-
Memristors, memcapacitors and meminductors are nonlinear circuit components with memory effects and belong to memory element (mem-element) system. Since there are many shortcomings in the existing available commercial memristor chips, and the physical realizations of memcapacitor and meminductor hardware are still in early stages, it is still difficult for researchers to obtain hardware mem-elements for research. In order to solve this problem, it is still necessary to build effective equivalent models of mem-elements to facilitate the research on their characteristics and applications. In this paper, a novel floating mem-element modeling method is proposed by connecting different passive circuit component to a universal interface while keeping the circuit topology unchanged. Compared with other floating universal mem-element models, the model built in this paper has simple structure, high working frequencies, thus making proposed models easier to implement. The feasibility and effectiveness of the mem-elements models based on the universal interface are successfully verified through theoretical analysis, PSPICE simulation results and hardware experimental results.
-
Keywords:
- memory element /
- hardware experiment /
- hysteresis loop /
- floating emulator
[1] Chua L O 1971 IEEE Trans. Circuit Theory 18 507Google Scholar
[2] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar
[3] Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1371Google Scholar
[4] Mauro D, Marco M F, Fernando C, Chua L O 2021 IEEE Transactions on Circuits and Systems I: Regular Papers 68 14Google Scholar
[5] Yuan F, Li Y 2019 Chaos 29 101101Google Scholar
[6] Barraj I, Bahloul M A, Masmoudi M 2021 AEU-Inter. J. Electron. C. 132 153664Google Scholar
[7] Wang M, Yu Y, Yang N, Yang C, Ma H 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA) Xi'an, China, June 19−21, 2019
[8] Emara A A M, Aboudina M M, Fahmy H A H 2017 Microelectron. J. 64 39Google Scholar
[9] Dalgaty T, Castellani N, Turck C, Harabi K E, Vianello E 2021 Nat. Electron. 4 151Google Scholar
[10] Liu Z, Tang J, Gao B, Yao P, Wu H 2020 Nat. Commun. 11 4234Google Scholar
[11] Corinto F, Marco M, Forti M, Chua L 2019 IEEE T. Cybernetics 50 4758Google Scholar
[12] Yang Y 2020 Nat. Commun. 11 3399Google Scholar
[13] Shang D S, Chai Y C, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B Sin. 24 68402Google Scholar
[14] 申见昕, 尚大山, 孙阳 2018 物理学报 67 127501Google Scholar
Shen J X, Shang D S, Sun Y 2018 Acta Phys. Sin. 67 127501Google Scholar
[15] 任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇 2021 物理学报 70 078701Google Scholar
Ren K, Zhang K J, Qin X Z, Ren H X, Zhu S H, Yang F, Sun B, Zhao Y, Zhang Y 2021 Acta Phys. Sin. 70 078701Google Scholar
[16] Han J, Song C, Gao S, Wang Y, Chen C, Pan F 2014 ACS Nano 8 10043Google Scholar
[17] 沈怡然, 李付鹏, 王光义 2020 电子与信息学报 42 844Google Scholar
Shen Y R, Li F P, Wang G Y 2020 J. Electron. Infor. Technol. 42 844Google Scholar
[18] Knowm Inc https://knowm.org/downloads/Knowm_Memeistors.pdf [2019-10-6]
[19] Yuan F, Li Y, Wang G, Dou G, Chen G 2019 Entropy 21 188Google Scholar
[20] Vista J, Ranjan A 2019 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 2020Google Scholar
[21] Pu Y, Yu B A 2019 IEEE/CAA J. Automat. Sin. 7 237Google Scholar
[22] Gupta S, Rai S K 2020 Wireless Pers. Commun. 113 773Google Scholar
[23] Yesil A, Babacan Y 2020 IEEE Transactions on Circuits and Systems II: Express Briefs 68 1443Google Scholar
[24] Sozen H, Cam U 2020 J. Circuit. Syst. Comput. 29 2050247Google Scholar
[25] Pershin Y V, Ventra M 2011 Electron. Lett. 47 243Google Scholar
[26] Yu D S, Liang Y, Iu HHC, Hu Y H 2014 Chin. Phys. B 23 070702Google Scholar
[27] Fouda M E, Radwan A G 2012 Electron. Lett. 48 1454Google Scholar
[28] 梁燕, 于东升, 陈昊 2013 物理学报 62 158501Google Scholar
Liang Y, Yu D S, Chen H 2013 Acta Phys. Sin. 62 158501Google Scholar
[29] 李志军, 向林波, 肖文润 2017 电子与信息学报 39 1626Google Scholar
Li Z J, Xiang L B, Xiao W R 2017 J. Electron. Infor. Technol. 39 1626Google Scholar
[30] Zhao Q, Wang C, Zhang X 2019 Chaos 29 013141Google Scholar
[31] Zheng C Y, Yu D S, Hu HHC, Fernando, T, Sun T T, Eshraghian J K, Guo H D 2019 IEEE T. Circuits I. 66 4793Google Scholar
[32] Yu D S, Zhao X, Sun T, Iu HHC, Fernando T 2019 IEEE Transactions on Circuits and Systems II: Express Briefs 67 1334Google Scholar
[33] Sharma P K, Ranjan R K, Khateb F, Kumngern M 2020 IEEE Access 8 171397Google Scholar
[34] Wang C, Liu X, Hu X 2017 Chaos 27 033114Google Scholar
[35] Korneev I A, Semenov V V 2017 Chaos: An Interdisciplinary J. Nonlinear Sci. 27 081104Google Scholar
[36] Lin T, Iu HHC, Wang X, Wang X 2015 Int. J. Numer. Model. El. 28 275Google Scholar
[37] Wang G, Shi C, Wang X, Yuan F 2017 Math. Probl. Eng. 2017 6504969Google Scholar
[38] Fouda M E, Radwan A G 2014 Circuits, Syst. Signal Process. 33 1573Google Scholar
-
图 2 忆阻器模型的PSPICE仿真结果 (a) 不同频率激励下的忆阻器
${v_{{\text{AB}}}}\text-{i_{{\text{AB}}}}$ 特性曲线; (b) 不同频率激励下的忆阻器忆导值$W_{\text{m}}$ 与${v_{{\text{AB}}}}$ 的关系图; (c) 在Uo = 1 V, f = 100 kHz下,${v_{{\text{AB}}}}$ ,${i_{{\text{AB}}}}$ ,$ {\phi _{{\text{AB}}}}_{} $ (用$v_{C_1}$ 表示)和$W_{\text{m}}$ 的时域波形图Figure 2. Measured simulation results of the proposed memristor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the memductance
$W_{\text{m}}$ plotted against the terminal voltage${v_{{\text{AB}}}}$ ; (c) time-domain wave-forms of${v_{{\text{AB}}}}$ ,${i_{{\text{AB}}}}$ ,$ {\phi _{{\text{AB}}}} $ (represented by$v_{C_1}$ ) and the memductance$W_{\text{m}}$ when Uo = 1 V, f = 100 kHz.图 3 忆容器模型的PSPICE仿真结果 (a) 不同频率激励下的忆容器
${v_{{\text{AB}}}}\text-{q_{{\text{AB}}}}$ (用${v_{{\text{AB}}}} \text- \left( {{{ - }}{v_{C2}}} \right)$ 表示)特性曲线; (b)不同频率激励下的忆容器忆容值$ {C_{\text{m}}} $ 与${v_{{\text{AB}}}}$ 的关系图; (c) 在Uo = 1 V,$ f $ = 80 kHz下,${v_{{\text{AB}}}}$ 和${q_{{\text{AB}}}}$ (用${{ - }}{v_{C2}}$ 表示)、$ {\phi _{{\text{AB}}}} $ (用${v_{C_1}}$ 表示)和$ {C_{\text{m}}} $ 的时域波形图Figure 3. Measured simulation results of the proposed memcapacitor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the memcapacitance
$ {C_{\text{m}}} $ plotted against the terminal voltage$ {v_{{\text{AB}}}} $ ; (c) time-domain wave-forms of$ {v_{{\text{AB}}}} $ ,$ {q_{{\text{AB}}}} $ (represented by${{ - }}{v_{C_2}}$ ),$ {\phi _{{\text{AB}}}} $ (represented by${v_{C_1}}$ ) and the memcapacitance$ {C_{\text{m}}} $ when Uo = 1 V,$ f $ = 80 kHz.图 4 忆感器模型的PSPICE仿真结果 (a) 不同频率激励下的忆感器
${\phi _{{\text{AB}}}} \text- {i_{{\text{AB}}}}$ (用${i_1} \text- {i_{{\text{AB}}}}$ 表示)特性曲线; (b)不同频率激励下忆感器的忆感值倒数$ L_{\text{m}}^{ - 1} $ 与$ {\phi _{{\text{AB}}}} $ (用${i_1}$ 表示)的关系图; (c) 当Uo = 1 V,$ f $ = 100 kHz时,${i_{{\text{AB}}}}$ ,${\rho _{{\text{AB}}}}$ (用${v_{C_1}}$ 表示)、$ {\phi _{{\text{AB}}}} $ 和$ L_{\text{m}}^{ - 1} $ 的时域波形图Figure 4. Measured simulation results of the proposed meminductor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the inverse meminductance
$ L_{\text{m}}^{ - 1} $ plotted against the flux$ {\phi _{{\text{AB}}}} $ (represented by$ i_1 $ ); (c) time-domain wave-forms of$ {i_{{\text{AB}}}} $ ,${\rho _{{\text{AB}}}}$ (represented by${v_{C_1}}$ ),$ {\phi _{{\text{AB}}}} $ and the inverse meminductance$ L_{\text{m}}^{ - 1} $ when Uo = 1 V,$ f $ = 100 kHz.图 6 在通用模拟器的Z1和Z2接入不同的电阻、电容和电感元件组合, 分别实现忆阻器、忆容器和忆感器模型的硬件实验电路 (a) 忆阻器; (b) 忆容器; (c) 忆感器
Figure 6. The experimental breadboard implementation of (a) memristor, (b) memcapacitor, (c) meminductor models based on the universal emulator by connecting different combinations of resistor, capacitor or inductor to Z1 and Z2.
图 7 忆阻器模型的硬件电路实验结果 (a) 不同频率激励下的忆阻器
${v_{{\text{AB}}}} \text- {i_{{\text{AB}}}}$ (用${v_{{\text{AB}}}} \text- ({{ - }}{v_{R_3}})$ 表示)特性曲线; (b)不同频率激励下的忆阻器忆导值$ {W_{\text{m}}} $ 与${v_{{\text{AB}}}}$ 的关系图; (c)在Uo = 3 V,$ f $ = 100 kHz下,$ {v_{{\text{AB}}}} $ ,$ {i_{{\text{AB}}}} $ (用${{ - }}{v_{R_3}}$ 表示)、$ {\phi _{{\text{AB}}}} $ (用${v_{C_1}}$ 表示)和$ {W_{\text{m}}} $ 的时域波形图Figure 7. Experimental results of the proposed memristor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the memductance
$ {W_{\text{m}}} $ plotted against the terminal voltage$ {v_{{\text{AB}}}} $ ; (c) time-domain wave-forms of${v_{{\text{AB}}}}$ ,${i_{{\text{AB}}}}$ (represented by${{ - }}{v_{R_3}}$ ),$ {\phi _{{\text{AB}}}} $ (represented by${v_{C_1}}$ ) and the memductance$ {W_{\text{m}}} $ when Uo = 3 V,$ f $ = 100 kHz.图 8 忆容器模型的硬件实验结果 (a) 不同频率激励下的忆容器
${v_{{\text{AB}}}}\text-{q_{{\text{AB}}}}$ (用${v_{{\text{AB}}}}{{\text-}}\left( { - {v_{C_2}}} \right)$ 表示)特性曲线; (b)不同频率激励下的忆容器忆容值$ {C_{\text{m}}} $ 与${v_{{\text{AB}}}}$ 的关系图; (c) 在Uo = 3 V,$ f $ = 80 kHz下${v_{{\text{AB}}}}$ ,${q_{{\text{AB}}}}$ (用${{ - }}{v_{C_2}}$ 表示)、$ {\phi _{{\text{AB}}}} $ (用${v_{C_1}}$ 表示)和$ {C_{\text{m}}} $ 的时域波形图Figure 8. Experimental results of the proposed memcapacitor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the memcapacitance
$ {C_{\text{m}}} $ plotted against the terminal voltage${v_{{\text{AB}}}}$ ; (c) time-domain wave-forms of${v_{{\text{AB}}}}$ ,${q_{{\text{AB}}}}$ (represented by${{ - }}{v_{C_2}}$ ),$ {\phi _{{\text{AB}}}} $ (represented by${v_{C_1}}$ ) and the memcapacitance$ {C_{\text{m}}} $ when Uo = 3 V,$ f $ = 80 kHz.图 9 忆感器模型的硬件实验结果 (a) 不同频率激励下的忆感器
${\phi _{{\text{AB}}}}\text-{i_{{\text{AB}}}}$ (用$( - {v_{R1}}){{\text- (}} - {v_{R2}})$ 表示)特性曲线; (b)不同频率激励下忆感器的忆感值倒数$L_{\text{m}}^{{{ - 1}}}$ 与$ {\phi _{{\text{AB}}}} $ (用$ - {v_{R1}} $ 表示)的关系图; (c) 在Uo = 3 V,$ f $ = 80 kHz下$ {i_{{\text{AB}}}} $ (用$- {v_{R_2}}$ 表示)、$ {\phi _{{\text{AB}}}} $ (用$- {v_{R_1}}$ 表示)、$ {\rho _{{\text{AB}}}} $ (用${v_{C_1}}$ 表示)和$L_{\text{m}}^{ - 1}$ 的时域波形图Figure 9. Experimental results of the proposed meminductor emulator: (a) Pinched hysteresis loops under different working frequencies; (b) variation curves of the inverse meminductance
$L_{{{\rm{m}}}}^{{{ - 1}}}$ plotted against the flux$ {\phi _{{\text{AB}}}} $ (represented by${{ - }}{v_{R_1}}$ ) ; (c) time-domain wave-forms of${i_{{\text{AB}}}}$ (represented by${{ - }}{v_{R_2}}$ ),${\rho _{{\text{AB}}}}$ (represented by${v_{C_1}}$ ),$ {\phi _{{\text{AB}}}} $ (represented by$- {v_{R_1}}$ ),$ {\rho _{{\text{AB}}}} $ (represented by${v_{C_1}}$ ) and the inverse meminductance$L_{\text{m}}^{{{ - 1}}}$ when Uo = 3 V,$ f $ = 80 kHz.表 1 基于通用模拟器的记忆元件模型对应特征比较
Table 1. Comparison of characteristics of different kinds of mem-element models based on the proposed universal emulator.
记忆元件类型 忆阻器 忆容器 忆感器 电路拓扑结构 通用模拟器 阻抗元件$ {Z_1} $ 电阻$ {R_{\text{2}}} $ 电阻$ {R_{\text{2}}} $ 电感$ {L_{\text{1}}} $ 阻抗元件$ {Z_{\text{2}}} $ 电阻$ {R_{\text{3}}} $ 电容$ {C_{\text{2}}} $ 电阻$ {R_{\text{2}}} $ 内部状态变量 $q {\text{-}} \phi$ $\sigma {\text{-}} \phi$ $q {\text{-}} \rho$ 本构方程 $ W\left( {{\phi _{{\text{AB}}}}} \right) = {\alpha _1}{\phi _{{\text{AB}}}} + {\beta _1} $ $C_{\text{m} }\left( { {\phi _{ {\text{AB} } } }} \right) = {\alpha _2}{\phi _{ {\text{AB} } } } + {\beta _2}$ $L{_ {\text{m} }^{ - 1} }\left( { {\rho _{ {\text{AB} } } }} \right) = {\alpha _3}{\rho _{ {\text{AB} } } } + {\beta _3}$ $ {\alpha _x} $值 ${\alpha _{\text{1} } } = \dfrac{ { {R_{\text{1} } } }}{ {10 R_{\text{2} }^{\text{2} }{R_{\text{3} } }{C_{\text{1} } } }}$ ${\alpha _{\text{2} } } = \dfrac{ { {R_{\text{1} } }{C_{\text{2} } } }}{ {10 R_{\text{2} }^{\text{2} }{C_{\text{1} } } }}$ ${\alpha _{\text{3} } } = \dfrac{ { {R_{\text{1} } } }}{ {10 L_{\text{1} }^{\text{2} }{R_{\text{2} } }{C_{\text{1} } } }}$ $ {\beta _x} $值 $ {\beta _{\text{1} } } = - \dfrac{ { {R_{\text{1} } } } }{ { {\text{10} }{R_{\text{2} } }{R_{\text{3} } } } }V_{\text{s} } $ $ {\beta _{\text{2} } } = - \dfrac{ { {R_{\text{1} } }{C_{\text{2} } } } }{ { {\text{10} }{R_{\text{2} } } } }V_{\text{s} } $ ${\beta _{\text{3} } } = - \dfrac{ { {R_{\text{1} } } }}{ { {\text{10} }{L_{\text{1} } }{R_{\text{2} } } }}{V_{\text{s} } }$ -
[1] Chua L O 1971 IEEE Trans. Circuit Theory 18 507Google Scholar
[2] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar
[3] Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1371Google Scholar
[4] Mauro D, Marco M F, Fernando C, Chua L O 2021 IEEE Transactions on Circuits and Systems I: Regular Papers 68 14Google Scholar
[5] Yuan F, Li Y 2019 Chaos 29 101101Google Scholar
[6] Barraj I, Bahloul M A, Masmoudi M 2021 AEU-Inter. J. Electron. C. 132 153664Google Scholar
[7] Wang M, Yu Y, Yang N, Yang C, Ma H 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA) Xi'an, China, June 19−21, 2019
[8] Emara A A M, Aboudina M M, Fahmy H A H 2017 Microelectron. J. 64 39Google Scholar
[9] Dalgaty T, Castellani N, Turck C, Harabi K E, Vianello E 2021 Nat. Electron. 4 151Google Scholar
[10] Liu Z, Tang J, Gao B, Yao P, Wu H 2020 Nat. Commun. 11 4234Google Scholar
[11] Corinto F, Marco M, Forti M, Chua L 2019 IEEE T. Cybernetics 50 4758Google Scholar
[12] Yang Y 2020 Nat. Commun. 11 3399Google Scholar
[13] Shang D S, Chai Y C, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B Sin. 24 68402Google Scholar
[14] 申见昕, 尚大山, 孙阳 2018 物理学报 67 127501Google Scholar
Shen J X, Shang D S, Sun Y 2018 Acta Phys. Sin. 67 127501Google Scholar
[15] 任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇 2021 物理学报 70 078701Google Scholar
Ren K, Zhang K J, Qin X Z, Ren H X, Zhu S H, Yang F, Sun B, Zhao Y, Zhang Y 2021 Acta Phys. Sin. 70 078701Google Scholar
[16] Han J, Song C, Gao S, Wang Y, Chen C, Pan F 2014 ACS Nano 8 10043Google Scholar
[17] 沈怡然, 李付鹏, 王光义 2020 电子与信息学报 42 844Google Scholar
Shen Y R, Li F P, Wang G Y 2020 J. Electron. Infor. Technol. 42 844Google Scholar
[18] Knowm Inc https://knowm.org/downloads/Knowm_Memeistors.pdf [2019-10-6]
[19] Yuan F, Li Y, Wang G, Dou G, Chen G 2019 Entropy 21 188Google Scholar
[20] Vista J, Ranjan A 2019 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 2020Google Scholar
[21] Pu Y, Yu B A 2019 IEEE/CAA J. Automat. Sin. 7 237Google Scholar
[22] Gupta S, Rai S K 2020 Wireless Pers. Commun. 113 773Google Scholar
[23] Yesil A, Babacan Y 2020 IEEE Transactions on Circuits and Systems II: Express Briefs 68 1443Google Scholar
[24] Sozen H, Cam U 2020 J. Circuit. Syst. Comput. 29 2050247Google Scholar
[25] Pershin Y V, Ventra M 2011 Electron. Lett. 47 243Google Scholar
[26] Yu D S, Liang Y, Iu HHC, Hu Y H 2014 Chin. Phys. B 23 070702Google Scholar
[27] Fouda M E, Radwan A G 2012 Electron. Lett. 48 1454Google Scholar
[28] 梁燕, 于东升, 陈昊 2013 物理学报 62 158501Google Scholar
Liang Y, Yu D S, Chen H 2013 Acta Phys. Sin. 62 158501Google Scholar
[29] 李志军, 向林波, 肖文润 2017 电子与信息学报 39 1626Google Scholar
Li Z J, Xiang L B, Xiao W R 2017 J. Electron. Infor. Technol. 39 1626Google Scholar
[30] Zhao Q, Wang C, Zhang X 2019 Chaos 29 013141Google Scholar
[31] Zheng C Y, Yu D S, Hu HHC, Fernando, T, Sun T T, Eshraghian J K, Guo H D 2019 IEEE T. Circuits I. 66 4793Google Scholar
[32] Yu D S, Zhao X, Sun T, Iu HHC, Fernando T 2019 IEEE Transactions on Circuits and Systems II: Express Briefs 67 1334Google Scholar
[33] Sharma P K, Ranjan R K, Khateb F, Kumngern M 2020 IEEE Access 8 171397Google Scholar
[34] Wang C, Liu X, Hu X 2017 Chaos 27 033114Google Scholar
[35] Korneev I A, Semenov V V 2017 Chaos: An Interdisciplinary J. Nonlinear Sci. 27 081104Google Scholar
[36] Lin T, Iu HHC, Wang X, Wang X 2015 Int. J. Numer. Model. El. 28 275Google Scholar
[37] Wang G, Shi C, Wang X, Yuan F 2017 Math. Probl. Eng. 2017 6504969Google Scholar
[38] Fouda M E, Radwan A G 2014 Circuits, Syst. Signal Process. 33 1573Google Scholar
Catalog
Metrics
- Abstract views: 5275
- PDF Downloads: 113
- Cited By: 0