Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimized Li storage performance of B, N doped graphyne as Li-ion battery anode materials

Cai Meng-Yuan Tang Chun-Mei Zhang Qiu-Yue

Citation:

Optimized Li storage performance of B, N doped graphyne as Li-ion battery anode materials

Cai Meng-Yuan, Tang Chun-Mei, Zhang Qiu-Yue
PDF
HTML
Get Citation
  • As the economy grows and the environment deteriorates, the renewable energy is urgently needed. The advanced energy storage technology in electronic equipment, electric vehicle, smart grid, etc. becomes more significant. For example, the rechargeable batteries, hydrogen storage media, supercapacitors, the new energy storage devices have received much attention today. The anodes of the lithium ion battery (LIB), as the main body of charging and discharging, should be most important. The ideal anode material for LIBs is required to possess a higher Li capacity and a lower volume expansion. Good reversibility and high Li capacity are balanced necessarily in the electrode material. The poor cycling performance of LIB is usually due to the severe volume expansion of anode in lithiation/delithiation process. In this paper, the Li storage performance of B and N doped graphyne is explored by using the density functional theory method. The Perdew-Burke-Ernzerhof functional of the generalized gradient approximation is chosen. The calculations indicate that the doping of B atoms can enhance the adsorption strength between the Li atom and the graphyne, which can greatly increase the Li storage capacity. The Li storage capacity of B doped graphyne can reach as high as 2061.62 mAh/g, which is 2.77 times that of pristine monolayer graphyne. Meanwhile, the B doping reduces the out-plane diffusion energy barrier of Li, but increases the in-plane diffusion energy barrier slightly by 0.1 eV. On the other hand, the doping of N atoms reduces the interaction between Li and graphyne, however, the Li capacity also increases to 1652.12 mAh/g because the number of the available Li adsorption sites increases. Moreover, the doping of N atoms greatly improves the diffusion performance of Li on graphyne. The in-plane diffusion energy barrier drops to 0.37 eV, and thus the charge-discharge performance of the N doping graphyne is well improved. Therefore, the doping of B and N atoms can remarkably improve the performance of graphyne as the LIB anodes. The remarkable performance of B and N doped graphdiyne shows that it will become a promising LIB anode in the future. The present research can provide a good theoretical basis and thus conduce to guiding the developing of good Li storage materials, and can also supply strong background for experimental researches.
      Corresponding author: Tang Chun-Mei, tcmnj@163.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities (Grant Nos. 2019B44214, 2018B19414), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161501), the Six Talent Peaks Project in Jiangsu Province, China (Grant No. 2015-XCL-010), and the Open Subject of National Laboratory of Solid State Microstructures, China (Grant No. M32055)
    [1]

    Bruce P G, Freunberger S A, Hardwick andv L J, M Tarascon J 2012 Nat. Mater. 11 19Google Scholar

    [2]

    Zheng G, Lee S W, Liang Z, Lee H W, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y 2014 Nat. Nanotechnol. 9 618Google Scholar

    [3]

    Cheng F Y, Liang J, Tao Z L, Chen J 2011 Adv. Mater. 23 1695Google Scholar

    [4]

    Osumi S, Saito S, Dou C, Matsuo K, Kume K, Yoshikawa H, Awaga K, Yamaguchi S 2016 Chem. Sci. 7 219Google Scholar

    [5]

    Binitha G, Ashish A G, Ramasubramonian D, Manikandan P, Shaijumon M M 2016 Adv. Mater. Interfaces 3 1500419Google Scholar

    [6]

    Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F 2015 Nat. Commun. 6 5682Google Scholar

    [7]

    Liu R Z, Zhao Y H, Chu T S 2015 Chem. Commun. 51 2429Google Scholar

    [8]

    Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, D Su, Stach E A, Ruoff R S 2011 Science 332 1537Google Scholar

    [9]

    Hankel M, Searles D J 2016 Phys. Chem. Chem. Phys. 18 14205Google Scholar

    [10]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919Google Scholar

    [11]

    Eftekhari A 2017 Ener. Storage Mater. 7 157Google Scholar

    [12]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904Google Scholar

    [13]

    Zhang W J 2011 J. Power. Sources 196 13Google Scholar

    [14]

    Wu H, Cui Y 2012 Nano Today 7 414Google Scholar

    [15]

    Paraknowitsch J P, Thomas A 2013 Ener. Environ. Sci. 6 2839Google Scholar

    [16]

    Zhu G, Lü K, Sun Q, Kawazoe Y, Jena P 2014 Comp. Mater. Sci. 81 275Google Scholar

    [17]

    Wang X, Weng Q, Liu X, Wang X, Tang D M, Tian W, Zhang C, Yi W, Liu D, Bando Y, Golberg D 2014 Nano Lett. 14 1164

    [18]

    Ma C, Shao X, Cao D 2012 J. Mater. Chem. 22 8911Google Scholar

    [19]

    Veith G M, Baggetto L, Adamczyk L, Guo A B, Brown S S, Sun X G, Albert A A, Humble J R, Barnes C E, Bojdys M J, Dai S, Dudney N J 2013 Chem. Mater. 25 503Google Scholar

    [20]

    Tian L L, W ei, X Y, Zhuang Q C, Jiang C H, Wu C, Ma G Y, Zhao X, Zong Z M, Sun S G 2014 Nanoscale 6 6075

    [21]

    Zhang S, Du H, He J, Huang C, Liu H, Cui G, Li Y 2016 ACS Appl. Mater. Inter. 8 8467Google Scholar

    [22]

    Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z 2011 Angew. Chem. Int. Ed. 50 7132Google Scholar

    [23]

    Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 J. Mater. Chem. 22 390Google Scholar

    [24]

    Luo G, Zhao J, Wang B 2013 Compu. Mater. Sci. 68 212Google Scholar

    [25]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [26]

    Li Q, Li Y, Chen Y, Wu L, Yang C, Cui X 2018 Carbon 136 248Google Scholar

    [27]

    Bhattacharya B, Sarkar U 2016 J. Phys. Chem. C 120 26793

    [28]

    Jafari M, Asadpour M, Majelan N A, Faghihnasiri M 2014 Comput. Mater. Sci. 82 391Google Scholar

    [29]

    Ruiz-Puigdollers A, Gamallo P 2017 Carbon 114 301Google Scholar

    [30]

    Becke A D 1988 Phys. Rev. A 38 3098Google Scholar

    [31]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [32]

    Delley B 1998 Int. J. Quant. Chem. 69 423Google Scholar

    [33]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J 1992 Phys. Rev. B 46 6671Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [35]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [36]

    Olmstead M M, Power P P, Weese K J, Doedens R J 1987 J. Am. Chem. Soc. 109 2541Google Scholar

    [37]

    Majidi R 2013 Nano 8 1350060

    [38]

    Merritt L L, Lanterman E 1952 Acta Crystallogr. 5 811Google Scholar

    [39]

    Deng X Z, Zhao Q Q, Zhao Y Q, Cai M Q 2019 Curr. Appl. Phys. 19 279Google Scholar

    [40]

    Yu Z L, Ma Q R, Liu B, Zhao Y Q, Wang L Z, Zhou H, Cai M Q 2017 J. Phys. D: Appl. Phys. 50 465101Google Scholar

    [41]

    Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q, Yu H L 2018 Org. Electron. 53 50Google Scholar

    [42]

    Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [43]

    Guo Y, Cao J, Bo X, Xia Y, Jiang Y, Liu Z 2013 Compu. Mater. Sci. 68 61Google Scholar

    [44]

    Jiang X, Arhammar C, Liu P, Zhao J, Ahuja R 2013 Sci. Rep. 3 1877Google Scholar

    [45]

    Kittel C 1996 Introduction to Solid State Physics (7th ed.) (Singapore: Wiley) pp356−358

    [46]

    Zhang Q, Tang C, Zhu W, Cheng C 2018 J. Phys. Chem. C 122 22838Google Scholar

    [47]

    Zheng F, Yang Y, Chen Q 2014 Nat. Commun. 5 5261Google Scholar

    [48]

    Mortazavi B, Shahrokhi M, Zhuang X, Rabczuk T 2018 J. Mater. Chem. A 6 11022Google Scholar

    [49]

    Eftekhari A, Molaei F 2015 J. Power Sources 274 1306Google Scholar

    [50]

    Eftekhari A, Molaei F 2015 J. Power Sources 274 1315Google Scholar

    [51]

    Halgren T A, Lipscomb W N 1977 Chem. Phys. Lett. 49 225Google Scholar

    [52]

    Henkelman G 2000 J. Chem. Phys. 113 9978Google Scholar

    [53]

    Sun C, Searles D J 2012 J. Phys. Chem. C 116 26222Google Scholar

    [54]

    Chan K T, Neaton J B, Cohen M L 2008 Phys. Rev. B 77 235430Google Scholar

    [55]

    Toyoura K, Koyama Y, Kuwabara A, Oba F, Tanaka I 2008 Phys. Rev. B 78 214303Google Scholar

    [56]

    Valencia F, Romero A H, Ancilotto F, Silvestrelli P L 2006 J. Phys. Chem. B 110 14832Google Scholar

  • 图 1  2 × 2 × 1的石墨炔晶胞中单个B, N的两种掺杂位点, 分别为环掺杂和链掺杂

    Figure 1.  Two doping sites of single B and N in the 2 × 2 × 1 supercell of graphyne. They are ring doping and chain doping respectively.

    图 2  四种结构的能带图 (a) B进行环掺杂; (b) B进行链掺杂; (c) N进行环掺杂; (d) N进行链掺杂

    Figure 2.  Energy band of four structures: (a) B-ring doping; (b) B-chain doping; (c) N-ring doping; (d) N-chain doping.

    图 3  不同掺杂位点B, N与相邻C1, C2原子的PDOS图

    Figure 3.  The PDOS of B, N and neighboring C1, C2 atoms with different doping sites.

    图 4  B, N掺杂石墨炔静电势的平视图与侧视图(静电势范围为1.0−–1.0 Ha·e–1)

    Figure 4.  Flat view and side view of the electrostatic potential of B, N doped graphyne. The range of electrostatic potential is 1.0−–1.0 Ha·e–1.

    图 5  一个Li位于B掺杂的石墨炔(a) H和(c) h位点时的差分电荷密度图; 一个Li位于N掺杂石墨炔(b) H和(d) h位点的差分电荷密度图; 其中差分电荷密度范围为–0.01−0.005 e/Å3, 红色表示电子积聚, 蓝色表示电子缺失

    Figure 5.  Differential charge densities: One Li at (a) H and (c) h sites of the B-doped graphyne; one Li at (b) H and (d) h sites of the N doped graphyne. The range is –0.01− 0.005 e/Å3, the red area stands for electron accumulation, and the blue area stands for electron deletion.

    图 6  多个Li在B, N掺杂墨炔上的平均吸附能随储Li数量的变化

    Figure 6.  The Ead curves of multiple Li adsorbed on B, N doped graphyne.

    图 7  (a) B掺杂石墨炔最大Li结构的俯视图和侧视图; (b) N掺杂石墨炔最大储Li结构的俯视图和侧视图

    Figure 7.  (a) Top and side view of the maximum Li adsorbed with B graphyne; (b) top and side view of the maximum storage Li adsorbed N doped graphyne.

    图 8  B, N掺杂石墨炔的开路电压随储Li容量的变化, 其中橙色划线表示B掺杂石墨炔的平均开路电压, 紫色划线表示N掺杂石墨炔的平均开路电压

    Figure 8.  Change curves of the open circuit voltage with the storage Li capacity for B, N doped graphyne. The orange dash line represents the average open circuit voltage of B doped graphyne, and the purple dash line represents the average open circuit voltage of N doped graphyne.

    图 9  Li在B, N掺杂石墨炔上的扩散路径和对应的能量曲线图, 图中红色曲线对应path 1上的扩散能垒; 绿色曲线对应path 2上的扩散能垒; 黑色曲线对应path 3上的扩散能垒

    Figure 9.  Diffusion paths of Li on B, N doped graphyne and the corresponding energy curves. The red, green, black curves in the panels corresponds to the diffusion energy barrier on path 1, 2, 3, respectively.

    表 1  B, N掺杂的石墨炔的晶格常数、键长、Mulliken电荷及Eb

    Table 1.  Lattice constant, bond length, Mulliken charge and Eb of B, N doped graphyne.

    1 B at ring1 B at chain1 N at ring1 N at chain
    Lattice/Å6.986.926.866.90
    Bond length/ÅB/N-C11.541.501.421.34
    B/N-C21.501.361.341.18
    Charge of B/N/e0.1430.016–0.2470.226
    Eb/eV7.177.096.997.08
    DownLoad: CSV
  • [1]

    Bruce P G, Freunberger S A, Hardwick andv L J, M Tarascon J 2012 Nat. Mater. 11 19Google Scholar

    [2]

    Zheng G, Lee S W, Liang Z, Lee H W, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y 2014 Nat. Nanotechnol. 9 618Google Scholar

    [3]

    Cheng F Y, Liang J, Tao Z L, Chen J 2011 Adv. Mater. 23 1695Google Scholar

    [4]

    Osumi S, Saito S, Dou C, Matsuo K, Kume K, Yoshikawa H, Awaga K, Yamaguchi S 2016 Chem. Sci. 7 219Google Scholar

    [5]

    Binitha G, Ashish A G, Ramasubramonian D, Manikandan P, Shaijumon M M 2016 Adv. Mater. Interfaces 3 1500419Google Scholar

    [6]

    Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F 2015 Nat. Commun. 6 5682Google Scholar

    [7]

    Liu R Z, Zhao Y H, Chu T S 2015 Chem. Commun. 51 2429Google Scholar

    [8]

    Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, D Su, Stach E A, Ruoff R S 2011 Science 332 1537Google Scholar

    [9]

    Hankel M, Searles D J 2016 Phys. Chem. Chem. Phys. 18 14205Google Scholar

    [10]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919Google Scholar

    [11]

    Eftekhari A 2017 Ener. Storage Mater. 7 157Google Scholar

    [12]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904Google Scholar

    [13]

    Zhang W J 2011 J. Power. Sources 196 13Google Scholar

    [14]

    Wu H, Cui Y 2012 Nano Today 7 414Google Scholar

    [15]

    Paraknowitsch J P, Thomas A 2013 Ener. Environ. Sci. 6 2839Google Scholar

    [16]

    Zhu G, Lü K, Sun Q, Kawazoe Y, Jena P 2014 Comp. Mater. Sci. 81 275Google Scholar

    [17]

    Wang X, Weng Q, Liu X, Wang X, Tang D M, Tian W, Zhang C, Yi W, Liu D, Bando Y, Golberg D 2014 Nano Lett. 14 1164

    [18]

    Ma C, Shao X, Cao D 2012 J. Mater. Chem. 22 8911Google Scholar

    [19]

    Veith G M, Baggetto L, Adamczyk L, Guo A B, Brown S S, Sun X G, Albert A A, Humble J R, Barnes C E, Bojdys M J, Dai S, Dudney N J 2013 Chem. Mater. 25 503Google Scholar

    [20]

    Tian L L, W ei, X Y, Zhuang Q C, Jiang C H, Wu C, Ma G Y, Zhao X, Zong Z M, Sun S G 2014 Nanoscale 6 6075

    [21]

    Zhang S, Du H, He J, Huang C, Liu H, Cui G, Li Y 2016 ACS Appl. Mater. Inter. 8 8467Google Scholar

    [22]

    Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z 2011 Angew. Chem. Int. Ed. 50 7132Google Scholar

    [23]

    Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 J. Mater. Chem. 22 390Google Scholar

    [24]

    Luo G, Zhao J, Wang B 2013 Compu. Mater. Sci. 68 212Google Scholar

    [25]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [26]

    Li Q, Li Y, Chen Y, Wu L, Yang C, Cui X 2018 Carbon 136 248Google Scholar

    [27]

    Bhattacharya B, Sarkar U 2016 J. Phys. Chem. C 120 26793

    [28]

    Jafari M, Asadpour M, Majelan N A, Faghihnasiri M 2014 Comput. Mater. Sci. 82 391Google Scholar

    [29]

    Ruiz-Puigdollers A, Gamallo P 2017 Carbon 114 301Google Scholar

    [30]

    Becke A D 1988 Phys. Rev. A 38 3098Google Scholar

    [31]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [32]

    Delley B 1998 Int. J. Quant. Chem. 69 423Google Scholar

    [33]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J 1992 Phys. Rev. B 46 6671Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [35]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [36]

    Olmstead M M, Power P P, Weese K J, Doedens R J 1987 J. Am. Chem. Soc. 109 2541Google Scholar

    [37]

    Majidi R 2013 Nano 8 1350060

    [38]

    Merritt L L, Lanterman E 1952 Acta Crystallogr. 5 811Google Scholar

    [39]

    Deng X Z, Zhao Q Q, Zhao Y Q, Cai M Q 2019 Curr. Appl. Phys. 19 279Google Scholar

    [40]

    Yu Z L, Ma Q R, Liu B, Zhao Y Q, Wang L Z, Zhou H, Cai M Q 2017 J. Phys. D: Appl. Phys. 50 465101Google Scholar

    [41]

    Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q, Yu H L 2018 Org. Electron. 53 50Google Scholar

    [42]

    Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [43]

    Guo Y, Cao J, Bo X, Xia Y, Jiang Y, Liu Z 2013 Compu. Mater. Sci. 68 61Google Scholar

    [44]

    Jiang X, Arhammar C, Liu P, Zhao J, Ahuja R 2013 Sci. Rep. 3 1877Google Scholar

    [45]

    Kittel C 1996 Introduction to Solid State Physics (7th ed.) (Singapore: Wiley) pp356−358

    [46]

    Zhang Q, Tang C, Zhu W, Cheng C 2018 J. Phys. Chem. C 122 22838Google Scholar

    [47]

    Zheng F, Yang Y, Chen Q 2014 Nat. Commun. 5 5261Google Scholar

    [48]

    Mortazavi B, Shahrokhi M, Zhuang X, Rabczuk T 2018 J. Mater. Chem. A 6 11022Google Scholar

    [49]

    Eftekhari A, Molaei F 2015 J. Power Sources 274 1306Google Scholar

    [50]

    Eftekhari A, Molaei F 2015 J. Power Sources 274 1315Google Scholar

    [51]

    Halgren T A, Lipscomb W N 1977 Chem. Phys. Lett. 49 225Google Scholar

    [52]

    Henkelman G 2000 J. Chem. Phys. 113 9978Google Scholar

    [53]

    Sun C, Searles D J 2012 J. Phys. Chem. C 116 26222Google Scholar

    [54]

    Chan K T, Neaton J B, Cohen M L 2008 Phys. Rev. B 77 235430Google Scholar

    [55]

    Toyoura K, Koyama Y, Kuwabara A, Oba F, Tanaka I 2008 Phys. Rev. B 78 214303Google Scholar

    [56]

    Valencia F, Romero A H, Ancilotto F, Silvestrelli P L 2006 J. Phys. Chem. B 110 14832Google Scholar

  • [1] Dong Xiao. Density functional theory on reaction mechanism between p-doped LiNH2 clusters and LiH and a new hydrogen storage and desorption mechanism. Acta Physica Sinica, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [2] Zhou Shu-Ren, Zhang Hong, Mo Hui-Lan, Liu Hao-Wen, Xiong Yuan-Qiang, Li Hong-Lin, Kong Chun-Yang, Ye Li-Juan, Li Wan-Jun. Effect of N-doping on performance of ${\boldsymbol\beta}$-Ga2O3 thin film solar-blind ultraviolet detector. Acta Physica Sinica, 2021, 70(17): 178503. doi: 10.7498/aps.70.20210434
    [3] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang. Density functional theory of InCn+(n=110) clusters. Acta Physica Sinica, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [5] Chi Bao-Qian, Liu Yi, Xu Jing-Cheng, Qin Xu-Ming, Sun Chen, Bai Cheng-Hao, Liu Yi-Fan, Zhao Xin-Luo, Li Xiao-Wu. Density functional theory study of structure stability and electronic structures of graphyne derivatives. Acta Physica Sinica, 2016, 65(13): 133101. doi: 10.7498/aps.65.133101
    [6] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [7] Yang Guang-Min, Xu Qiang, Li Bing, Zhang Han-Zhuang, He Xiao-Guang. Quantum capacitance performance of different nitrogen doping configurations of graphene. Acta Physica Sinica, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [8] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [9] Wen Jun-Qing, Xia Tao, Wang Jun-Fei. A density functional theory study of small bimetallic PtnAl (n=18) clusters. Acta Physica Sinica, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [10] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [11] Tang Dong-Hua, Xue Lin, Sun Li-Zhong, Zhong Jian-Xin. Doping effect of boron in Hg0.75Cd0.25Te: first-principles study. Acta Physica Sinica, 2012, 61(2): 027102. doi: 10.7498/aps.61.027102
    [12] Zhang Ling, He Zhi-Bing, Liao Guo, Chen Jia-Jun, Xu Hua, Li Jun. Influence of B doping on structure and properties of Ti Thin Film. Acta Physica Sinica, 2012, 61(18): 186803. doi: 10.7498/aps.61.186803
    [13] Zhang Zhi-Long, Chen Yu-Hong, Ren Bao-Xing, Zhang Cai-Rong, Du Rui, Wang Wei-Chao. Density functional theory study on the structure and properties of (HMgN3)n(n=15) clusters. Acta Physica Sinica, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [14] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [15] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [16] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Ma Jun. Density functional theory study of [Mg(NH2)2]n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [17] Xu Ling, Tang Chao-Qun, Dai Lei, Tang Dai-Hai, Ma Xin-Guo. First-principles study of the electronic structure of N-doping anatase TiO2. Acta Physica Sinica, 2007, 56(2): 1048-1053. doi: 10.7498/aps.56.1048
    [18] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [19] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] Lai Yun-Feng, Feng Jie, Qiao Bao-Wei, Ling Yun, Lin Yin-Yin, Tang Ting-Ao, Cai Bing-Chu, Chen Bang-Ming. Multiple-state storage capability of nitrogen-doped Ge2Sb2Te5 film for phase change memory. Acta Physica Sinica, 2006, 55(8): 4347-4352. doi: 10.7498/aps.55.4347
Metrics
  • Abstract views:  10391
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2019
  • Accepted Date:  03 September 2019
  • Available Online:  01 November 2019
  • Published Online:  05 November 2019

/

返回文章
返回