Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Light rays in Fourier domain

Zhang Shu-He Shao Meng Zhang Sheng-Zhao Zhou Jin-Hua

Citation:

Light rays in Fourier domain

Zhang Shu-He, Shao Meng, Zhang Sheng-Zhao, Zhou Jin-Hua
PDF
HTML
Get Citation
  • Establishing a universal model to characterize the relationship between light rays and optical waves is of great significance in optics. The ray model provides us with an intuitive way to study the propagation of beams as well as their interaction between objects. Traditional ray model is based on the normal of a beam wave front. The normal vector is defined as the direction of ray. However, it fails to describe the relationship between light ray and optical wave in the neighborhood of focus or caustic lines/surface since light ray in those regions are no longer perpendicular to the wavefront. In this work, the ray model of a light beam is built according to its Fourier angular spectrum, where the positions of rays can be determined by the gradient of the phase of the Fourier angular spectrum. On the other hand, the Fourier angular spectrum of a light beam can be reconstructed through the ray model. Using Fourier angular spectra, we construct the ray model of two typical beams including the Airy beam and the Cusp beam. It is hard to construct ray model directly from the optical field of these beams. In this ray model, the information about ray including direction and position involves the propagation properties of light beams such as self-accelerating. In addition, we demonstrate that the optical field of the focused plane wave can be reconstructed by the ray model in Fourier regime, and the optical field in spatial domain can be obtained by inverse Fourier transform. Simulation results are consistent with the results from Debye’s method. Finally, the high-dimensional ray model of light beams is elaborated in both spatial and spectral regime. Combined with focused plane wave, Airy beam and rays in quadratic gradient-index waveguide, our results show that the ray model actually carries the information about optical field in both spatial and Fourier domain. Actually, the traditional ray model is just a spatial projection of the high-dimensional ray model. Hence, when traditional ray model fails at the focus or caustic lines/surface, it is able to obtain the spectrum of the corresponding optical field from the Fourier domain, and then obtain the field distribution in spatial domain by inverse Fourier transform.
      Corresponding author: Zhou Jin-Hua, zhoujinhua@ahmu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 1908085MA14), the Scientific Research Foundation of the Institute for Translational Medicine of Anhui Province, China (Grant No. 2017zhyx25), the Scientific Research of BSKY from Anhui Medical University, China (Grant No. XJ201812), and the Scientific Research of XKJ from Anhui Medical University, China (Grant No. 2018XKJ013)
    [1]

    萧泽新, 安连生 2014 工程光学设计 (北京: 电子工业出版社) 第4−7页

    Xiao Z X, An L S 2014 Engineering Optical Design (Beijing: Publishing House of Electronics Industry) (in Chinese) pp4−7

    [2]

    Wikipedia contributor, " Ray tracing (graphics)” from Wikipedia—The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Ray_tracing_(graphics)&oldid=888247514 [2019-5-27]

    [3]

    Zhang Z, Levoy M 2009 IEEE International Conferenceon the Computational Photography San Francisco, CA, USA April 16−17, 2009 pp1−10

    [4]

    张春萍, 王庆 2016 中国激光 43 0609004

    Zhang C P, Wang Q 2016 Chin. J. Lasers 43 0609004

    [5]

    Goodman J W 1968 Introduction to Fourier Optics (New York: McGraw-Hill)

    [6]

    玻恩 M, 沃耳夫 E 著 (杨薛荪 译) 2005 光学原理 (北京: 电子工业出版社) 第403页

    Born M, Wolf E (translated by Yang X S) 2005 Principle of Optics (Beijing: Publishing House of Electronics Industry) p 403 (in Chinese)

    [7]

    McNamara D A, Pistorius C W I, Malherbe J A G 1990 Introduction to the Uniform Geometrical Theory of Diffraction (London: Artech House) pp17−27

    [8]

    Keller J B 1962 J. Opt. Soc. Am. 52 116Google Scholar

    [9]

    Kaganovsky Y, Heyman E 2010 Opt. Express 18 8440

    [10]

    马亮, 吴逢铁, 黄启禄 2010 光学学报 30 2417

    Ma L, Wu F T, Huang Q L 2010 Acta Opt. Sin. 30 2417

    [11]

    Alonso M A, Dennis M R 2017 Optica 4 476Google Scholar

    [12]

    Bouchard F, Harris J, Mand H, Boyd R W, Karimi E 2016 Optica 3 351Google Scholar

    [13]

    左超, 陈钱, 孙佳嵩, Asundi A 2016 中国激光 43 0609002

    Zuo C, Chen Q, Sun J S, Asundi A 2016 Chin. J. Lasers 43 0609002

    [14]

    吕乃光, 金国藩, 苏显渝 2016 傅立叶光学 (北京: 机械工业出版社) 第73页

    Lü N G, Jin G P, Su X Y 2016 Fourier Optics (Beijing: China Machine Press) p73 (in Chinese)

    [15]

    Wolf E 1959 Proc. R. Soc. Lond. A 253 349Google Scholar

    [16]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979Google Scholar

    [17]

    Barwick S 2010 Opt. Lett. 35 4118

    [18]

    Gong L, Liu W W, Ren Y X, Lu Y, Li Y M 2015 Appl. Phys. Lett. 107 231110Google Scholar

    [19]

    Forbes G W, Alonso M A 1998 Proc. SPIE 3482 22

    [20]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264Google Scholar

    [21]

    Alonso M A, Forbes G W 2002 Opt. Express 10 728Google Scholar

  • 图 1  平行光经透镜聚焦后产生锥形光线 (a)光线追踪示意图; (b)光锥的简化光线模型

    Figure 1.  Ray cone that produced by convergent parallel rays through a lens: (a) Sketch of ray-tracing; (b) simplified ray model of ray cone.

    图 2  不同横截面处Airy光束的光线分布, 其中(a) $z = - 180\;{\text{μm}}$, (b) $z = - 100\;{\text{μm}}$, (c) $z = 0\;{\text{μm}}$, (d) $z = 100\;{\text{μm}}$, (e) $z = 180\;{\text{μm}}$; 背景色为归一化的光强分布; 灰色点为光线起点, 红色箭头为光线在xoy面投影矢量, 长度正比于光线与z轴的夹角大小; (f) Airy光束的光线模型; 不同颜色用以区分不同位置的光线

    Figure 2.  Ray model of Airy beam at (a) $z = - 180\;{\text{μm}}$, (b) $z = - 100\;{\text{μm}}$, (c) $z = 0\;{\text{μm}}$, (d) $z = 100\;{\text{μm}}$, and (e) $z = 180\;{\text{μm}}$. Backgrounds is the normalized intensity distribution. The transverse directions of rays are represented by red arrows, the length of arrow is proportional to the sine of the angle between the ray and the z axis. (f) Ray model of Airy beam. Different colors are used to distinguish the rays at different positions.

    图 3  不同横截面处Cusp光束的光线分布, 其中(a) $z = - 180\;{\text{μm}}$, (b) $z = - 100\;{\text{μm}}$, (c) $z = 0\;{\text{μm}}$, (d) $z = 100\;{\text{μm}}$, (e) $z = 180\;{\text{μm}}$; 背景色为归一化的光强分布; 灰色点为光线起点, 红色箭头为光线在xoy面投影矢量, 长度正比于光线与z轴的夹角大小; (f) Cusp光束的光线模型; 不同的颜色用以区分不同位置的光线

    Figure 3.  Ray model of Cusp beam at (a) $z = - 180\;{\text{μm}}$, (b) $z = - 100\;{\text{μm}}$, (c) $z = 0\;{\text{μm}}$, (d) $z = 100\;{\text{μm}}$, and (e) $z = 180\;{\text{μm}}$. Backgrounds is the normalized intensity distribution. The transverse directions of rays are represented by red arrows, the length of arrow is proportional to the sine of the angle between the ray and the z axis. (f) Ray model of Cusp beam. Different colors are used to distinguish the rays at different positions.

    图 4  光锥模型及其焦面的傅里叶角谱 (a)经过物镜聚焦后的平行光的光线追踪示意图; (b)使用光线重构得到的焦面上光场的傅里叶角谱

    Figure 4.  Ray-cone and its Fourier angular spectrum: (a) Ray tracing model of convergent parallel rays; (b) reconstructed Fourier angular spectrum according to the ray model.

    图 5  一维聚焦光束的高维光线模型 (a)聚焦光束的三维光线模型; (b)三维光线模型在xoz平面内的投影; (c)三维光线模型在poz平面内的投影

    Figure 5.  High-dimensional ray model of convergent beam: (a) 3D ray model of convergent beam; (b) projection of 3D ray model in xoz plane; (c) projection of 3D ray model in poz plane.

    图 6  二维Airy光束的高维光线模型 (a) Airy光束的三维光线模型; (b)三维光线模型在xoz平面内的投影; (c)三维光线模型在poz平面内的投影

    Figure 6.  High-dimensional ray model of (1 + 1)D Airy beam: (a) 3D ray model of (1 + 1)D Airy beam; (b) projection of 3D ray model in xoz plane; (c) projection of 3D ray model in poz plane.

    图 7  二维抛物线型波导中的厄米-高斯光束的高维光线模型 (a)三维光线模型; (b)三维光线模型在xoz平面内的投影; (c)三维光线模型在poz平面内的投影

    Figure 7.  High-dimensional ray model of Hermit-Gaussian beam in quadratic gradient-index waveguide: (a) 3D ray model; (b) projection of 3D ray model in xoz plane; (c) projection of 3D ray model in poz plane.

  • [1]

    萧泽新, 安连生 2014 工程光学设计 (北京: 电子工业出版社) 第4−7页

    Xiao Z X, An L S 2014 Engineering Optical Design (Beijing: Publishing House of Electronics Industry) (in Chinese) pp4−7

    [2]

    Wikipedia contributor, " Ray tracing (graphics)” from Wikipedia—The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Ray_tracing_(graphics)&oldid=888247514 [2019-5-27]

    [3]

    Zhang Z, Levoy M 2009 IEEE International Conferenceon the Computational Photography San Francisco, CA, USA April 16−17, 2009 pp1−10

    [4]

    张春萍, 王庆 2016 中国激光 43 0609004

    Zhang C P, Wang Q 2016 Chin. J. Lasers 43 0609004

    [5]

    Goodman J W 1968 Introduction to Fourier Optics (New York: McGraw-Hill)

    [6]

    玻恩 M, 沃耳夫 E 著 (杨薛荪 译) 2005 光学原理 (北京: 电子工业出版社) 第403页

    Born M, Wolf E (translated by Yang X S) 2005 Principle of Optics (Beijing: Publishing House of Electronics Industry) p 403 (in Chinese)

    [7]

    McNamara D A, Pistorius C W I, Malherbe J A G 1990 Introduction to the Uniform Geometrical Theory of Diffraction (London: Artech House) pp17−27

    [8]

    Keller J B 1962 J. Opt. Soc. Am. 52 116Google Scholar

    [9]

    Kaganovsky Y, Heyman E 2010 Opt. Express 18 8440

    [10]

    马亮, 吴逢铁, 黄启禄 2010 光学学报 30 2417

    Ma L, Wu F T, Huang Q L 2010 Acta Opt. Sin. 30 2417

    [11]

    Alonso M A, Dennis M R 2017 Optica 4 476Google Scholar

    [12]

    Bouchard F, Harris J, Mand H, Boyd R W, Karimi E 2016 Optica 3 351Google Scholar

    [13]

    左超, 陈钱, 孙佳嵩, Asundi A 2016 中国激光 43 0609002

    Zuo C, Chen Q, Sun J S, Asundi A 2016 Chin. J. Lasers 43 0609002

    [14]

    吕乃光, 金国藩, 苏显渝 2016 傅立叶光学 (北京: 机械工业出版社) 第73页

    Lü N G, Jin G P, Su X Y 2016 Fourier Optics (Beijing: China Machine Press) p73 (in Chinese)

    [15]

    Wolf E 1959 Proc. R. Soc. Lond. A 253 349Google Scholar

    [16]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979Google Scholar

    [17]

    Barwick S 2010 Opt. Lett. 35 4118

    [18]

    Gong L, Liu W W, Ren Y X, Lu Y, Li Y M 2015 Appl. Phys. Lett. 107 231110Google Scholar

    [19]

    Forbes G W, Alonso M A 1998 Proc. SPIE 3482 22

    [20]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264Google Scholar

    [21]

    Alonso M A, Forbes G W 2002 Opt. Express 10 728Google Scholar

  • [1] Luo Liang, Xia Hui, Liu Jun-Sheng, Fei Jia-Le, Xie Wen-Ke. Cellular automata ray tracing in two-dimensional aero-optical flow fields. Acta Physica Sinica, 2020, 69(19): 194201. doi: 10.7498/aps.69.20200532
    [2] Cao Chao, Liao Zhi-Yuan, Bai Yu, Fan Zhen-Jie, Liao Sheng. Initial configuration design of off-axis reflective optical system based on vector aberration theory. Acta Physica Sinica, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [3] Yan Xiong-Wei, Wang Zhen-Guo, Jiang Xin-Ying, Zheng Jian-Gang, Li Min, Jing Yu-Feng. Analysis of laser diode array pump coupling system based on microlens array. Acta Physica Sinica, 2018, 67(18): 184201. doi: 10.7498/aps.67.20172473
    [4] Zhang Shu-He, Shao Meng, Zhou Jin-Hua. Structured beam designed by ray-optical Poincaré sphere method and its propagation properties. Acta Physica Sinica, 2018, 67(22): 224204. doi: 10.7498/aps.67.20180918
    [5] Ding Hao-Lin, Yi Shi-He, Zhu Yang-Zhu, Zhao Xin-Hai, He Lin. Experimental investigation on aero-optics of supersonic turbulent boundary layers at different light incident angles. Acta Physica Sinica, 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [6] Zhang Xiao-Hui, Zhang Shuang, Sun Chun-Sheng. Modeling of Gaussian laser beam reflection from rough sea surface. Acta Physica Sinica, 2016, 65(14): 144204. doi: 10.7498/aps.65.144204
    [7] Lü Xiang-Bo, Zhu Jing, Yang Bao-Xi, Huang Hui-Jie. An approach for calculating the optical structure based on ybar-y diagram. Acta Physica Sinica, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [8] Lai Xiao-Lei. Ray optics calculation of axial force exerted by a highly focused Gaussian beam on a left-handed material sphere. Acta Physica Sinica, 2013, 62(18): 184201. doi: 10.7498/aps.62.184201
    [9] Ruan Wang-Chao, Cen Zhao-Feng, Li Xiao-Tong, Liu Yang-Zhou, Pang Wu-Bin. Simulation and analysis of nonlinear self-focusing phenomenon based on ray-tracing. Acta Physica Sinica, 2013, 62(4): 044202. doi: 10.7498/aps.62.044202
    [10] Sun Jin-Xia, Pan Guo-Qing, Liu Ying. Third-order aberrations of a plane symmetric optical system. Acta Physica Sinica, 2013, 62(9): 094203. doi: 10.7498/aps.62.094203
    [11] Chen Can, Tong Ya-Jun, Xie Hong-Lan, Xiao Ti-Qiao. Study of the focusing properties of Laue bent crystal by ray-tracing. Acta Physica Sinica, 2012, 61(10): 104102. doi: 10.7498/aps.61.104102
    [12] Fan Feng-Ying, Wang Li-Jun. Influences of laser bandwidth and intensity on laser ionization of isotope atoms. Acta Physica Sinica, 2011, 60(9): 093203. doi: 10.7498/aps.60.093203
    [13] Cao Li, Zhang Liang-Ying, Jin Guo-Xiang. Stochastic resonance with frequency noise in a linear model of single-mode laser. Acta Physica Sinica, 2011, 60(4): 044207. doi: 10.7498/aps.60.044207
    [14] Gong Yan-Xiang, Li Feng. Effect of Hubble parameter on the orbit of light ray and radar echo delay in Robertson-McVittie spacetime. Acta Physica Sinica, 2010, 59(8): 5261-5265. doi: 10.7498/aps.59.5261
    [15] Zhang Yuan-Xian, Feng Yong-Li, Zhou Li, Pu Xiao-Yun. Radiation properties of a whispering-gallery-mode fibre laser based on skew light pumping. Acta Physica Sinica, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [16] Wu Feng-Tie, Jiang Xin-Guang, Liu Bin, Qiu Zhen-Xing. Geometric optics analysis on self-reconstruction of the nondiffracting beam generated from an axicon. Acta Physica Sinica, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [17] Zhang Liang-Ying, Jin Guo-Xiang, Cao Li. Stochastic resonance of frequency modulated signals in a linear model of single-mode laser. Acta Physica Sinica, 2008, 57(8): 4706-4711. doi: 10.7498/aps.57.4706
    [18] Zhang Liang-Ying, Cao Li, Jin Guo-Xiang. Stochastic resonance of amplitude modulated wave in a linear model of single-mode laser. Acta Physica Sinica, 2006, 55(12): 6238-6242. doi: 10.7498/aps.55.6238
    [19] XIONG JIN, HU XIANG-MING, PENG JIN-SHENG. LASER LINEWIDTH WITHOUT ROTATING WAVE APPROXIMATION. Acta Physica Sinica, 1999, 48(10): 1864-1868. doi: 10.7498/aps.48.1864
    [20] CHEN YAN-SONG, ZHENG SHI-HAI, LI DE-HUA. TWO-DIMENSIONAL OPTICAL GEOMETRIC MOMENT TRANSFORM. Acta Physica Sinica, 1991, 40(10): 1601-1606. doi: 10.7498/aps.40.1601
Metrics
  • Abstract views:  8428
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  29 May 2019
  • Accepted Date:  09 August 2019
  • Available Online:  01 November 2019
  • Published Online:  05 November 2019

/

返回文章
返回