-
β-Ga2O3-based deep-ultraviolet photodetector (PD) has versatile civil and military applications especially due to its inherent solar-blindness. In this work, pristine and N-doped β-Ga2O3 thin films are prepared on c-plane sapphire substrates by radio frequency magnetron sputtering. The influences of N impurity on the micromorphology, structural and optical properties of β-Ga2O3 film are investigated in detail by scanning electron microscopy, X-ray diffraction, and Raman spectra. The introduction of N impurities not only degrades the crystal quality of β-Ga2O3 films, but also affects the surface roughness. The β-Ga2O3 films doped with N undergoes a transition from a direct optical band gap to an indirect optical band gap. Then, the resulting metal-semiconductor-metal (MSM) PD is constructed. Comparing with the pure β-Ga2O3-based photodetector, the introduction of N impurities can effectively depress dark current and improve response speed of the β-Ga2O3 device. The N-doped β-Ga2O3-based photodetector achieves a dark current of 1.08 × 10–11 A and a fast response speed (rise time of 40 ms and decay time of 8 ms), which can be attributed to the decrease of oxygen vacancy related defects. This study demonstrates that the acceptor doping provides a new opportunity for producing ultraviolet photodetectors with fast response for further practical applications.
-
Keywords:
- β-Ga2O3 films /
- N-doped /
- deep-ultraviolet photodetectors /
- fast response
[1] Pearton S J, Yang J C, Cary I V P H, Ren F, Kim J, Tadjer M J, Mastor M A 2018 Appl. Phys. Rev. 5 011301
[2] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[3] Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar
[4] Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar
[5] Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar
[6] Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R, Yang H 2014 Chem. Mater. 27 197
[7] Liao M Y, Sang L, Teraji T, Imura M, Alvarez J, Koide Y 2012 Jpn. J. Appl. Phys. 51 090115Google Scholar
[8] Chen J X, Li X X, Ma H P, Huang W, Ji Z G, Xia C T, Lu H L, Zhang D W 2019 ACS Appl. Mater. Interfaces 11 32127Google Scholar
[9] Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar
[10] Zhang L H, Verma A, Xing H L, Jena D 2017 Jpn. J. Appl. Phys. 56 030304Google Scholar
[11] 马腾宇, 孔春阳, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 李泓霖, 叶利娟 2020 物理学报 69 108102Google Scholar
Ma T Y, Kong C Y, Li W J, He X W, Hu H, Huang L J, Zhang H, Li H L, Ye L J 2020 Acta Phys. Sin. 69 108102Google Scholar
[12] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P C, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar
[13] Qin Y, Li L H, Zhao X L, Tompa G S, Dong H, Jian G Z, He Q M, Tan P J, Hou X H, Zhang Z F, Yu S J, Sun H D, Xu G W, Miao X S, Xue K H, Long S B, Liu M 2020 ACS Photonics 7 812Google Scholar
[14] Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Liang F, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar
[15] Wang Q, Chen J, Huang P, Li M, Lu Y, Homewood K P, Chang G, Chen H, He Y B 2019 Appl. Surf. Sci. 489 101Google Scholar
[16] Hu H D, Liu Y C, Han G Q, Fang C Z, Zhang Y F, Liu H, Wang Y B, Ye J D, Hao Y 2020 Nanoscale Res. Lett. 15 100Google Scholar
[17] Chen Y P, Liang H W, Xia X C, Shen R S, Liu Y, Luo Y M, Du G T 2015 Appl. Surf. Sci. 325 258Google Scholar
[18] Guo D Y, Qin X Y, Lü M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W H 2017 Electron. Mater. Lett. 13 483Google Scholar
[19] Chen J W, Tang H L, Liu B, Zhang Z X, Gu M, Zhu Z C, Xu Q, Xun J, Zhou L D, Chen L, Ou Yang X P 2021 ACS Appl. Mater. Interfaces 13 2879Google Scholar
[20] Yao Z R, Tang K, Xu Z H, Ye J D, Zhun S M, Gu S L 2016 Nanoscale Res. Lett. 11 501Google Scholar
[21] Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloys Compd. 580 538Google Scholar
[22] Dong L P, Jia R X, Li C, Xin B, Zhang Y M 2017 J. Alloys Compd. 712 379Google Scholar
[23] Chang L W, Li C F, Hsieh Y T, Liu C M, Cheng Y T, Yeh J W, Shih H C 2011 J. Electrochem. Soc. 158 D136Google Scholar
[24] Jiang Z X, Wu Z Y, Ma C C, Deng J N, Zhang H, Xu Y, Ye J D, Fang Z L, Zhang G Q, Kang J Y, Zhang T Y 2020 Mater. Today Phys. 14 100226Google Scholar
[25] Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar
[26] Xie C, Lu X T, Liang Y, Chen H H, Wang L, Wu C Y, Wu D, Yang W H, Luo L B 2021 J. Mater. Sci. Technol. 72 189Google Scholar
[27] Shen H, Baskaran K, Yin Y N, Tian K, Duan L B, Zhao X R, Tiwari A 2020 J. Alloys Compd. 822 153419Google Scholar
[28] Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312
[29] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar
[30] He T, Zhang X D, Ding X Y, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J Q, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P, Zhang B S 2019 Adv. Opt. Mater. 7 1801563Google Scholar
[31] Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar
[32] Li W H, Zhao X L, Zhi Y S, Zhang X H, Chen Z W, Chu X L, Yang H J, Wu Z P, Tang W H 2018 Appl. Opt. 57 538Google Scholar
[33] Fang M Z, Zhao W G, Li F F, Zhu D L, Han S, Xu W Y, Liu W J, Fang M, Lu Y M 2019 Sensors 20 129Google Scholar
[34] Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H, Tang W H 2017 Mater. Lett. 209 558Google Scholar
[35] Zhao Z C, Yang C L, Meng Q T, Wang M S, Ma X G 2019 Spectrochim. Acta, Part A 211 71Google Scholar
[36] Beaton D A, Alberi K, Fluegel B, Mascarenhas A, Reno J L 2013 Appl. Phys. Express 6 071201Google Scholar
[37] Zhao W R, Yang Y, Hao R, Liu F F, Wang Y, Tan M, Tang J, Ren D Q, Zhao D Y 2011 J. Hazard. Mater. 192 1548Google Scholar
[38] Zhao X L, Wu Z P, Zhi Y S, An Y H, Cui W, Li L H, Tang W H 2017 J. Phys. D: Appl. Phys. 50 085102Google Scholar
[39] Liu L L, Li M K, Yu D Q, Zhang J, Zhang H, Qian C, Yang Z 2010 Appl. Phys. A 98 831
[40] Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar
[41] Tak B R, Garg M, Dewan S, Torres-Castanedo C G, Li K H, Gupta V, Li X H, Singh R 2019 J. Appl. Phys. 125 144501Google Scholar
[42] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar
[43] Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H, Schoenfeld W 2017 Phys. Status Solidi A 214 1600688Google Scholar
[44] Yu M, Lü C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S G, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar
-
图 4 β-Ga2O3薄膜MSM型日盲紫外器件的光电特性 (a), (b) I-V特性曲线; (c), (d) 瞬态光响应特性曲线(偏压为10 V); (e), (f) 光响应时间拟合曲线
Figure 4. Photoresponse performance of the β-Ga2O3 film MSM photodetectors: (a), (b) I-V curves of the MSM photodetector; (c), (d) transient light response characteristic curve under the bias voltage of 10 V; (e), (f) exponential fitting of a single cycle at 10 V illuminated with 254 nm light.
表 1 不同N掺杂浓度β-Ga2O3薄膜的(–201)衍射峰和201.4 cm–1拉曼特征峰的半高宽
Table 1. Full width at half maximum (FWHM) of XRD diffraction peak and Raman peak.
Sample FWHM of (–201) peak/(°) FWHM of 201.4 cm–1
peak/cm–1A 0.38 2.6 B 0.51 3.08 C 0.39 2.9 D 0.58 3.14 表 2 国内外Ga2O3薄膜基光电探测器的主要性能指标对比
Table 2. Comparison of the representative photoresponse metrics based on Ga2O3 film photodetectors.
Samples Growth Idark/nA τr/s τd/s Ref. β-Ga2O3 Sputtering 0.11 (10 V) 0.31/1.52 0.05/0.91 [9] β-Ga2O3 MOCVD 34 (10 V) 7.30 8.05 [40] β-Ga2O3 PLD ~1.2 0.59/2.4 0.15/1.6 [41] a-Ga2O3 Sputtering 0.3386 (10 V) 0.41/2.04 0.02/0.35 [42] Ga2O3:Zn Sputtering 45 (10 V) 17.2/1.23 4.03/46.10 [38] Ga2O3:Zn MOCVD 23 (30 V) 3.2 1.4 [43] Ga2O3:N CVD ~0.1 (5 V) 0.01 0.01 [24] Ga2O3:Mg Sputtering 0.0041 (10 V) 0.33/8.84 0.02 [34] Ga2O3:Ce PLD — 0.87/10.81 0.54/13.98 [32] α/β-Ga2O3 Sol–gel 0.125 (15 V) 0.04/0.87 0.02/1.00 [44] β-Ga2O3 Sputtering 0.56 (10 V) 0.51/3.04 0.07/0.08 This work Ga2O3:N Sputtering 0.0108 (10 V) 0.04/2.38 0.008/0.29 This work -
[1] Pearton S J, Yang J C, Cary I V P H, Ren F, Kim J, Tadjer M J, Mastor M A 2018 Appl. Phys. Rev. 5 011301
[2] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[3] Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar
[4] Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar
[5] Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar
[6] Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R, Yang H 2014 Chem. Mater. 27 197
[7] Liao M Y, Sang L, Teraji T, Imura M, Alvarez J, Koide Y 2012 Jpn. J. Appl. Phys. 51 090115Google Scholar
[8] Chen J X, Li X X, Ma H P, Huang W, Ji Z G, Xia C T, Lu H L, Zhang D W 2019 ACS Appl. Mater. Interfaces 11 32127Google Scholar
[9] Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar
[10] Zhang L H, Verma A, Xing H L, Jena D 2017 Jpn. J. Appl. Phys. 56 030304Google Scholar
[11] 马腾宇, 孔春阳, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 李泓霖, 叶利娟 2020 物理学报 69 108102Google Scholar
Ma T Y, Kong C Y, Li W J, He X W, Hu H, Huang L J, Zhang H, Li H L, Ye L J 2020 Acta Phys. Sin. 69 108102Google Scholar
[12] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P C, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar
[13] Qin Y, Li L H, Zhao X L, Tompa G S, Dong H, Jian G Z, He Q M, Tan P J, Hou X H, Zhang Z F, Yu S J, Sun H D, Xu G W, Miao X S, Xue K H, Long S B, Liu M 2020 ACS Photonics 7 812Google Scholar
[14] Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Liang F, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar
[15] Wang Q, Chen J, Huang P, Li M, Lu Y, Homewood K P, Chang G, Chen H, He Y B 2019 Appl. Surf. Sci. 489 101Google Scholar
[16] Hu H D, Liu Y C, Han G Q, Fang C Z, Zhang Y F, Liu H, Wang Y B, Ye J D, Hao Y 2020 Nanoscale Res. Lett. 15 100Google Scholar
[17] Chen Y P, Liang H W, Xia X C, Shen R S, Liu Y, Luo Y M, Du G T 2015 Appl. Surf. Sci. 325 258Google Scholar
[18] Guo D Y, Qin X Y, Lü M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W H 2017 Electron. Mater. Lett. 13 483Google Scholar
[19] Chen J W, Tang H L, Liu B, Zhang Z X, Gu M, Zhu Z C, Xu Q, Xun J, Zhou L D, Chen L, Ou Yang X P 2021 ACS Appl. Mater. Interfaces 13 2879Google Scholar
[20] Yao Z R, Tang K, Xu Z H, Ye J D, Zhun S M, Gu S L 2016 Nanoscale Res. Lett. 11 501Google Scholar
[21] Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloys Compd. 580 538Google Scholar
[22] Dong L P, Jia R X, Li C, Xin B, Zhang Y M 2017 J. Alloys Compd. 712 379Google Scholar
[23] Chang L W, Li C F, Hsieh Y T, Liu C M, Cheng Y T, Yeh J W, Shih H C 2011 J. Electrochem. Soc. 158 D136Google Scholar
[24] Jiang Z X, Wu Z Y, Ma C C, Deng J N, Zhang H, Xu Y, Ye J D, Fang Z L, Zhang G Q, Kang J Y, Zhang T Y 2020 Mater. Today Phys. 14 100226Google Scholar
[25] Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar
[26] Xie C, Lu X T, Liang Y, Chen H H, Wang L, Wu C Y, Wu D, Yang W H, Luo L B 2021 J. Mater. Sci. Technol. 72 189Google Scholar
[27] Shen H, Baskaran K, Yin Y N, Tian K, Duan L B, Zhao X R, Tiwari A 2020 J. Alloys Compd. 822 153419Google Scholar
[28] Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312
[29] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar
[30] He T, Zhang X D, Ding X Y, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J Q, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P, Zhang B S 2019 Adv. Opt. Mater. 7 1801563Google Scholar
[31] Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar
[32] Li W H, Zhao X L, Zhi Y S, Zhang X H, Chen Z W, Chu X L, Yang H J, Wu Z P, Tang W H 2018 Appl. Opt. 57 538Google Scholar
[33] Fang M Z, Zhao W G, Li F F, Zhu D L, Han S, Xu W Y, Liu W J, Fang M, Lu Y M 2019 Sensors 20 129Google Scholar
[34] Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H, Tang W H 2017 Mater. Lett. 209 558Google Scholar
[35] Zhao Z C, Yang C L, Meng Q T, Wang M S, Ma X G 2019 Spectrochim. Acta, Part A 211 71Google Scholar
[36] Beaton D A, Alberi K, Fluegel B, Mascarenhas A, Reno J L 2013 Appl. Phys. Express 6 071201Google Scholar
[37] Zhao W R, Yang Y, Hao R, Liu F F, Wang Y, Tan M, Tang J, Ren D Q, Zhao D Y 2011 J. Hazard. Mater. 192 1548Google Scholar
[38] Zhao X L, Wu Z P, Zhi Y S, An Y H, Cui W, Li L H, Tang W H 2017 J. Phys. D: Appl. Phys. 50 085102Google Scholar
[39] Liu L L, Li M K, Yu D Q, Zhang J, Zhang H, Qian C, Yang Z 2010 Appl. Phys. A 98 831
[40] Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar
[41] Tak B R, Garg M, Dewan S, Torres-Castanedo C G, Li K H, Gupta V, Li X H, Singh R 2019 J. Appl. Phys. 125 144501Google Scholar
[42] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar
[43] Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H, Schoenfeld W 2017 Phys. Status Solidi A 214 1600688Google Scholar
[44] Yu M, Lü C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S G, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar
Catalog
Metrics
- Abstract views: 7193
- PDF Downloads: 240
- Cited By: 0