Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Flexible transparent solar blind ultraviolet photodetector based on amorphous Ga2O3 grown on mica substrate

Xuan Xin-Miao Wang Jia-Heng Mao Yan-Qi Ye Li-Juan Zhang Hong Li Hong-Lin Xiong Yuan-Qiang Fan Si-Qiang Kong Chun-Yang Li Wan-Jun

Citation:

Flexible transparent solar blind ultraviolet photodetector based on amorphous Ga2O3 grown on mica substrate

Xuan Xin-Miao, Wang Jia-Heng, Mao Yan-Qi, Ye Li-Juan, Zhang Hong, Li Hong-Lin, Xiong Yuan-Qiang, Fan Si-Qiang, Kong Chun-Yang, Li Wan-Jun
PDF
HTML
Get Citation
  • Solar-blind deep-ultraviolet (UV) photodetectors (PDs) based on the super-wide bandgap semiconductor material Ga2O3 is one of the hot topics of current research, but how to prepare high-performance Ga2O3-based solar-blind PDs in the field of flexible and transparent optoelectronics still faces challenges. In this work, an amorphous Ga2O3 film with high transmittance is grown on a flexible mica substrate by using the radio frequency magnetron sputtering technology. On this basis, using AZO as an electrode material, a transparent metal-semiconductor-metal (MSM) structured solar-blind deep ultraviolet photodetector based amorphous Ga2O3 film is fabricated, and the performance of PD in the planar state and after multiple bending are systematically compared and analyzed. The results show that the amorphous Ga2O3 based transparent PD has ultra-high visible light transparency and shows good solar-blind ultraviolet photoelectric characteristics. The responsivity of the PD under 254 nm light is 2.69 A/W, and the response time and the recovery time are 0.14 s and 0.31 s, respectively. After bending 300 times, the PD has a photoresponse behavior similar to its planar state, and the performance of the PD has no obvious attenuation phenomenon, showing good flexibility and stability. This work proves that AZO can be used as the electrode material of the next generation of flexible and visible light transparent Ga2O3 based photodetectors, and provides a reference for developing the high-performance flexible and transparent solar-blind deep ultraviolet photodetectors.
      Corresponding author: Ye Li-Juan, ylj2592924@163.com ; Li Wan-Jun, liwj@cqnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11904041), the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2020jcyj-msxmX0557, cstc2019jcyj-msxmX0237), and the Science and Technology Research Project of Chongqing Education Committee, China (Grant Nos. KJQN201900542, KJ1703042)
    [1]

    Li Y B, Tokizono T, Liao M Y, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972Google Scholar

    [2]

    Chen X H, Ren F F, Gu S L, Ye J D 2019 Photonics Res. 7 381Google Scholar

    [3]

    Wang S L, Sun H L, Zeng X H, Ungar D, Guo D Y, Shen J Q, Li A P, Li C R, Tang W H 2019 J. Alloys Compd. 787 133Google Scholar

    [4]

    Guo D Y, Su Y L, Shi H Z, Li P G, Zhao N, Ye J H, Wang S L, Liu A P, Chen Z, Li C R, Tang W H 2018 ACS Nano 12 12827Google Scholar

    [5]

    Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z Z, Chen Z W, Tang W H 2017 J. Mater. Chem. C 5 10562Google Scholar

    [6]

    Chen Y R, Zhang Z W, Jiang H, Li Z M, Miao G Q, Song H 2018 J. Mater. Chem. C. 6 4936Google Scholar

    [7]

    Chen X, Liu K W, Wang X, Li B H, Zhang Z Z, Xie X H, Shen D Z 2017 J. Mater. Chem. C 5 10645Google Scholar

    [8]

    Lu Y J, Lin C N, Shan C X 2018 Adv. Opt. Mater. 6 1800359Google Scholar

    [9]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan Y, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [10]

    Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B 2016 Adv. Mater. 28 10725Google Scholar

    [11]

    Luan S Z, Dong L P, Jia R X 2019 J. Cryst. Growth 505 74Google Scholar

    [12]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [13]

    Du X J, Li Z, Luan C N, Wang W G, Wang M X, Feng X J, Xiao H D, Ma J 2015 J. Mater. Sci. 50 3252Google Scholar

    [14]

    Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z B, Muralidharan R, Rajan S, and Nath B 2017 Appl. Phys. Lett. 110 221107Google Scholar

    [15]

    Chen X H, Han S, Lu Y M, Cao P J, Liu W J, Zeng Y X, Jia F, Xu W Y, Liu X K, Zhu D L 2018 J. Alloys Compd. 747 869Google Scholar

    [16]

    Arora K, Goel N, Kumar M, Kumaret Mal 2018 ACS Photonics 5 2391Google Scholar

    [17]

    Du J Y, Xing J, Ge C, Liu H, Liu P Y, Hao H Y, Dong J J, Zheng Z Y, Gao H 2016 J. Phys. D:Appl. Phys. 49 425105Google Scholar

    [18]

    Chen X H, Ren F F, Ye J D, Gu S L 2020 Semicond. Sci. Technol. 35 023001Google Scholar

    [19]

    Yadav A, Upadhyaya A, Gupta S K, Verma A S, Negi C M S 2019 AIP Conf. Proc. 2142 150022Google Scholar

    [20]

    Li Z, Xu Y, Zhang J Q, Cheng Y L, Chen D Z, Feng Q, Xu S R, Zhang Y C, Zhang J C, Hao Y, Zhang C F 2019 IEEE Photonics J. 11 1Google Scholar

    [21]

    Xiao S Y, Deng Y, Chen Z Y, Wang Y H, Yu J, Tang W H, Tang W H, Wu Z P 2020 J. Phys. D:Appl. Phys. 53 484004Google Scholar

    [22]

    Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Koo S H 2012 Adv. Mater. 24 3326Google Scholar

    [23]

    Huang Z, Ke S, Zhou J, Zhao Y, Huang W. Chen S, Li C 2021 Chin. Phys. B 30 037303Google Scholar

    [24]

    Kumar N, Arora K, Kumar M 2019 J. Phys. D:Appl. Phys. 52 335Google Scholar

    [25]

    Qi H, Xia X, Zhou C, Xiao P, Wang Y, Deng Y 2020 J. Mater. Sci.-Mater. Electron. 31 3042Google Scholar

    [26]

    Taruta S, Ichinose T, Yamaguchi T, Kitajima K 2006 J. Non-cryst. Solids 352 5556Google Scholar

    [27]

    Gao Q, Wu X, Fan Y, Du C 2016 Ceram. Int. 42 6595Google Scholar

    [28]

    Chen Y, Fan L, Fang Q, Xu W, Chen S, Zan G B, Hui R, Li S, Zou C W 2017 Nano Energy. 31 144Google Scholar

    [29]

    Ramana C V, Rubio E J, Barraza C D, Ramana C V, Rubio E J, Barraza C D, Miranda G A, McPeak S, Kotru S, Grant J T 2014 J. Appl. Phys. 115 043508Google Scholar

    [30]

    Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Fang L, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar

    [31]

    Manandhar S, Ramana C V 2017 Appl. Phys. Lett. 110 061902Google Scholar

    [32]

    郭道友, 李培刚, 陈政委, 吴 真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Act. Phys. Sin. 68 078501Google Scholar

    [33]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [34]

    Guo D, Liu H, Li P G, Wu Z P, Wang S L, Cui C, Li C R, Tang W H 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar

    [35]

    Guo D, Qin X, Lv M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W 2017 Electron. Mater. Lett. 13 483Google Scholar

    [36]

    Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloys Compd. 660 136Google Scholar

    [37]

    Shen H, Yin Y, Tian K, Baskaran K, Duan L, Zhao X, Tiwari A 2018 J. Alloys Compd. 766 601Google Scholar

    [38]

    Chen K, He C, Guo D, Wang S L, Chen Z W, Shen J Q, Li P G, Tang W H, 2018 J. Alloys Compd. 755 199Google Scholar

    [39]

    Rafique S, Han L, Zhao H 2017 Phys. Status Solidi A 214 1700063Google Scholar

    [40]

    Oh S, Kim C K, Kim J 2017 ACS Photonics 5 1123Google Scholar

    [41]

    Sun B, Zhang X, Zhou G D, Yu T, Mao S S, Zhu S H, Zhao Y, Xia Y D 2018 J. Colloid Interface Sci. 520 19Google Scholar

    [42]

    Feng W, Wang X, Zhang J, Wang L F, Zheng W, Hu P A, Cao W W, Yang B 2014 J. Mater. Chem. C 2 3254Google Scholar

  • 图 1  柔性衬底云母上沉积的Ga2O3薄膜 (a) XRD图谱; (b) Raman散射光谱; (c) Ga 2p核心能级谱; (d) O 1s核心能级谱; (e) 紫外可见光透射光谱(插图为样品放置于LOGO上的照片); (d) (αhν)2随光子能量(hν)的变化关系

    Figure 1.  (a) The XRD pattern, (b) Raman scattering spectra, (c) Ga 2p core level spectra, (d) O 1s core level spectra, (e) optical transmittance spectra (the photograph of the as-grown Ga2O3 film is depicted in the inset) and (f) the variation of (αhν)2 with photon energy () of the Ga2O3 film deposited on flexible mica substrate, respectively.

    图 2  平面状态下非晶态Ga2O3薄膜基柔性透明日盲探测器: (a) MSM型器件示意图; (b) 置于LOGO上的实物照片; (c) 在黑暗条件下, 365和254 nm光照下的I-V曲线(对数坐标); (d) 在–0.10−0.15 V偏置电压内的I-V曲线放大图, 插图为5 V偏压下光照强度与光电流之间的关系; (e) 黑暗条件下的能带示意图; (f) 254 nm光照下的能带示意图

    Figure 2.  (a) The schematic diagram of the MSM photodetector; (b) the photograph of the Ga2O3 PD; (c) I-V characteristics in dark, under 365 and 254 nm illumination (in a logarithmic coordinate); (d) the enlarged view of the I-V characteristics at a bias voltage of –0.10 to 0.15 V, and the inset shows the relationship between the light intensity and photocurrent under 5 V bias; (e) schematic energy band diagrams in dark; (f) schematic energy band diagrams under 254 nm light illumination of the flexible transparent solar-blind photodetector based on amorphous Ga2O3 films deposited on mica substrate, respectively.

    图 3  平面状态下非晶态Ga2O3薄膜基柔性透明日盲探测器 (a) 在254和365 nm光照下的I-t特性曲线; (b) 254 nm光照下的上升/衰减边缘的放大视图和相应的指数拟合

    Figure 3.  (a) Time-dependence photocurrent characteristics under the 254 and 365 nm illumination; (b) the enlarged view of the rise/decay edges and the corresponding exponential fitting under 254 nm illumination of the flexible transparent solar-blind photodetector based on amorphous Ga2O3 films deposited on mica substrate, respectively.

    图 4  非晶态Ga2O3薄膜基柔性透明日盲探测器在曲率半径 r = 7.5 mm条件下, 经300次弯曲后器件性能 (a) 弯曲实验下柔性装置的原位照片; (b) 在黑暗条件下, 365和254 nm光照下的I-V特性曲线(对数坐标); (c) 光照强度与光电流之间的关系; (d) 在–0.10−0.15 V偏置电压内的I-V特性曲线放大图; (e) 在254和365 nm光照下的I-t特性曲线; (f) 254 nm光照下的上升/衰减边缘的放大视图和相应的指数拟合

    Figure 4.  (a) An in-situ photograph of the flexible PD under a bending test; (b) I-V characteristics in dark, under 365 and 254 nm illumination (in a logarithmic coordinate); (c) the relationship between the light intensity and photocurrent; (d) the enlarged view of the I-V characteristics at a bias voltage of –0.10 to 0.15 V; (e) time-dependence photocurrent characteristics under the 254 and 365 nm illumination; (f) the enlarged view of the rise/decay edges and the corresponding exponential fitting under 254 nm illumination of the flexible transparent solar-blind photodetector based on amorphous Ga2O3 films after bending 300 cycles with r = 7.5 mm, respectively.

  • [1]

    Li Y B, Tokizono T, Liao M Y, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972Google Scholar

    [2]

    Chen X H, Ren F F, Gu S L, Ye J D 2019 Photonics Res. 7 381Google Scholar

    [3]

    Wang S L, Sun H L, Zeng X H, Ungar D, Guo D Y, Shen J Q, Li A P, Li C R, Tang W H 2019 J. Alloys Compd. 787 133Google Scholar

    [4]

    Guo D Y, Su Y L, Shi H Z, Li P G, Zhao N, Ye J H, Wang S L, Liu A P, Chen Z, Li C R, Tang W H 2018 ACS Nano 12 12827Google Scholar

    [5]

    Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z Z, Chen Z W, Tang W H 2017 J. Mater. Chem. C 5 10562Google Scholar

    [6]

    Chen Y R, Zhang Z W, Jiang H, Li Z M, Miao G Q, Song H 2018 J. Mater. Chem. C. 6 4936Google Scholar

    [7]

    Chen X, Liu K W, Wang X, Li B H, Zhang Z Z, Xie X H, Shen D Z 2017 J. Mater. Chem. C 5 10645Google Scholar

    [8]

    Lu Y J, Lin C N, Shan C X 2018 Adv. Opt. Mater. 6 1800359Google Scholar

    [9]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan Y, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [10]

    Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B 2016 Adv. Mater. 28 10725Google Scholar

    [11]

    Luan S Z, Dong L P, Jia R X 2019 J. Cryst. Growth 505 74Google Scholar

    [12]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [13]

    Du X J, Li Z, Luan C N, Wang W G, Wang M X, Feng X J, Xiao H D, Ma J 2015 J. Mater. Sci. 50 3252Google Scholar

    [14]

    Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z B, Muralidharan R, Rajan S, and Nath B 2017 Appl. Phys. Lett. 110 221107Google Scholar

    [15]

    Chen X H, Han S, Lu Y M, Cao P J, Liu W J, Zeng Y X, Jia F, Xu W Y, Liu X K, Zhu D L 2018 J. Alloys Compd. 747 869Google Scholar

    [16]

    Arora K, Goel N, Kumar M, Kumaret Mal 2018 ACS Photonics 5 2391Google Scholar

    [17]

    Du J Y, Xing J, Ge C, Liu H, Liu P Y, Hao H Y, Dong J J, Zheng Z Y, Gao H 2016 J. Phys. D:Appl. Phys. 49 425105Google Scholar

    [18]

    Chen X H, Ren F F, Ye J D, Gu S L 2020 Semicond. Sci. Technol. 35 023001Google Scholar

    [19]

    Yadav A, Upadhyaya A, Gupta S K, Verma A S, Negi C M S 2019 AIP Conf. Proc. 2142 150022Google Scholar

    [20]

    Li Z, Xu Y, Zhang J Q, Cheng Y L, Chen D Z, Feng Q, Xu S R, Zhang Y C, Zhang J C, Hao Y, Zhang C F 2019 IEEE Photonics J. 11 1Google Scholar

    [21]

    Xiao S Y, Deng Y, Chen Z Y, Wang Y H, Yu J, Tang W H, Tang W H, Wu Z P 2020 J. Phys. D:Appl. Phys. 53 484004Google Scholar

    [22]

    Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Koo S H 2012 Adv. Mater. 24 3326Google Scholar

    [23]

    Huang Z, Ke S, Zhou J, Zhao Y, Huang W. Chen S, Li C 2021 Chin. Phys. B 30 037303Google Scholar

    [24]

    Kumar N, Arora K, Kumar M 2019 J. Phys. D:Appl. Phys. 52 335Google Scholar

    [25]

    Qi H, Xia X, Zhou C, Xiao P, Wang Y, Deng Y 2020 J. Mater. Sci.-Mater. Electron. 31 3042Google Scholar

    [26]

    Taruta S, Ichinose T, Yamaguchi T, Kitajima K 2006 J. Non-cryst. Solids 352 5556Google Scholar

    [27]

    Gao Q, Wu X, Fan Y, Du C 2016 Ceram. Int. 42 6595Google Scholar

    [28]

    Chen Y, Fan L, Fang Q, Xu W, Chen S, Zan G B, Hui R, Li S, Zou C W 2017 Nano Energy. 31 144Google Scholar

    [29]

    Ramana C V, Rubio E J, Barraza C D, Ramana C V, Rubio E J, Barraza C D, Miranda G A, McPeak S, Kotru S, Grant J T 2014 J. Appl. Phys. 115 043508Google Scholar

    [30]

    Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Fang L, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar

    [31]

    Manandhar S, Ramana C V 2017 Appl. Phys. Lett. 110 061902Google Scholar

    [32]

    郭道友, 李培刚, 陈政委, 吴 真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Act. Phys. Sin. 68 078501Google Scholar

    [33]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [34]

    Guo D, Liu H, Li P G, Wu Z P, Wang S L, Cui C, Li C R, Tang W H 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar

    [35]

    Guo D, Qin X, Lv M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W 2017 Electron. Mater. Lett. 13 483Google Scholar

    [36]

    Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloys Compd. 660 136Google Scholar

    [37]

    Shen H, Yin Y, Tian K, Baskaran K, Duan L, Zhao X, Tiwari A 2018 J. Alloys Compd. 766 601Google Scholar

    [38]

    Chen K, He C, Guo D, Wang S L, Chen Z W, Shen J Q, Li P G, Tang W H, 2018 J. Alloys Compd. 755 199Google Scholar

    [39]

    Rafique S, Han L, Zhao H 2017 Phys. Status Solidi A 214 1700063Google Scholar

    [40]

    Oh S, Kim C K, Kim J 2017 ACS Photonics 5 1123Google Scholar

    [41]

    Sun B, Zhang X, Zhou G D, Yu T, Mao S S, Zhu S H, Zhao Y, Xia Y D 2018 J. Colloid Interface Sci. 520 19Google Scholar

    [42]

    Feng W, Wang X, Zhang J, Wang L F, Zheng W, Hu P A, Cao W W, Yang B 2014 J. Mater. Chem. C 2 3254Google Scholar

  • [1] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector. Acta Physica Sinica, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [2] Li Yu-Fan, Xue Wen-Qing, Li Yu-Chao, Zhan Yan-Hu, Xie Qian, Li Yan-Kai, Zha Jun-Wei. Research progress of flexible energy storage dielectric materials with sandwiched structure. Acta Physica Sinica, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [3] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [4] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [5] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [6] Li Xiu-Hua, Zhang Min, Yang Jia, Xing Shuang, Gao Yue, Li Ya-Ze, Li Si-Yu, Wang Chong-Jie. Effect of film thickness on photoelectric properties of ${\boldsymbol{\beta}} $-Ga2O3 films prepared by radio frequency magnetron sputtering. Acta Physica Sinica, 2022, 71(4): 048501. doi: 10.7498/aps.71.20211744
    [7] Effect of film thickness on photoelectric properties of β-Ga2O3 films by radio frequency magnetron sputtering*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211744
    [8] Zhou Shu-Ren, Zhang Hong, Mo Hui-Lan, Liu Hao-Wen, Xiong Yuan-Qiang, Li Hong-Lin, Kong Chun-Yang, Ye Li-Juan, Li Wan-Jun. Effect of N-doping on performance of ${\boldsymbol\beta}$-Ga2O3 thin film solar-blind ultraviolet detector. Acta Physica Sinica, 2021, 70(17): 178503. doi: 10.7498/aps.70.20210434
    [9] Tan Pu-Chuan, Zhao Chao-Chao, Fan Yu-Bo, Li Zhou. Research progress of self-powered flexible biomedical sensors. Acta Physica Sinica, 2020, 69(17): 178704. doi: 10.7498/aps.69.20201012
    [10] Lan Shun, Pan Hao, Lin Yuan-Hua. Fabrication and applications of flexible inorganic ferroelectric thin films. Acta Physica Sinica, 2020, 69(21): 217708. doi: 10.7498/aps.69.20201365
    [11] Guo Dao-You, Li Pei-Gang, Chen Zheng-Wei, Wu Zhen-Ping, Tang Wei-Hua. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector. Acta Physica Sinica, 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [12] Xiong Kai-Xin, Xi Kun, Bao Lei, Zhang Zhong-Liang, Tan Zhi-Jie. Molecular dynamics simulations on DNA flexibility: a comparative study of Amber bsc1 and bsc0 force fields. Acta Physica Sinica, 2018, 67(10): 108701. doi: 10.7498/aps.67.20180326
    [13] Liu Hai-Wen, Zhu Shuang-Shuang, Wen Pin, Qin Feng, Ren Bao-Ping, Xiao Xiang, Hou Xin-Yu. A flexible dual-band metamaterial based on hairpin split-ring resonators. Acta Physica Sinica, 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [14] Chai Yu-Hua, Guo Yu-Xiu, Bian Wei, Li Wen, Yang Tao, Yi Ming-Dong, Fan Qu-Li, Xie Ling-Hai, Huang Wei. Progress of flexible organic non-volatile memory field-effect transistors. Acta Physica Sinica, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [15] Dong Jing, Chai Yu-Hua, Zhao Yue-Zhi, Shi Wei-Wei, Guo Yu-Xiu, Yi Ming-Dong, Xie Ling-Hai, Huang Wei. The progress of flexible organic field-effect transistors. Acta Physica Sinica, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
    [16] Qin Jie-Ming, Zhang Ying, Cao Jian-Ming, Tian Li-Fei, Dong Zhong-Wei, Li Yue. Characterization of the transparent n-type ZnO ceramic with lowresistivity prepared under high pressure. Acta Physica Sinica, 2011, 60(3): 036105. doi: 10.7498/aps.60.036105
    [17] Zhang Zhi-Guo. Photoluminescence and tail states of amorphous SnO2:(Cu,In) film. Acta Physica Sinica, 2008, 57(9): 5823-5827. doi: 10.7498/aps.57.5823
    [18] Sun Mei-Sheng, Zheng Nan-Fang, Fang Xing-Hao, Kang Qiang, Li Zhong-Hai, Wang Lei, Sun Zhi, Yao Cheng-Gang. . Acta Physica Sinica, 2002, 51(12): 2906-2910. doi: 10.7498/aps.51.2906
    [19] WANG HUAN-RONG, TENG XIN-YING, SHI ZHI-QIANG, YE YI-FU, MIN GUANG-HUI. STUDY ON MICROSTRUCTURE AND CRYSTALLIZATION OF AMORPHOUS Cu56Zr44 ALLOY BY MEANS OF ISOTHERMAL ANNEALING. Acta Physica Sinica, 2001, 50(11): 2192-2197. doi: 10.7498/aps.50.2192
    [20] WANG HUAN-RONG, YE YI-FU, MIN GUANG-HUI, TENG XIN-YING. PRE-PEAK ON THE STRUCTURE FACTOR OF NON-CRYSTALLINE ALLOY Mg70Zn30. Acta Physica Sinica, 2001, 50(3): 523-527. doi: 10.7498/aps.50.523
Metrics
  • Abstract views:  7083
  • PDF Downloads:  195
  • Cited By: 0
Publishing process
  • Received Date:  01 June 2021
  • Accepted Date:  02 July 2021
  • Available Online:  17 August 2021
  • Published Online:  05 December 2021

/

返回文章
返回