Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of N-doping on performance of ${\boldsymbol\beta}$-Ga2O3 thin film solar-blind ultraviolet detector

Zhou Shu-Ren Zhang Hong Mo Hui-Lan Liu Hao-Wen Xiong Yuan-Qiang Li Hong-Lin Kong Chun-Yang Ye Li-Juan Li Wan-Jun

Citation:

Effect of N-doping on performance of ${\boldsymbol\beta}$-Ga2O3 thin film solar-blind ultraviolet detector

Zhou Shu-Ren, Zhang Hong, Mo Hui-Lan, Liu Hao-Wen, Xiong Yuan-Qiang, Li Hong-Lin, Kong Chun-Yang, Ye Li-Juan, Li Wan-Jun
PDF
HTML
Get Citation
  • β-Ga2O3-based deep-ultraviolet photodetector (PD) has versatile civil and military applications especially due to its inherent solar-blindness. In this work, pristine and N-doped β-Ga2O3 thin films are prepared on c-plane sapphire substrates by radio frequency magnetron sputtering. The influences of N impurity on the micromorphology, structural and optical properties of β-Ga2O3 film are investigated in detail by scanning electron microscopy, X-ray diffraction, and Raman spectra. The introduction of N impurities not only degrades the crystal quality of β-Ga2O3 films, but also affects the surface roughness. The β-Ga2O3 films doped with N undergoes a transition from a direct optical band gap to an indirect optical band gap. Then, the resulting metal-semiconductor-metal (MSM) PD is constructed. Comparing with the pure β-Ga2O3-based photodetector, the introduction of N impurities can effectively depress dark current and improve response speed of the β-Ga2O3 device. The N-doped β-Ga2O3-based photodetector achieves a dark current of 1.08 × 10–11 A and a fast response speed (rise time of 40 ms and decay time of 8 ms), which can be attributed to the decrease of oxygen vacancy related defects. This study demonstrates that the acceptor doping provides a new opportunity for producing ultraviolet photodetectors with fast response for further practical applications.
      Corresponding author: Zhang Hong, zhh_2016@163.com ; Ye Li-Juan, ylj2592924@163.com ; Li Wan-Jun, liwj@cqnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11904041), the Natural Science Foundation of Chongqing, China(Grant Nos. cstc2020jcyj-msxmX0557, cstc2020jcyj-msxmX0533), and the Science and Technology Research Project of Chongqing Education Committee, China(Grant Nos. KJQN202000511, KJQN201900542)
    [1]

    Pearton S J, Yang J C, Cary I V P H, Ren F, Kim J, Tadjer M J, Mastor M A 2018 Appl. Phys. Rev. 5 011301

    [2]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [3]

    Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar

    [4]

    Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [5]

    Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar

    [6]

    Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R, Yang H 2014 Chem. Mater. 27 197

    [7]

    Liao M Y, Sang L, Teraji T, Imura M, Alvarez J, Koide Y 2012 Jpn. J. Appl. Phys. 51 090115Google Scholar

    [8]

    Chen J X, Li X X, Ma H P, Huang W, Ji Z G, Xia C T, Lu H L, Zhang D W 2019 ACS Appl. Mater. Interfaces 11 32127Google Scholar

    [9]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [10]

    Zhang L H, Verma A, Xing H L, Jena D 2017 Jpn. J. Appl. Phys. 56 030304Google Scholar

    [11]

    马腾宇, 孔春阳, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 李泓霖, 叶利娟 2020 物理学报 69 108102Google Scholar

    Ma T Y, Kong C Y, Li W J, He X W, Hu H, Huang L J, Zhang H, Li H L, Ye L J 2020 Acta Phys. Sin. 69 108102Google Scholar

    [12]

    Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P C, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar

    [13]

    Qin Y, Li L H, Zhao X L, Tompa G S, Dong H, Jian G Z, He Q M, Tan P J, Hou X H, Zhang Z F, Yu S J, Sun H D, Xu G W, Miao X S, Xue K H, Long S B, Liu M 2020 ACS Photonics 7 812Google Scholar

    [14]

    Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Liang F, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar

    [15]

    Wang Q, Chen J, Huang P, Li M, Lu Y, Homewood K P, Chang G, Chen H, He Y B 2019 Appl. Surf. Sci. 489 101Google Scholar

    [16]

    Hu H D, Liu Y C, Han G Q, Fang C Z, Zhang Y F, Liu H, Wang Y B, Ye J D, Hao Y 2020 Nanoscale Res. Lett. 15 100Google Scholar

    [17]

    Chen Y P, Liang H W, Xia X C, Shen R S, Liu Y, Luo Y M, Du G T 2015 Appl. Surf. Sci. 325 258Google Scholar

    [18]

    Guo D Y, Qin X Y, Lü M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W H 2017 Electron. Mater. Lett. 13 483Google Scholar

    [19]

    Chen J W, Tang H L, Liu B, Zhang Z X, Gu M, Zhu Z C, Xu Q, Xun J, Zhou L D, Chen L, Ou Yang X P 2021 ACS Appl. Mater. Interfaces 13 2879Google Scholar

    [20]

    Yao Z R, Tang K, Xu Z H, Ye J D, Zhun S M, Gu S L 2016 Nanoscale Res. Lett. 11 501Google Scholar

    [21]

    Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloys Compd. 580 538Google Scholar

    [22]

    Dong L P, Jia R X, Li C, Xin B, Zhang Y M 2017 J. Alloys Compd. 712 379Google Scholar

    [23]

    Chang L W, Li C F, Hsieh Y T, Liu C M, Cheng Y T, Yeh J W, Shih H C 2011 J. Electrochem. Soc. 158 D136Google Scholar

    [24]

    Jiang Z X, Wu Z Y, Ma C C, Deng J N, Zhang H, Xu Y, Ye J D, Fang Z L, Zhang G Q, Kang J Y, Zhang T Y 2020 Mater. Today Phys. 14 100226Google Scholar

    [25]

    Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar

    [26]

    Xie C, Lu X T, Liang Y, Chen H H, Wang L, Wu C Y, Wu D, Yang W H, Luo L B 2021 J. Mater. Sci. Technol. 72 189Google Scholar

    [27]

    Shen H, Baskaran K, Yin Y N, Tian K, Duan L B, Zhao X R, Tiwari A 2020 J. Alloys Compd. 822 153419Google Scholar

    [28]

    Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312

    [29]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [30]

    He T, Zhang X D, Ding X Y, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J Q, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P, Zhang B S 2019 Adv. Opt. Mater. 7 1801563Google Scholar

    [31]

    Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar

    [32]

    Li W H, Zhao X L, Zhi Y S, Zhang X H, Chen Z W, Chu X L, Yang H J, Wu Z P, Tang W H 2018 Appl. Opt. 57 538Google Scholar

    [33]

    Fang M Z, Zhao W G, Li F F, Zhu D L, Han S, Xu W Y, Liu W J, Fang M, Lu Y M 2019 Sensors 20 129Google Scholar

    [34]

    Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H, Tang W H 2017 Mater. Lett. 209 558Google Scholar

    [35]

    Zhao Z C, Yang C L, Meng Q T, Wang M S, Ma X G 2019 Spectrochim. Acta, Part A 211 71Google Scholar

    [36]

    Beaton D A, Alberi K, Fluegel B, Mascarenhas A, Reno J L 2013 Appl. Phys. Express 6 071201Google Scholar

    [37]

    Zhao W R, Yang Y, Hao R, Liu F F, Wang Y, Tan M, Tang J, Ren D Q, Zhao D Y 2011 J. Hazard. Mater. 192 1548Google Scholar

    [38]

    Zhao X L, Wu Z P, Zhi Y S, An Y H, Cui W, Li L H, Tang W H 2017 J. Phys. D: Appl. Phys. 50 085102Google Scholar

    [39]

    Liu L L, Li M K, Yu D Q, Zhang J, Zhang H, Qian C, Yang Z 2010 Appl. Phys. A 98 831

    [40]

    Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar

    [41]

    Tak B R, Garg M, Dewan S, Torres-Castanedo C G, Li K H, Gupta V, Li X H, Singh R 2019 J. Appl. Phys. 125 144501Google Scholar

    [42]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [43]

    Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H, Schoenfeld W 2017 Phys. Status Solidi A 214 1600688Google Scholar

    [44]

    Yu M, Lü C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S G, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar

  • 图 1  N掺杂β-Ga2O3薄膜的表面形貌和晶体结构 (a)—(d) SEM图; (e) XRD图谱; (f) Raman光谱

    Figure 1.  Surface morphology and crystal structure of N-doped β-Ga2O3 films: (a)−(d) SEM; (e) XRD; (f) Raman spectra.

    图 2  (a)不同浓度N掺杂β-Ga2O3薄膜的透射光谱; (b), (c) 在直接和间接带隙下利用Tauc公式外推光学带隙图

    Figure 2.  (a) Transmission spectra of β-Ga2O3 films doped with different N concentrations; (b), (c) Tauc plots for samples under assumptions of an indirect bandgap and a direct bandgap.

    图 3  (a)不同浓度N掺杂β-Ga2O3薄膜的室温光致发光谱; (b)局部放大图 (350−500 nm)

    Figure 3.  (a) Room temperature PL spectra of N-doped β-Ga2O3 films; (b) local enlarged view ranging from 350 to 500 nm.

    图 4  β-Ga2O3薄膜MSM型日盲紫外器件的光电特性 (a), (b) I-V特性曲线; (c), (d) 瞬态光响应特性曲线(偏压为10 V); (e), (f) 光响应时间拟合曲线

    Figure 4.  Photoresponse performance of the β-Ga2O3 film MSM photodetectors: (a), (b) I-V curves of the MSM photodetector; (c), (d) transient light response characteristic curve under the bias voltage of 10 V; (e), (f) exponential fitting of a single cycle at 10 V illuminated with 254 nm light.

    图 5  在254 nm光照下MSM型光电探测器的光响应能带示意图 (a)—(c)器件A; (d)—(f)器件C

    Figure 5.  Schematic energy band diagrams of MSM photodetector of samples A and C under 254 nm light illumination: (a)−(c) device A; (d)−(f) device C.

    表 1  不同N掺杂浓度β-Ga2O3薄膜的(–201)衍射峰和201.4 cm–1拉曼特征峰的半高宽

    Table 1.  Full width at half maximum (FWHM) of XRD diffraction peak and Raman peak.

    SampleFWHM of (–201) peak/(°)FWHM of 201.4 cm–1
    peak/cm–1
    A0.382.6
    B0.513.08
    C0.392.9
    D0.583.14
    DownLoad: CSV

    表 2  国内外Ga2O3薄膜基光电探测器的主要性能指标对比

    Table 2.  Comparison of the representative photoresponse metrics based on Ga2O3 film photodetectors.

    SamplesGrowthIdark/nAτr/sτd/sRef.
    β-Ga2O3Sputtering0.11 (10 V)0.31/1.520.05/0.91[9]
    β-Ga2O3MOCVD34 (10 V)7.308.05[40]
    β-Ga2O3PLD~1.20.59/2.40.15/1.6[41]
    a-Ga2O3Sputtering0.3386 (10 V)0.41/2.040.02/0.35[42]
    Ga2O3:ZnSputtering45 (10 V)17.2/1.234.03/46.10[38]
    Ga2O3:ZnMOCVD23 (30 V)3.21.4[43]
    Ga2O3:NCVD~0.1 (5 V)0.010.01[24]
    Ga2O3:MgSputtering0.0041 (10 V)0.33/8.840.02[34]
    Ga2O3:CePLD0.87/10.810.54/13.98[32]
    α/β-Ga2O3Sol–gel0.125 (15 V)0.04/0.870.02/1.00[44]
    β-Ga2O3Sputtering0.56 (10 V)0.51/3.040.07/0.08This work
    Ga2O3:NSputtering0.0108 (10 V)0.04/2.380.008/0.29This work
    DownLoad: CSV
  • [1]

    Pearton S J, Yang J C, Cary I V P H, Ren F, Kim J, Tadjer M J, Mastor M A 2018 Appl. Phys. Rev. 5 011301

    [2]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [3]

    Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar

    [4]

    Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [5]

    Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar

    [6]

    Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R, Yang H 2014 Chem. Mater. 27 197

    [7]

    Liao M Y, Sang L, Teraji T, Imura M, Alvarez J, Koide Y 2012 Jpn. J. Appl. Phys. 51 090115Google Scholar

    [8]

    Chen J X, Li X X, Ma H P, Huang W, Ji Z G, Xia C T, Lu H L, Zhang D W 2019 ACS Appl. Mater. Interfaces 11 32127Google Scholar

    [9]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [10]

    Zhang L H, Verma A, Xing H L, Jena D 2017 Jpn. J. Appl. Phys. 56 030304Google Scholar

    [11]

    马腾宇, 孔春阳, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 李泓霖, 叶利娟 2020 物理学报 69 108102Google Scholar

    Ma T Y, Kong C Y, Li W J, He X W, Hu H, Huang L J, Zhang H, Li H L, Ye L J 2020 Acta Phys. Sin. 69 108102Google Scholar

    [12]

    Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P C, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar

    [13]

    Qin Y, Li L H, Zhao X L, Tompa G S, Dong H, Jian G Z, He Q M, Tan P J, Hou X H, Zhang Z F, Yu S J, Sun H D, Xu G W, Miao X S, Xue K H, Long S B, Liu M 2020 ACS Photonics 7 812Google Scholar

    [14]

    Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Liang F, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar

    [15]

    Wang Q, Chen J, Huang P, Li M, Lu Y, Homewood K P, Chang G, Chen H, He Y B 2019 Appl. Surf. Sci. 489 101Google Scholar

    [16]

    Hu H D, Liu Y C, Han G Q, Fang C Z, Zhang Y F, Liu H, Wang Y B, Ye J D, Hao Y 2020 Nanoscale Res. Lett. 15 100Google Scholar

    [17]

    Chen Y P, Liang H W, Xia X C, Shen R S, Liu Y, Luo Y M, Du G T 2015 Appl. Surf. Sci. 325 258Google Scholar

    [18]

    Guo D Y, Qin X Y, Lü M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W H 2017 Electron. Mater. Lett. 13 483Google Scholar

    [19]

    Chen J W, Tang H L, Liu B, Zhang Z X, Gu M, Zhu Z C, Xu Q, Xun J, Zhou L D, Chen L, Ou Yang X P 2021 ACS Appl. Mater. Interfaces 13 2879Google Scholar

    [20]

    Yao Z R, Tang K, Xu Z H, Ye J D, Zhun S M, Gu S L 2016 Nanoscale Res. Lett. 11 501Google Scholar

    [21]

    Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloys Compd. 580 538Google Scholar

    [22]

    Dong L P, Jia R X, Li C, Xin B, Zhang Y M 2017 J. Alloys Compd. 712 379Google Scholar

    [23]

    Chang L W, Li C F, Hsieh Y T, Liu C M, Cheng Y T, Yeh J W, Shih H C 2011 J. Electrochem. Soc. 158 D136Google Scholar

    [24]

    Jiang Z X, Wu Z Y, Ma C C, Deng J N, Zhang H, Xu Y, Ye J D, Fang Z L, Zhang G Q, Kang J Y, Zhang T Y 2020 Mater. Today Phys. 14 100226Google Scholar

    [25]

    Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar

    [26]

    Xie C, Lu X T, Liang Y, Chen H H, Wang L, Wu C Y, Wu D, Yang W H, Luo L B 2021 J. Mater. Sci. Technol. 72 189Google Scholar

    [27]

    Shen H, Baskaran K, Yin Y N, Tian K, Duan L B, Zhao X R, Tiwari A 2020 J. Alloys Compd. 822 153419Google Scholar

    [28]

    Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312

    [29]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [30]

    He T, Zhang X D, Ding X Y, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J Q, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P, Zhang B S 2019 Adv. Opt. Mater. 7 1801563Google Scholar

    [31]

    Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar

    [32]

    Li W H, Zhao X L, Zhi Y S, Zhang X H, Chen Z W, Chu X L, Yang H J, Wu Z P, Tang W H 2018 Appl. Opt. 57 538Google Scholar

    [33]

    Fang M Z, Zhao W G, Li F F, Zhu D L, Han S, Xu W Y, Liu W J, Fang M, Lu Y M 2019 Sensors 20 129Google Scholar

    [34]

    Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H, Tang W H 2017 Mater. Lett. 209 558Google Scholar

    [35]

    Zhao Z C, Yang C L, Meng Q T, Wang M S, Ma X G 2019 Spectrochim. Acta, Part A 211 71Google Scholar

    [36]

    Beaton D A, Alberi K, Fluegel B, Mascarenhas A, Reno J L 2013 Appl. Phys. Express 6 071201Google Scholar

    [37]

    Zhao W R, Yang Y, Hao R, Liu F F, Wang Y, Tan M, Tang J, Ren D Q, Zhao D Y 2011 J. Hazard. Mater. 192 1548Google Scholar

    [38]

    Zhao X L, Wu Z P, Zhi Y S, An Y H, Cui W, Li L H, Tang W H 2017 J. Phys. D: Appl. Phys. 50 085102Google Scholar

    [39]

    Liu L L, Li M K, Yu D Q, Zhang J, Zhang H, Qian C, Yang Z 2010 Appl. Phys. A 98 831

    [40]

    Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar

    [41]

    Tak B R, Garg M, Dewan S, Torres-Castanedo C G, Li K H, Gupta V, Li X H, Singh R 2019 J. Appl. Phys. 125 144501Google Scholar

    [42]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [43]

    Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H, Schoenfeld W 2017 Phys. Status Solidi A 214 1600688Google Scholar

    [44]

    Yu M, Lü C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S G, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar

  • [1] Zhang Yu, Liu Rui-Wen, Zhang Jing-Yang, Jiao Bin-Bin, Wang Ru-Zhi. Gallium oxide cantilevered thin film-based solar-blind photodetector and its arc detection applications. Acta Physica Sinica, 2024, 73(9): 098501. doi: 10.7498/aps.73.20240186
    [2] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector. Acta Physica Sinica, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [3] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [4] Li Lei, Zhi Yu-Song, Zhang Mao-Lin, Liu Zeng, Zhang Shao-Hui, Ma Wan-Yu, Xu Qiang, Shen Gao-Hui, Wang Xia, Guo Yu-Feng, Tang Wei-Hua. Dual-band and dual-mode ultraviolet photodetection characterizations of Ga2O3/Al0.1Ga0.9N homo-type heterojunction. Acta Physica Sinica, 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [5] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [6] Dong Dian-Meng, Wang Cheng, Zhang Qing-Yi, Zhang Tao, Yang Yong-Tao, Xia Han-Chi, Wang Yue-Hui, Wu Zhen-Ping. Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer. Acta Physica Sinica, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [7] Liu Wei, Feng Qiu-Ju, Yi Zi-Qi, Yu Chen, Wang Shuo, Wang Yan-Ming, Sui Xue, Liang Hong-Wei. Preparation and ultraviolet detection performance of Cu doped β-Ga2O3 thin films. Acta Physica Sinica, 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [8] Li Xiu-Hua, Zhang Min, Yang Jia, Xing Shuang, Gao Yue, Li Ya-Ze, Li Si-Yu, Wang Chong-Jie. Effect of film thickness on photoelectric properties of ${\boldsymbol{\beta}} $-Ga2O3 films prepared by radio frequency magnetron sputtering. Acta Physica Sinica, 2022, 71(4): 048501. doi: 10.7498/aps.71.20211744
    [9] Effect of film thickness on photoelectric properties of β-Ga2O3 films by radio frequency magnetron sputtering*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211744
    [10] Xuan Xin-Miao, Wang Jia-Heng, Mao Yan-Qi, Ye Li-Juan, Zhang Hong, Li Hong-Lin, Xiong Yuan-Qiang, Fan Si-Qiang, Kong Chun-Yang, Li Wan-Jun. Flexible transparent solar blind ultraviolet photodetector based on amorphous Ga2O3 grown on mica substrate. Acta Physica Sinica, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [11] Guo Dao-You, Li Pei-Gang, Chen Zheng-Wei, Wu Zhen-Ping, Tang Wei-Hua. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector. Acta Physica Sinica, 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [12] Cai Meng-Yuan, Tang Chun-Mei, Zhang Qiu-Yue. Optimized Li storage performance of B, N doped graphyne as Li-ion battery anode materials. Acta Physica Sinica, 2019, 68(21): 213601. doi: 10.7498/aps.68.20191161
    [13] Yang Guang-Min, Xu Qiang, Li Bing, Zhang Han-Zhuang, He Xiao-Guang. Quantum capacitance performance of different nitrogen doping configurations of graphene. Acta Physica Sinica, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [14] Qi Xiao-Meng, Peng Wen-Bo, Zhao Xiao-Long, He Yong-Ning. Photoconductive UV detector based on high-resistance ZnO thin film. Acta Physica Sinica, 2015, 64(19): 198501. doi: 10.7498/aps.64.198501
    [15] Zhang Xiao-Fu, Li Yu-Dong, Guo Qi, Luo Mu-Chang, He Cheng-Fa, Yu Xin, Shen Zhi-Hui, Zhang Xing-Yao, Deng Wei, Wu Zheng-Xin. 60Coγ-radiation effects on the ideality factor of AlxGa1?xN p-i-n solar-blind detector with high content of aluminum. Acta Physica Sinica, 2013, 62(7): 076106. doi: 10.7498/aps.62.076106
    [16] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [17] Deng Yi, Zhao De-Gang, Wu Liang-Liang, Liu Zong-Shun, Zhu Jian-Jun, Jiang De-Sheng, Zhang Shu-Ming, Liang Jun-Wu. Effects of AlGaN layer parameter on ultraviolet response of n+-GaN/i-AlxGa1-xN/n+-GaN structure ultraviolet-infrared photodetector. Acta Physica Sinica, 2010, 59(12): 8903-8909. doi: 10.7498/aps.59.8903
    [18] Xu Ling, Tang Chao-Qun, Dai Lei, Tang Dai-Hai, Ma Xin-Guo. First-principles study of the electronic structure of N-doping anatase TiO2. Acta Physica Sinica, 2007, 56(2): 1048-1053. doi: 10.7498/aps.56.1048
    [19] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] Lai Yun-Feng, Feng Jie, Qiao Bao-Wei, Ling Yun, Lin Yin-Yin, Tang Ting-Ao, Cai Bing-Chu, Chen Bang-Ming. Multiple-state storage capability of nitrogen-doped Ge2Sb2Te5 film for phase change memory. Acta Physica Sinica, 2006, 55(8): 4347-4352. doi: 10.7498/aps.55.4347
Metrics
  • Abstract views:  7193
  • PDF Downloads:  240
  • Cited By: 0
Publishing process
  • Received Date:  06 March 2021
  • Accepted Date:  22 April 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回