013 Phys. Rev. A 87 023827

    [76]

    Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 033839

    [77]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [78]

    Mao L W, Ding D S, Rosales-Guzmán C, Zhu Z H 2022 J. Opt. 24 044004

    [79]

    Robertson E, Šibalić N, Potvliege R M, Adams C S, Weatherill K J 2021 Comput. Phys. Commun. 261 107814

  • [1] 王艳, 李佳健, 艾保全. 具有非互易相互作用的布朗粒子驱动不对称齿轮. 物理学报, doi: 10.7498/aps.75.20251168
    [2] 张慧玲, 谢中柱, 郝佳瑞, 房勇. 室温下铯原子体系光学非互易调控实验研究. 物理学报, doi: 10.7498/aps.74.20241463
    [3] 李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛. 非互易-互易放大转换下光学轨道角动量的转移. 物理学报, doi: 10.7498/aps.74.20241565
    [4] 盖云冉, 郑康, 丁春玲, 郝向英, 金锐博. 基于半导体量子阱中四波混频效应的高效光学非互易. 物理学报, doi: 10.7498/aps.73.20231212
    [5] 裴思辉, 宋子旋, 林星, 方伟. 开放式法布里-珀罗光学微腔中光与单量子系统的相互作用. 物理学报, doi: 10.7498/aps.71.20211970
    [6] 李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东. 基于光学非互易的双路多信道全光操控. 物理学报, doi: 10.7498/aps.71.20220506
    [7] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 物理学报, doi: 10.7498/aps.70.20210059
    [8] 张正源, 张天乙, 刘宗凯, 丁冬生, 史保森. 里德堡原子多体相互作用的研究进展. 物理学报, doi: 10.7498/aps.69.20200649
    [9] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性. 物理学报, doi: 10.7498/aps.68.20190205
    [10] 张书赫, 邵梦, 周金华. 光线庞加莱球法构建的结构光场及其传输特性研究. 物理学报, doi: 10.7498/aps.67.20180918
    [11] 李洪云, 尹妍妍, 王青, 王立飞. 平行电磁场中里德堡氢原子的自相似结构研究. 物理学报, doi: 10.7498/aps.64.180502
    [12] 潘长宁, 赵学辉, 杨迪武, 方卯发. 耗散环境下原子-库场相互作用系统中原子的偶极压缩特性. 物理学报, doi: 10.7498/aps.59.6814
    [13] 曹龙贵, 陆大全, 胡 巍, 杨平保, 朱叶青, 郭 旗. 亚强非局域空间光孤子的相互作用. 物理学报, doi: 10.7498/aps.57.6365
    [14] 黄春福, 郭 儒, 刘思敏. 多个部分非相干光孤子的相互作用. 物理学报, doi: 10.7498/aps.56.908
    [15] 王菊霞, 杨志勇, 安毓英. 多模光场与二能级原子相互作用的纠缠交换与保持. 物理学报, doi: 10.7498/aps.56.6420
    [16] 林继成, 郑小虎, 曹卓良. Kerr介质中双模纠缠相干光与Bell态原子相互作用系统的原子偶极压缩. 物理学报, doi: 10.7498/aps.56.837
    [17] 黄春佳, 贺慧勇, 厉江帆, 周明. Tavis-Cummings模型中原子间偶极相互作用对场熵演化特性的影响. 物理学报, doi: 10.7498/aps.51.1049
    [18] 陈钢进, 夏钟福, 张冶文. 主客体掺杂型非线性光学聚合物驻极体DR1/PMMA膜中空间和偶极电荷的相互作用特性. 物理学报, doi: 10.7498/aps.48.1066
    [19] 冯健, 宋同强, 王文正, 许敬之. 双模腔场中两偶极相互作用原子的辐射谱. 物理学报, doi: 10.7498/aps.43.1966
    [20] 张森, 邱济真, 王刚. 静电场中Ca原子里德堡态的能级结构. 物理学报, doi: 10.7498/aps.38.481
计量
  • 文章访问数:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-12

/

返回文章
返回