Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy

Wang Hui Zheng De-Xu Jiang Xiao Cao Yue-Xian Du Min-Yong Wang Kai Liu Sheng-Zhong Zhang Chun-Fu

Citation:

Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy

Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu
PDF
HTML
Get Citation
  • Flexible perovskite solar cells have attracted much attention in the scientific community due to their lightweight nature, high flexibility, and superior power-to-mass ratio. One of the most effective strategies for enhancing the power conversion efficiency of these cells involves addressing grain boundary defects within the perovskite films and interfacial defects between the perovskite films and charge transport layers. In this work, we optimize the performance of inverted flexible perovskite solar cell by using octadecylamine hydrochloride (OACl) as both an additive and a surface passivating agent to achieve synergistic passivation to the bulk phase and surface. The incorporation of OACl in the perovskite precursor solution results in the enlarging of the perovskite crystal grains, enhancing crystallinity, and passivating of grain boundary defects within the perovskite film. This optimization leads the open-circuit voltage to increase from 1.07 to 1.12 V, fill factor from 70.86% to 75.04%, and power conversion efficiency from 18.08% to 20.12%. In addition, the OACl solution is used to passivate the surface of perovskite film, resulting in a smoother perovskite surface, fill the grain boundaries, and reduce the defect density on the perovskite surface. As a result, the optimized device exhibits an open-circuit voltage of 1.15 V, fill factor of 76.15%, and ultimately achieves a power conversion efficiency of 20.80% for flexible perovskite solar cells. The synergistic passivation strategy based on OACl used in this work provides an effective approach for fabricating efficient flexible perovskite solar cells.
      Corresponding author: Liu Sheng-Zhong, szliu@dicp.ac.cn ; Zhang Chun-Fu, cfzhang@xidian.edu.cn
    [1]

    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [2]

    Jiang Q, Tong J, Xian Y, Kerner R A, Dunfield S P, Xiao C, Scheidt R A, Kuciauskas D, Wang X, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y, Zhu K 2022 Nature 611 278Google Scholar

    [3]

    Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html.[2023-11-3]

    [4]

    Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S F 2018 Nat. Commun. 9 3239Google Scholar

    [5]

    Wu J, Chen P, Xu H, Yu M, Li L, Yan H, Huangfu Y, Xiao Y, Yang X, Zhao L, Wang W, Gong Q, Zhu R 2022 Sci. Chin. Mater. 65 2319Google Scholar

    [6]

    Zhang J, Zhang W, Cheng H M, Silva S R P 2020 Mater. Today 39 66Google Scholar

    [7]

    Chung J, Shin S S, Hwang K, Kim G, Kim K W, Lee D S, Kim W, Ma B S, Kim Y K, Kim T S, Seo J 2020 Energy Environ. Sci. 13 4854Google Scholar

    [8]

    Cardinaletti I, Vangerven T, Nagels S, Cornelissen R, Schreurs D, Hruby J, Vodnik J, Devisscher D, Kesters J, D’Haen J, Franquet A, Spampinato V, Conard T, Maes W, Deferme W, Manca J V 2018 Sol. Energy Mater. Sol. Cells 182 121Google Scholar

    [9]

    Wang H, Jiang X, Cao Y, Qian L, Liu Y, Huang M, Zhang C, Hao Y, Wang K, Liu S 2023 Adv. Energy Mater . 13 2202643Google Scholar

    [10]

    Xie L, Du S, Li J, Liu C, Pu Z, Tong X, Liu J, Wang Y, Meng Y, Yang M, Li W, Ge Z 2023 Energy Environ. Sci. 16 5423Google Scholar

    [11]

    Gong O Y, Han G S, Lee S, Seo M K, Sohn C, Yoon G W, Jang J, Lee J M, Choi J H, Lee D K, Kang S B, Choi M, Park N G, Kim D H, Jung H S 2022 ACS Energy Lett. 7 2893Google Scholar

    [12]

    Luo X, Lin X, Gao F, Zhao Y, Li X, Zhan L, Qiu Z, Wang J, Chen C, Meng L, Gao X, Zhang Y, Huang Z, Fan R, Liu H, Chen Y, Ren X, Tang J, Chen C H, Yang D, Tu Y, Liu X, Liu D, Zhao Q, You J, Fang J, Wu Y, Han H, Zhang X, Zhao D, Huang F, Zhou H, Yuan Y, Chen Q, Wang Z, Liu S F, Zhu R, Nakazaki J, Li Y, Han L 2022 Sci. Chin. Chem. 65 2369Google Scholar

    [13]

    Ni Z, Bao C, Liu Y, Jiang Q, Wu W Q, Chen S, Dai X, Chen B, Hartweg B, Yu Z, Holman Z, Huang J 2020 Science 367 1352Google Scholar

    [14]

    Li X, Zhang W, Wang Y C, Zhang W, Wang H Q, Fang J 2018 Nat. Commun. 9 3806Google Scholar

    [15]

    Li X, Fu S, Liu S, Wu Y, Zhang W, Song W, Fang J 2019 Nano Energy 64 103962Google Scholar

    [16]

    Zheng X, Hou Y, Bao C, Yin J, Yuan F, Huang Z, Song K, Liu J, Troughton J, Gasparini N, Zhou C, Lin Y, Xue D J, Chen B, Johnston A K, Wei N, Hedhili M N, Wei M, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M 2020 Nat. Energy 5 131Google Scholar

    [17]

    Gharibzadeh S, Fassl P, Hossain I M, Rohrbeck P, Frericks M, Schmidt M, Duong T, Khan M R, Abzieher T, Nejand B A, Schackmar F, Almora O, Feeney T, Singh R, Fuchs D, Lemmer U, Hofmann J P, Weber S A L, Paetzold U W 2021 Energy Environ. Sci. 14 5875Google Scholar

    [18]

    Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J 2019 Nature 571 245Google Scholar

    [19]

    Chen S, Liu Y, Xiao X, Yu Z, Deng Y, Dai X, Ni Z, Huang J 2020 Joule 4 2661Google Scholar

    [20]

    Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [21]

    Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar

    [22]

    Wu X, Xu G, Yang F, Chen W, Yang H, Shen Y, Wu Y, Chen H, Xi J, Tang X, Cheng Q, Chen Y, Ou X M, Li Y, Li Y 2023 ACS Energy Lett. 8 3750Google Scholar

    [23]

    Cao Y, Feng J, Xu Z, Zhang L, Lou J, Liu Y, Ren X, Yang D, Liu S 2023 InfoMat 5 e12423Google Scholar

    [24]

    Sun Q, Duan S, Liu G, Meng X, Hu D, Deng J, Shen B, Kang B, Silva S R P 2023 Adv. Energy Mater. 13 2301259Google Scholar

    [25]

    Yang J, Sheng W, Li X, Zhong Y, Su Y, Tan L, Chen Y 2023 Adv. Funct. Mater. 33 2214984Google Scholar

    [26]

    Xu R Y, Pan F, Chen J Y, Li J R, Yang Y G, Sun Y L, Zhu X Y, Li P Z, Cao X R, Xi J, Xu J, Yuan F, Dai J F, Zuo C T, Ding L M, Dong H, Jen A K Y, Wu Z X 2023 Adv. Mater. 36 2308039Google Scholar

    [27]

    Yi Z, Li X, Xiao B, Jiang Q, Luo Y, Yang J 2023 Chem. Eng. J. 469 143790Google Scholar

    [28]

    An Z, Zhu Y, Luo G, Hou P, Hu M, Li W, Huang F, Cheng Y B, Park H, Lu J 2023 Adv. Energy Mater. 13 2302732Google Scholar

    [29]

    Dong Q, Chen M, Liu Y, Eickemeyer F T, Zhao W, Dai Z, Yin Y, Jiang C, Feng J, Jin S, Liu S, Zakeeruddin S M, Grätzel M, Padture N P, Shi Y 2021 Joule 5 1587Google Scholar

    [30]

    Jiang X, Subhani W S, Wang K, Wang H, Duan L, Du M, Pang S, Liu S 2021 Adv. Mater. Interfaces 8 2001994Google Scholar

    [31]

    Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci 12 308Google Scholar

    [32]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081Google Scholar

    [33]

    He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J, Lin Z 2017 Nat. Commun. 8 16045Google Scholar

    [34]

    Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar

    [35]

    Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S 2018 Adv. Energy Mater. 8 1703246Google Scholar

  • 图 1  钙钛矿薄膜的SEM图片 (a)空白钙钛矿薄膜; (b) OACl添加剂钝化的钙钛矿薄膜; (c) OACl添加剂及表面钝化的钙钛矿薄膜. (d) 钙钛矿薄膜晶粒尺寸数量分布柱状图

    Figure 1.  SEM images of perovskite film: (a) Control perovskite film; (b) perovskite with OACl doping; (c) perovskite with OACl doping and interface modification. (d) Column chart of corresponding sizes counted by the SEM images.

    图 2  钙钛矿薄膜AFM图片 (a) 空白钙钛矿薄膜; (b) OACl添加剂钝化的钙钛矿薄膜; (c) OACl添加剂及表面钝化的钙钛矿薄膜

    Figure 2.  AFM images of perovskite film: (a) Control perovskite film; (b) perovskite with OACl doping; (c) perovskite with OACl doping and interface modification.

    图 3  钙钛矿薄膜的XRD图谱

    Figure 3.  XRD patterns of perovskite film.

    图 4  对不同的钙钛矿薄膜表征 (a) PL图谱; (b) TRPL图谱

    Figure 4.  Different perovskite films were characterized: (a) PL results; (b) TRPL results.

    图 5  钙钛矿薄膜的SCLC图谱

    Figure 5.  SCLC results for perovskite film.

    图 6  钙钛矿薄膜制备的柔性电池的J-V曲线图

    Figure 6.  J-V curves for solar cells prepared by perovskite films.

    图 7  钙钛矿薄膜制备的柔性电池的莫特-肖特基电化学曲线

    Figure 7.  Mott-Schottky electrochemical curves of flexible cells prepared by perovskite films.

    表 1  空白钙钛矿薄膜, OACl添加剂钝化的钙钛矿薄膜, OACl添加剂及表面钝化钙钛矿薄膜的TRPL光谱拟合参数

    Table 1.  Fitted parameters of control perovskite film, perovskite with OACl doping, perovskite with OACl doping and interface modification from TRPL spectra.

    T1/ns A1 T2/ns A2 Taverage/ns
    Control 54.23 95.56 354.90 222.11 336.35
    With doping 163.20 212.90 473.90 150.93 372.34
    With doping & interface 352.50 229.85 715.80 28.98 426.55
    DownLoad: CSV

    表 2  空白钙钛矿薄膜所制备的柔性电池, OACl添加剂钝化的钙钛矿薄膜所制备的柔性电池, OACl添加剂及表面钝化钙钛矿薄膜所制备的柔性电池的参数

    Table 2.  Photovoltaic parameters for control perovskite solar cells, perovskite solar cells with OACl doping, and perovskite solar cells with OACl doping and interface modification.

    VOC/V JSC/(mA⋅cm–2) FF/% PCE/%
    Control Champion 1.07 23.86 70.86 18.08
    Average 1.06 23.35 71.60 17.70
    With doping Champion 1.12 23.84 75.04 20.12
    Average 1.12 23.28 74.71 19.47
    With doping & interface Champion 1.15 23.81 76.15 20.80
    Average 1.13 23.56 75.14 20.07
    DownLoad: CSV
  • [1]

    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [2]

    Jiang Q, Tong J, Xian Y, Kerner R A, Dunfield S P, Xiao C, Scheidt R A, Kuciauskas D, Wang X, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y, Zhu K 2022 Nature 611 278Google Scholar

    [3]

    Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html.[2023-11-3]

    [4]

    Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S F 2018 Nat. Commun. 9 3239Google Scholar

    [5]

    Wu J, Chen P, Xu H, Yu M, Li L, Yan H, Huangfu Y, Xiao Y, Yang X, Zhao L, Wang W, Gong Q, Zhu R 2022 Sci. Chin. Mater. 65 2319Google Scholar

    [6]

    Zhang J, Zhang W, Cheng H M, Silva S R P 2020 Mater. Today 39 66Google Scholar

    [7]

    Chung J, Shin S S, Hwang K, Kim G, Kim K W, Lee D S, Kim W, Ma B S, Kim Y K, Kim T S, Seo J 2020 Energy Environ. Sci. 13 4854Google Scholar

    [8]

    Cardinaletti I, Vangerven T, Nagels S, Cornelissen R, Schreurs D, Hruby J, Vodnik J, Devisscher D, Kesters J, D’Haen J, Franquet A, Spampinato V, Conard T, Maes W, Deferme W, Manca J V 2018 Sol. Energy Mater. Sol. Cells 182 121Google Scholar

    [9]

    Wang H, Jiang X, Cao Y, Qian L, Liu Y, Huang M, Zhang C, Hao Y, Wang K, Liu S 2023 Adv. Energy Mater . 13 2202643Google Scholar

    [10]

    Xie L, Du S, Li J, Liu C, Pu Z, Tong X, Liu J, Wang Y, Meng Y, Yang M, Li W, Ge Z 2023 Energy Environ. Sci. 16 5423Google Scholar

    [11]

    Gong O Y, Han G S, Lee S, Seo M K, Sohn C, Yoon G W, Jang J, Lee J M, Choi J H, Lee D K, Kang S B, Choi M, Park N G, Kim D H, Jung H S 2022 ACS Energy Lett. 7 2893Google Scholar

    [12]

    Luo X, Lin X, Gao F, Zhao Y, Li X, Zhan L, Qiu Z, Wang J, Chen C, Meng L, Gao X, Zhang Y, Huang Z, Fan R, Liu H, Chen Y, Ren X, Tang J, Chen C H, Yang D, Tu Y, Liu X, Liu D, Zhao Q, You J, Fang J, Wu Y, Han H, Zhang X, Zhao D, Huang F, Zhou H, Yuan Y, Chen Q, Wang Z, Liu S F, Zhu R, Nakazaki J, Li Y, Han L 2022 Sci. Chin. Chem. 65 2369Google Scholar

    [13]

    Ni Z, Bao C, Liu Y, Jiang Q, Wu W Q, Chen S, Dai X, Chen B, Hartweg B, Yu Z, Holman Z, Huang J 2020 Science 367 1352Google Scholar

    [14]

    Li X, Zhang W, Wang Y C, Zhang W, Wang H Q, Fang J 2018 Nat. Commun. 9 3806Google Scholar

    [15]

    Li X, Fu S, Liu S, Wu Y, Zhang W, Song W, Fang J 2019 Nano Energy 64 103962Google Scholar

    [16]

    Zheng X, Hou Y, Bao C, Yin J, Yuan F, Huang Z, Song K, Liu J, Troughton J, Gasparini N, Zhou C, Lin Y, Xue D J, Chen B, Johnston A K, Wei N, Hedhili M N, Wei M, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M 2020 Nat. Energy 5 131Google Scholar

    [17]

    Gharibzadeh S, Fassl P, Hossain I M, Rohrbeck P, Frericks M, Schmidt M, Duong T, Khan M R, Abzieher T, Nejand B A, Schackmar F, Almora O, Feeney T, Singh R, Fuchs D, Lemmer U, Hofmann J P, Weber S A L, Paetzold U W 2021 Energy Environ. Sci. 14 5875Google Scholar

    [18]

    Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J 2019 Nature 571 245Google Scholar

    [19]

    Chen S, Liu Y, Xiao X, Yu Z, Deng Y, Dai X, Ni Z, Huang J 2020 Joule 4 2661Google Scholar

    [20]

    Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [21]

    Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar

    [22]

    Wu X, Xu G, Yang F, Chen W, Yang H, Shen Y, Wu Y, Chen H, Xi J, Tang X, Cheng Q, Chen Y, Ou X M, Li Y, Li Y 2023 ACS Energy Lett. 8 3750Google Scholar

    [23]

    Cao Y, Feng J, Xu Z, Zhang L, Lou J, Liu Y, Ren X, Yang D, Liu S 2023 InfoMat 5 e12423Google Scholar

    [24]

    Sun Q, Duan S, Liu G, Meng X, Hu D, Deng J, Shen B, Kang B, Silva S R P 2023 Adv. Energy Mater. 13 2301259Google Scholar

    [25]

    Yang J, Sheng W, Li X, Zhong Y, Su Y, Tan L, Chen Y 2023 Adv. Funct. Mater. 33 2214984Google Scholar

    [26]

    Xu R Y, Pan F, Chen J Y, Li J R, Yang Y G, Sun Y L, Zhu X Y, Li P Z, Cao X R, Xi J, Xu J, Yuan F, Dai J F, Zuo C T, Ding L M, Dong H, Jen A K Y, Wu Z X 2023 Adv. Mater. 36 2308039Google Scholar

    [27]

    Yi Z, Li X, Xiao B, Jiang Q, Luo Y, Yang J 2023 Chem. Eng. J. 469 143790Google Scholar

    [28]

    An Z, Zhu Y, Luo G, Hou P, Hu M, Li W, Huang F, Cheng Y B, Park H, Lu J 2023 Adv. Energy Mater. 13 2302732Google Scholar

    [29]

    Dong Q, Chen M, Liu Y, Eickemeyer F T, Zhao W, Dai Z, Yin Y, Jiang C, Feng J, Jin S, Liu S, Zakeeruddin S M, Grätzel M, Padture N P, Shi Y 2021 Joule 5 1587Google Scholar

    [30]

    Jiang X, Subhani W S, Wang K, Wang H, Duan L, Du M, Pang S, Liu S 2021 Adv. Mater. Interfaces 8 2001994Google Scholar

    [31]

    Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci 12 308Google Scholar

    [32]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081Google Scholar

    [33]

    He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J, Lin Z 2017 Nat. Commun. 8 16045Google Scholar

    [34]

    Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar

    [35]

    Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S 2018 Adv. Energy Mater. 8 1703246Google Scholar

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] Li Yu-Fan, Xue Wen-Qing, Li Yu-Chao, Zhan Yan-Hu, Xie Qian, Li Yan-Kai, Zha Jun-Wei. Research progress of flexible energy storage dielectric materials with sandwiched structure. Acta Physica Sinica, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [3] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [4] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [5] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [6] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [7] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [8] Liu Yu-Xue, Ming Yi-Dong, Wu Cong-Cong. Properties and improvements of chlorine-doped methylamine-based perovskites. Acta Physica Sinica, 2022, 71(20): 207303. doi: 10.7498/aps.71.20220966
    [9] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [10] Gao Jiu-Lin, Lian Ya-Jun, Yang Ye, Li Guo-Qing, Yang Xiao-Hui. High-efficiency sky blue perovskite light-emitting diodes with ammonium thiocyanate additive. Acta Physica Sinica, 2021, 70(19): 198502. doi: 10.7498/aps.70.20211046
    [11] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [12] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [13] Li Xiao-Guo, Zhang Xin, Shi Ze-Jiao, Zhang Hai-Juan, Zhu Cheng-Jun, Zhan Yi-Qiang. Research progress of interface passivation of n-i-p perovskite solar cells. Acta Physica Sinica, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [14] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min. Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [17] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
Metrics
  • Abstract views:  608
  • PDF Downloads:  35
  • Cited By: 0
Publishing process
  • Received Date:  23 November 2023
  • Accepted Date:  29 December 2023
  • Available Online:  13 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回