Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Novel majority carrier accumulation insulated gate bipolar transistor with Schottky junction

Duan Bao-Xing Liu Yu-Lin Tang Chun-Ping Yang Yin-Tang

Duan Bao-Xing, Liu Yu-Lin, Tang Chun-Ping, Yang Yin-Tang. Novel majority carrier accumulation insulated gate bipolar transistor with Schottky junction. Acta Phys. Sin., 2024, 73(7): 078501. doi: 10.7498/aps.73.20231768
Citation:

Novel majority carrier accumulation insulated gate bipolar transistor with Schottky junction

Duan Bao-Xing, Liu Yu-Lin, Tang Chun-Ping, Yang Yin-Tang
PDF
HTML
Get Citation
  • Insulated gate bipolar transistor (IGBT) is the core of modern power semiconductor device, and has been widely used due to its excellent electrical characteristics. A novel majority carrier accumulation mode IGBT with Schottky junction contact gate semiconductor layer (AC-SCG IGBT) is proposed and investigated by TCAD simulation in this article. When the AC-SCG IGBT is in the on-state, a forward bias is applied to the gate. Due to the very low forward voltage drop (VF) of the Schottky barrier diode, the potential of the gate semiconductor layer is almost equal to the gate potential, which can accumulate a large number of majority carrier electrons in the drift region. In addition to the electrons existing, these accumulated electrons increase the conductivity of the drift region, thus significantly reducing VF. Therefore, the doping concentration of the drift region is not limited by VF. The lightly doped drift region can make AC-SCG IGBT have a higher breakdown voltage (BV). Moreover, it also reduces the barrier capacitance in the turn-off process, thus the overall Miller capacitance is small, which can quickly turn off and reduce the turn-off time (Toff) and turn-off loss (Eoff). The simulation results indicate that at the BV of 600 V, the VF of 0.84 V for the proposed AC-SCG IGBT is reduced by 46.2% compared with that for the conventional IGBT (VF of 1.56 V). The Eoff of the AC-SCG IGBT (0.77 mJ/cm2) is reduced by 52.5% compared with that for the conventional IGBT (1.62 mJ/cm2), and the Toff (155.8–222.7 ns) is reduced by 30%. The contradiction between VF and Eoff is eliminated. In addition, the proposed AC-SCG IGBT has a better anti-latch-up capability and is coupled with its higher BV, so it has a larger forward biased safe operating area (FBSOA). The proposed novel structure meets the development requirements for future IGBT device performance, and has great significance for guiding the development of the power semiconductor device field.
      PACS:
      85.30.De(Semiconductor-device characterization, design, and modeling)
      85.30.Pq(Bipolar transistors)
      85.30.Tv(Field effect devices)
      Corresponding author: Duan Bao-Xing, bxduan@163.com
    • Funds: Project supported by the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2018JC-017).

    2020年9月, 中国政府在第75届联合国大会上明确提出了力争在2030年前实现“碳达峰”, 2060年前实现“碳中和”. 功率半导体器件在实现双碳目标中发挥着关键作用, 因为功率半导体器件是电力电子系统的基础, 具有变频、变压、整流、功率放大和管理等重要作用, 能够实现对电能的调节、控制和转换, 从而提高整个系统的能源转换效率和可持续性, 降低能耗减少碳排放, 进而实现节能减排. 而绝缘栅双极晶体管(insulated gate bipolar transistor, IGBT)作为功率半导体器件的核心, 其重要程度不言而喻. IGBT的概念起源并发展于20世纪80年代的早期[1], 它是由双极型晶体管(bipolar junction transistor, BJT)和金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor, MOSFET)组成的复合全控型电压驱动式功率半导体器件[2], 兼具了BJT低正向导通压降和MOSFET高输入阻抗两方面的优点[3], 在消费电子、电力系统、工业系统、新能源汽车、可再生能源发电等多个领域得到广泛应用. 因此在双碳目标的背景之下, 开发设计出性能更加优异的新型IGBT器件将对于建设资源节约型和环境友好型社会具有重大意义.

    在IGBT当中, 击穿电压和正向导通压降之间存在着矛盾[4], 通常来说, 要想获得较高的击穿电压, 器件漂移区的掺杂浓度须低, 但是低掺杂浓度会使得正向导通压降较高. 同时在IGBT中还存在着另一个关键问题, 即正向导通压降和关断损耗之间的矛盾. 要想获得低正向导通压降, 需要增强漂移区的电导调制效应, 但是会在漂移区中存储大量的载流子, 在关断时难以在短时间内将它们抽取或复合, 因此会造成关断损耗增大. 研究者们也进行了大量相关研究来致力于改善正向导通压降和关断损耗之间的关系. 沟槽栅IGBT消除了平面栅带来的结型场效应晶体管(junction field effect transistor, JFET)效应, 从而能够减小正向导通压降[5]. 逆导型IGBT在集电极处为电子提供了通路, 从而能快速关断, 减小关断损耗[6]. 此外, 载流子存储层沟槽栅IGBT[7], 具有P型环和点注入的沟槽栅 IGBT结构[8], 具有自偏置PMOS的IGBT结构[9], 以及最近提出的集电极工程半超结双向IGBT、阶梯分离式沟槽栅IGBT、平面阳极栅超结IGBT[1012], 都可以改善正向导通压降和关断损耗之间的折中.

    为了更好地解决IGBT中存在的问题, 本文将积累的思想应用在IGBT上, 提出了一种具有肖特基结接触的栅半导体层新型多数载流子积累模式IGBT (novel majority carrier accumulation mode IGBT with Schottky junction contact gate semiconductor layer, AC-SCG IGBT), 在满足耐压的条件下, 以同时降低正向导通压降和关断损耗. 所提出的AC-SCG IGBT在常规IGBT的侧面引入了具有肖特基结接触的N-N+-N的栅半导体层. 器件导通时高电势的栅半导体层在漂移区积累多数载流子电子用以增强电导率以降低正向导通压降, 电子的引入使得漂移区掺杂浓度与正向导通压降无关, 通过轻掺杂保证耐压并改善关断特性. 除此之外, 较好的抗闩锁能力和较高的击穿电压使得其具有更大的正偏安全工作区(forward biased safe operating area, FBSOA). 本文所提出的IGBT为硅基IGBT, 也是当前最为主流的IGBT材料, 对硅基IGBT的研究永远不会过时. 当然随着第3代半导体材料SiC的发展, 一些IGBT的研究也会应用SiC作为衬底材料或者是形成硅与SiC的异质结, 亦或是采用SiC作为封装的基板材料, 基于SiC宽带隙的特点, 其应用在IGBT上会使其在更高温度、更高阻断电压和更高的辐射环境下工作. Synopsys公司推出的用以对半导体器件进行模拟仿真的软件Sentaurus TCAD[13]已经被用来实现AC-SCG IGBT的特性, 仿真结果表明, 在600 V级别的击穿电压下, AC-SCG IGBT的正向导通压降为0.84 V, 关断损耗为0.77 mJ/cm2, 关断时间为155.8 ns, 与常规IGBT相比分别降低了46.2%, 52.5%, 30.0%.

    图1显示了常规沟槽型IGBT和所提出的AC-SCG IGBT的结构示意图. AC-SCG IGBT的特征是具有肖特基结接触的N/N+/N的栅半导体层, 它位于器件的侧面区域, 从N+发射极到P+集电极, 覆盖整个漂移区, 其两端连接栅极和集电极. 为了实现较好的电隔离, 栅半导体层和左侧结构用一层薄SiO2进行分隔[14]. 与常规的沟槽栅IGBT相比, 所提出的AC-SCG IGBT制作工艺的不同在于其采用了深沟槽刻蚀技术. 图2为AC-SCG IGBT的工艺流程, 图2(a)为通过外延形成P+/N-buffer/N; 图2(b)为根据合适的深宽比进行从上到下的深沟槽刻蚀; 图2(c)为沟槽内进行SiO2生长, 刻蚀掉底部的SiO2, 留下沟槽侧壁氧化层; 图2(d)为通过外延回填在沟槽内形成N/N+/N; 图2(e)为离子注入; 图2(f)为通过背面减薄工艺减薄P+衬底, 最后金属化形成电极. 深沟槽刻蚀为许多高性能纵向器件的制备提供了可行的技术, 比如应用深沟槽刻蚀技术的器件[1518].

    图 1 两种器件结构示意图 (a)常规IGBT结构; (b) AC-SCG IGBT结构\r\nFig. 1. Schematic cross sections of the two devices: (a) Conventional IGBT structure; (b) AC-SCG IGBT structure.
    图 1  两种器件结构示意图 (a)常规IGBT结构; (b) AC-SCG IGBT结构
    Fig. 1.  Schematic cross sections of the two devices: (a) Conventional IGBT structure; (b) AC-SCG IGBT structure.
    图 2 AC-SCG IGBT的工艺流程图 (a)外延; (b)深沟槽刻蚀; (c) SiO2生长; (d)外延回填; (e)离子注入; (f)背面减薄和金属化\r\nFig. 2. Process flow for AC-SCG IGBT: (a) Epitaxy; (b) deep trench etching; (c) performing SiO2 growth; (d) epitaxial backfilling; (e) ion implantation; (f) back thinning and metallization.
    图 2  AC-SCG IGBT的工艺流程图 (a)外延; (b)深沟槽刻蚀; (c) SiO2生长; (d)外延回填; (e)离子注入; (f)背面减薄和金属化
    Fig. 2.  Process flow for AC-SCG IGBT: (a) Epitaxy; (b) deep trench etching; (c) performing SiO2 growth; (d) epitaxial backfilling; (e) ion implantation; (f) back thinning and metallization.

    AC-SCG IGBT积累层的形成如图3所示, 当对栅极施加正向偏压, 整个Nside栅半导体层的电势为栅极电压VG减去肖特基二极管的内建电势$\varphi_{\mathrm{bi}} $, 由于$\varphi_{\mathrm{bi}} $值很小, 因此Nside栅半导体层的电势几乎与栅极电压相同. 该电压会将漂移区中带负电荷的电子吸引到靠近氧化层的界面处形成高密度的电子积累层, 电子由图3中圆形符号表示. 在导通时, 积累的电子和注入的空穴会对N型漂移区的电导进行调制, 从而增大电导率, 减小正向导通压降. 需要注意的是, 根据半导体物理知识, 栅半导体层上的电势与肖特基结接触形成的势垒ΦBN无关, ΦBN的作用可以减小漏电流. 此外, 漂移区中积累电子形成的同时, 栅半导体层也会产生等量的空穴, 设置N+区可阻断栅极和集电极之间的空穴电流[19]. 表1显示了常规IGBT和所提出的AC-SCG IGBT的关键参数和电学特性值.

    图 3 正栅极电压下AC-SCG IGBT积累层的截面示意图及栅半导体层的电位分布\r\nFig. 3. Schematic cross sections of AC-SCG IGBT accumulation layer and potential distributions of the gate semiconductor layer under the positive gate voltage.
    图 3  正栅极电压下AC-SCG IGBT积累层的截面示意图及栅半导体层的电位分布
    Fig. 3.  Schematic cross sections of AC-SCG IGBT accumulation layer and potential distributions of the gate semiconductor layer under the positive gate voltage.
    表 1  常规IGBT和AC-SCG IGBT的关键参数和电学特性值
    Table 1.  Key parameters and electrical characteristic values of the conventional IGBT and AC-SCG IGBT.
    名称参数常规IGBTAC-SCG IGBT
    漂移区长度LD/μm2828
    器件宽度W/μm3.13.1
    氧化层厚度TOX/μm0.10.1
    漂移区掺杂浓度ND/cm–310141012
    Nside区掺杂浓度Nside/cm–31012
    击穿电压BV/V612629
    正向导通压降VF/V1.560.84
    关断时间Toff/ns222.7155.8
    关断损耗Eoff/(mJ·cm–2)1.620.77
    下载: 导出CSV 
    | 显示表格

    图4为常规IGBT和AC-SCG IGBT的击穿电压和正向导通压降随漂移区掺杂浓度的变化情况. 需要注意, 由图1(b)可知, 在AC-SCG IGBT中, 其漂移区掺杂浓度和栅半导体层的Nside区域和N型区域的掺杂浓度相同, 漂移区掺杂浓度发生改变时, 二者随之改变. 从图4(a)可以看出, 常规IGBT的击穿电压和正向导通压降都随着漂移区掺杂浓度的升高而降低, 二者之间存在矛盾, 这与大多数常规器件中的规律是一致的. 从图4(b)可以看出, AC-SCG IGBT的正向导通压降几乎不受漂移区掺杂浓度的影响, 打破了击穿电压和正向导通压降之间的矛盾. 因此, 对于AC-SCG IGBT, 可以选择低漂移区掺杂浓度以获得高击穿电压和低正向导通压降.

    图 4 两种器件的BV和VF随ND变化的曲线图 (a)常规IGBT结构; (b) AC-SCG IGBT结构\r\nFig. 4. BV and VF as a function of ND of the two devices: (a) Conventional IGBT; (b) AC-SCG IGBT.
    图 4  两种器件的BV和VFND变化的曲线图 (a)常规IGBT结构; (b) AC-SCG IGBT结构
    Fig. 4.  BV and VF as a function of ND of the two devices: (a) Conventional IGBT; (b) AC-SCG IGBT.

    图5(a)为常规IGBT和AC-SCG IGBT在击穿时沿线AA'的垂直电场分布, 可以看出二者都呈现出近似梯形的电场分布, 这是因为N型buffer区的引入对纵向电场进行调制. 它们主要都是由P型阱区和N型漂移区之间的反偏结承担电压, 耗尽层主要在N型漂移区内延伸. 结果表明, 常规IGBT和和AC-SCG IGBT的击穿电压分别为612 V和629 V, 二者的击穿电压都处于600 V的级别. 图5(b)则显示了AC-SCG IGBT在击穿时沿线BB'的垂直电场分布, 栅半导体层主要依靠反偏的肖特基二极管承担电压, 耗尽层在Nside区域当中, N+区域与N型buffer区的作用相同. 对于AC-SCG IGBT来说, 其沿线AA'的垂直电场分布不仅仅受到N型buffer区的影响, 还受到沿线BB'均匀电场的调制, 从而使得沿线AA'的电场分布更加均匀.

    图 5 两种器件在击穿时的垂直电场分布 (a)两种器件沿线AA'的电场分布; (b) AC-SCG IGBT沿线BB'的电场分布\r\nFig. 5. Vertical electric field distributions of the two devices at BV: (a) Electric field distributions along the line AA' for the two devices; (b) electric field distribution along the line BB' for AC-SCG IGBT.
    图 5  两种器件在击穿时的垂直电场分布 (a)两种器件沿线AA'的电场分布; (b) AC-SCG IGBT沿线BB'的电场分布
    Fig. 5.  Vertical electric field distributions of the two devices at BV: (a) Electric field distributions along the line AA' for the two devices; (b) electric field distribution along the line BB' for AC-SCG IGBT.

    图6为AC-SCG IGBT在击穿时栅氧化层两侧的电势分布, 通过仿真分析的结果可以明显看出栅氧化层两侧的电势分布几乎一致, 在同一水平位置不存在横向压降, 因此薄氧化层不会被击穿.

    图 6 AC-SCG IGBT栅氧化层两侧的电势分布\r\nFig. 6. Potential distribution on both sides of AC-SCG IGBT gate oxide.
    图 6  AC-SCG IGBT栅氧化层两侧的电势分布
    Fig. 6.  Potential distribution on both sides of AC-SCG IGBT gate oxide.

    图7为常规IGBT和AC-SCG IGBT的输出特性在不同栅极电压的变化情况. 由于漂移区中靠近氧化层附近电子的积累, 增强了电导率, 因此AC-SCG IGBT的输出电流明显高于常规IGBT. 栅极电压越大, 栅半导体层和N型漂移区之间的电势差就越大, 这样在器件处于导通状态时就会积累更多的电子, 因此输出电流较高, 正向导通压降较低. 图7内的插图则为在VG = 10 V时, 输出特性的放大图, 正向导通压降的值为电流密度等于100 A/cm2时对应的电压. 仿真结果表明, AC-SCG IGBT的正向导通压降为0.84 V, 与常规IGBT的1.56 V相比降低了46.2%. 图8则进一步显示了两种器件在相同栅压VG = 10 V下的饱和特性对比, 虽然由于漂移区小部分缩减形成栅半导体层带来的多数载流子积累效应, 新结构的输出电流会大于传统结构, 但随着集电极电压的逐渐增大最终达到饱和电流时, 仿真结果显示新结构的饱和电流其实只略微大于传统结构. 由于二者饱和电流相差很小, 因此对短路耐受能力影响不大.

    图 7 两种器件在不同VG下的输出特性\r\nFig. 7. Variation of output characteristics for the two devices under VG.
    图 7  两种器件在不同VG下的输出特性
    Fig. 7.  Variation of output characteristics for the two devices under VG.
    图 8 两种器件在VG = 10 V下的饱和特性\r\nFig. 8. Saturation characteristics for the two devices under VG = 10 V.
    图 8  两种器件在VG = 10 V下的饱和特性
    Fig. 8.  Saturation characteristics for the two devices under VG = 10 V.

    AC-SCG IGBT的输出特性也与氧化层厚度TOX有关. 从图9可以看到, 随着TOX的减小, AC-SCG IGBT的正向导通压降逐渐减小, 导通特性更好. 这是因为当TOX较小时, 氧化层电容会相应增大, 在相同的栅极电压下, 漂移区靠近氧化层一侧会积累更多的电荷, 使得电子密度增加, 因此会得到更大的输出电流和更低的正向导通压降.

    图 9 AC-SCG IGBT在不同TOX下的输出特性\r\nFig. 9. Variation of output characteristics for the AC-SCG IGBT under TOX.
    图 9  AC-SCG IGBT在不同TOX下的输出特性
    Fig. 9.  Variation of output characteristics for the AC-SCG IGBT under TOX.

    图10(a)为带感性负载的IGBT开关电路, 图10(b)则为常规IGBT和AC-SCG IGBT关断特性的曲线图. 从图10(b)可以看出, 与常规IGBT相比, AC-SCG IGBT在关断过程中电压VCE上升更快, 关断时间短, 关断损耗低. 从图11可以看出, 当漂移区掺杂浓度相同时, AC-SCG IGBT的米勒电容CGC几乎与常规IGBT一样, 并没有因为氧化层的延长而增大, 这是因为在关断时AC-SCG IGBT在集电极处多串联了一个肖特基势垒电容, 从而削弱了氧化层延长增大电容带来的影响. 因此, 具有低漂移区掺杂浓度的AC-SCG IGBT内的耗尽层电容更小, 因此整体米勒电容更小, 如图11仿真结果所示. 低的米勒电容可以使得AC-SCG IGBT在关断过程中VCE上升快, 能够快速关断, 从而减小关断时间和关断损耗. 仿真结果表明, AC-SCG IGBT的关断损耗为0.77 mJ/cm2, 关断时间为155.8 ns, 与常规IGBT相比分别降低了52.5%和30.0%.

    图 10 开关电路与关断特性图 (a)带感性负载的IGBT开关电路图; (b)两种器件的关断特性曲线\r\nFig. 10. Switching circuit and turn-off characteristics diagram: (a) Switching circuit with inductive load for IGBT; (b) turn-off characteristics for the two devices.
    图 10  开关电路与关断特性图 (a)带感性负载的IGBT开关电路图; (b)两种器件的关断特性曲线
    Fig. 10.  Switching circuit and turn-off characteristics diagram: (a) Switching circuit with inductive load for IGBT; (b) turn-off characteristics for the two devices.
    图 11 两种器件的米勒电容\r\nFig. 11. CGC as a function of VCE of the two devices.
    图 11  两种器件的米勒电容
    Fig. 11.  CGC as a function of VCE of the two devices.

    图12为常规IGBT和AC-SCG IGBT的正向导通压降和关断损耗的折中曲线. 折中曲线是通过改变集电极P区的掺杂浓度以得到不同VF值下的Eoff[20]. 从图12可以看到, 与常规IGBT相比, 在击穿能力相同的条件下, AC-SCG IGBT的正向导通压降和关断损耗分别降低了46.2%和52.5%. 可以证明所提出的AC-SCG IGBT具有更低的正向导通压降和关断损耗, 在二者之间取得了比常规IGBT更好的折中特性.

    图 12 两种器件VF和Eoff的折中曲线图\r\nFig. 12. Trade-off curves between VF and Eoff for the two devices.
    图 12  两种器件VFEoff的折中曲线图
    Fig. 12.  Trade-off curves between VF and Eoff for the two devices.

    除了上述优异的电学特性外, 与常规结构相比, 新结构还提高了电学可靠性. 图13为两种器件在不同栅压下I-V曲线组成的FBSOA, 可以看到AC-SCG IGBT具有更大的FBSOA. 这是因为, 与常规IGBT相比, AC-SCG IGBT的P-well区域的尺寸更小, 因此该区域的体电阻更小, 所以其抗闩锁能力更强; 加之漂移区轻掺杂带来较好的耐压特性, AC-SCG IGBT的FBSOA更大.

    图 13 两种器件的FBSOA\r\nFig. 13. FBSOA of the two devices.
    图 13  两种器件的FBSOA
    Fig. 13.  FBSOA of the two devices.

    针对目前在IGBT中存在的固有问题和矛盾, 本文提出了一种具有肖特基结接触的栅半导体层新型多数载流子积累模式IGBT器件结构, 并通过仿真研究其击穿、输出、关断、安全工作区等相关特性. 由于积累的作用, AC-SCG IGBT漂移区的电导率提高, 漂移区的掺杂浓度不受正向导通压降的限制, 可以采用低漂移区掺杂浓度以获得高击穿电压和低正向导通压降. 此外, 轻掺杂的漂移区使得器件在关断过程中内部的耗尽层电容较小, 因此整体的米勒电容较小, 能够快速关断从而减小关断时间和关断损耗. 结果表明, 在600 V级别的击穿电压下, 与常规IGBT比, AC-SCG IGBT的正向导通压降和关断损耗分别降低了46.2%和52.5%, 实现了更低的正向导通压降和关断损耗, 打破了二者之间存在的矛盾. 与此同时, AC-SCG IGBT具有更强的抗闩锁能力, 加之轻掺杂带来的较好的耐压特性, 使其具有更大的FBSOA. 新型结构的提出, 其优异的性能将为IGBT领域提供更多的创新和可能性.

    [1]

    Baliga B J 1979 Electron. Lett. 15 645Google Scholar

    [2]

    Baliga B J 1988 IEEE Proc. 76 409Google Scholar

    [3]

    王彩琳 2015 电力半导体新器件及其制造技术 (北京: 机械工业出版社) 第5—7页

    Wang C L 2015 New Power Semiconductor Devices and Their Manufacturing Technologies (Beijing: China Machine Press) pp5–7

    [4]

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp399–401 (in Chinses) [巴利加BJ著 (韩郑生, 陆江, 宋李梅译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第399—401页]

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp399–401 (in Chinses)

    [5]

    Chang H R, Baliga B J, Kretchmer J W, Piacente P A 1987 International Electron Devices Meeting ( IEDM) Washington, USA, December 6–9, 1987 p674

    [6]

    Takahashi H, Yamamoto A, Aono S, Minato T 2004 16th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Kitakyushu, Japan, May 24–27, 2004 p133

    [7]

    Takahashi H, Haruguchi E, Hagino H, Yamada T 1996 8th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Maui, USA, May 23, 1996 p349

    [8]

    Antoniou M, Udrea F, Bauer F, Mihaila A, Nistor I 2012 24th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Bruges, Belgium, June 3–7, 2012 p21

    [9]

    Li P, Lü X J, Cheng J J, Chen X B 2016 IEEE Electron. Device Lett. 37 1470Google Scholar

    [10]

    Vaidya M, Naugarhiya A, Verma S, Mishra G P 2022 IEEE Trans. Electron. Devices 69 1604Google Scholar

    [11]

    Xu H, Yang Y F, Tan J J, Zhu H, Sun Q Q, Zhang D W 2022 IEEE Trans. Electron. Devices 69 5450Google Scholar

    [12]

    Li L P, Li Z H, Chen P, Rao Q S, Yang Y Z, Wan J L, Wang T Y, Zhao Y S, Ren M 2022 16th International Conference on Solid-State and Integrated Circuit Technology ( ICSICT) Nanjing, China, October 25–28, 2022 p1

    [13]

    Synopsys Sentaurus TCAD Device User Guide 2017

    [14]

    Duan B X, Xing L T, Wang Y D, Yang Y T 2022 IEEE Trans. Electron. Devices 69 658Google Scholar

    [15]

    Udrea F, Deboy G, Fujihira T 2017 IEEE Trans. Electron. Devices 64 713Google Scholar

    [16]

    Iwamoto S, Takahashi K, Kuribayashi H, Wakimoto S, Mochizuki K, Nakazawa H 2005 17th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Santa Barbara, CA, USA, May 23–26, 2005 p31

    [17]

    Yamauchi S, Shibata T, Nogami S, Yamaoka T, Hattori Y, Yamaguchi H 2006 18th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Naples, Italy, June 4–8, 2006 p1

    [18]

    Duan B X, Wang Y D, Sun L C, Yang Y T 2020 IEEE Trans. Electron. Devices 67 1085Google Scholar

    [19]

    Wang Y D, Duan B X, Song H T, Yang Y T 2020 IEEE Electron. Device Lett. 41 1681Google Scholar

    [20]

    Sun L C, Duan B X, Yang Y T 2021 IEEE J. Electron Devi. 9 409Google Scholar

  • 图 1  两种器件结构示意图 (a)常规IGBT结构; (b) AC-SCG IGBT结构

    Figure 1.  Schematic cross sections of the two devices: (a) Conventional IGBT structure; (b) AC-SCG IGBT structure.

    图 2  AC-SCG IGBT的工艺流程图 (a)外延; (b)深沟槽刻蚀; (c) SiO2生长; (d)外延回填; (e)离子注入; (f)背面减薄和金属化

    Figure 2.  Process flow for AC-SCG IGBT: (a) Epitaxy; (b) deep trench etching; (c) performing SiO2 growth; (d) epitaxial backfilling; (e) ion implantation; (f) back thinning and metallization.

    图 3  正栅极电压下AC-SCG IGBT积累层的截面示意图及栅半导体层的电位分布

    Figure 3.  Schematic cross sections of AC-SCG IGBT accumulation layer and potential distributions of the gate semiconductor layer under the positive gate voltage.

    图 4  两种器件的BV和VFND变化的曲线图 (a)常规IGBT结构; (b) AC-SCG IGBT结构

    Figure 4.  BV and VF as a function of ND of the two devices: (a) Conventional IGBT; (b) AC-SCG IGBT.

    图 5  两种器件在击穿时的垂直电场分布 (a)两种器件沿线AA'的电场分布; (b) AC-SCG IGBT沿线BB'的电场分布

    Figure 5.  Vertical electric field distributions of the two devices at BV: (a) Electric field distributions along the line AA' for the two devices; (b) electric field distribution along the line BB' for AC-SCG IGBT.

    图 6  AC-SCG IGBT栅氧化层两侧的电势分布

    Figure 6.  Potential distribution on both sides of AC-SCG IGBT gate oxide.

    图 7  两种器件在不同VG下的输出特性

    Figure 7.  Variation of output characteristics for the two devices under VG.

    图 8  两种器件在VG = 10 V下的饱和特性

    Figure 8.  Saturation characteristics for the two devices under VG = 10 V.

    图 9  AC-SCG IGBT在不同TOX下的输出特性

    Figure 9.  Variation of output characteristics for the AC-SCG IGBT under TOX.

    图 10  开关电路与关断特性图 (a)带感性负载的IGBT开关电路图; (b)两种器件的关断特性曲线

    Figure 10.  Switching circuit and turn-off characteristics diagram: (a) Switching circuit with inductive load for IGBT; (b) turn-off characteristics for the two devices.

    图 11  两种器件的米勒电容

    Figure 11.  CGC as a function of VCE of the two devices.

    图 12  两种器件VFEoff的折中曲线图

    Figure 12.  Trade-off curves between VF and Eoff for the two devices.

    图 13  两种器件的FBSOA

    Figure 13.  FBSOA of the two devices.

    表 1  常规IGBT和AC-SCG IGBT的关键参数和电学特性值

    Table 1.  Key parameters and electrical characteristic values of the conventional IGBT and AC-SCG IGBT.

    名称参数常规IGBTAC-SCG IGBT
    漂移区长度LD/μm2828
    器件宽度W/μm3.13.1
    氧化层厚度TOX/μm0.10.1
    漂移区掺杂浓度ND/cm–310141012
    Nside区掺杂浓度Nside/cm–31012
    击穿电压BV/V612629
    正向导通压降VF/V1.560.84
    关断时间Toff/ns222.7155.8
    关断损耗Eoff/(mJ·cm–2)1.620.77
    DownLoad: CSV
  • [1]

    Baliga B J 1979 Electron. Lett. 15 645Google Scholar

    [2]

    Baliga B J 1988 IEEE Proc. 76 409Google Scholar

    [3]

    王彩琳 2015 电力半导体新器件及其制造技术 (北京: 机械工业出版社) 第5—7页

    Wang C L 2015 New Power Semiconductor Devices and Their Manufacturing Technologies (Beijing: China Machine Press) pp5–7

    [4]

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp399–401 (in Chinses) [巴利加BJ著 (韩郑生, 陆江, 宋李梅译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第399—401页]

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp399–401 (in Chinses)

    [5]

    Chang H R, Baliga B J, Kretchmer J W, Piacente P A 1987 International Electron Devices Meeting ( IEDM) Washington, USA, December 6–9, 1987 p674

    [6]

    Takahashi H, Yamamoto A, Aono S, Minato T 2004 16th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Kitakyushu, Japan, May 24–27, 2004 p133

    [7]

    Takahashi H, Haruguchi E, Hagino H, Yamada T 1996 8th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Maui, USA, May 23, 1996 p349

    [8]

    Antoniou M, Udrea F, Bauer F, Mihaila A, Nistor I 2012 24th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Bruges, Belgium, June 3–7, 2012 p21

    [9]

    Li P, Lü X J, Cheng J J, Chen X B 2016 IEEE Electron. Device Lett. 37 1470Google Scholar

    [10]

    Vaidya M, Naugarhiya A, Verma S, Mishra G P 2022 IEEE Trans. Electron. Devices 69 1604Google Scholar

    [11]

    Xu H, Yang Y F, Tan J J, Zhu H, Sun Q Q, Zhang D W 2022 IEEE Trans. Electron. Devices 69 5450Google Scholar

    [12]

    Li L P, Li Z H, Chen P, Rao Q S, Yang Y Z, Wan J L, Wang T Y, Zhao Y S, Ren M 2022 16th International Conference on Solid-State and Integrated Circuit Technology ( ICSICT) Nanjing, China, October 25–28, 2022 p1

    [13]

    Synopsys Sentaurus TCAD Device User Guide 2017

    [14]

    Duan B X, Xing L T, Wang Y D, Yang Y T 2022 IEEE Trans. Electron. Devices 69 658Google Scholar

    [15]

    Udrea F, Deboy G, Fujihira T 2017 IEEE Trans. Electron. Devices 64 713Google Scholar

    [16]

    Iwamoto S, Takahashi K, Kuribayashi H, Wakimoto S, Mochizuki K, Nakazawa H 2005 17th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Santa Barbara, CA, USA, May 23–26, 2005 p31

    [17]

    Yamauchi S, Shibata T, Nogami S, Yamaoka T, Hattori Y, Yamaguchi H 2006 18th International Symposium on Power Semiconductor Devices and ICs ( ISPSD) Naples, Italy, June 4–8, 2006 p1

    [18]

    Duan B X, Wang Y D, Sun L C, Yang Y T 2020 IEEE Trans. Electron. Devices 67 1085Google Scholar

    [19]

    Wang Y D, Duan B X, Song H T, Yang Y T 2020 IEEE Electron. Device Lett. 41 1681Google Scholar

    [20]

    Sun L C, Duan B X, Yang Y T 2021 IEEE J. Electron Devi. 9 409Google Scholar

  • [1] Duan Bao-Xing, Wang Jia-Sen, Tang Chun-Ping, Yang Yin-Tang. Noval carrier accumulation reverse-conducting lateral insulated gate bipolar transistor. Acta Physica Sinica, 2024, 73(15): 157301. doi: 10.7498/aps.73.20240572
    [2] Gou Shi-Long, Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Sheng Jiang-Kun, Xue Yuan-Yuan, Pan Chen. Radiation mechanism of gate-controlled lateral PNP bipolar transistors in the hydrogen environment. Acta Physica Sinica, 2021, 70(15): 156101. doi: 10.7498/aps.70.20210351
    [3] Guo Chun-Sheng, Ding Yan, Jiang Bo-Yang, Liao Zhi-Heng, Su Ya, Feng Shi-Wei. High-efficiency on-line measurement of junction temperature based on bipolar transistors in accelerated experiment. Acta Physica Sinica, 2017, 66(22): 224703. doi: 10.7498/aps.66.224703
    [4] Tan Ji, Zhu Yang-Jun, Lu Shuo-Jin, Tian Xiao-Li, Teng Yuan, Yang Fei, Zhang Guang-Yin, Shen Qian-Xing. Modeling and simulation of the insulated gate bipolar transistor turn-off voltage slope under inductive load. Acta Physica Sinica, 2016, 65(15): 158501. doi: 10.7498/aps.65.158501
    [5] Ma Wu-Ying, Wang Zhi-Kuan, Lu Wu, Xi Shan-Bin, Guo Qi, He Cheng-Fa, Wang Xin, Liu Mo-Han, Jiang Ke. The base current broadening effect and charge separation method of gate-controlled lateral PNP bipolar transistors. Acta Physica Sinica, 2014, 63(11): 116101. doi: 10.7498/aps.63.116101
    [6] Ma Zhen-Yang, Chai Chang-Chun, Ren Xing-Rong, Yang Yin-Tang, Qiao Li-Ping, Shi Chun-Lei. The damage effect and mechanism of the bipolar transistor induced by different types of high power microwaves. Acta Physica Sinica, 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [7] Ren Xing-Rong, Chai Chang-Chun, Ma Zhen-Yang, Yang Yin-Tang, Qiao Li-Ping, Shi Chun-Lei. The damage effect and mechanism of bipolar transistors induced by injection of electromagnetic pulse from the base. Acta Physica Sinica, 2013, 62(6): 068501. doi: 10.7498/aps.62.068501
    [8] Du Chao-Hai, Li Zheng-Di, Xue Zhi-Hao, Liu Pu-Kun, Xue Qian-Zhong, Zhang Shi-Chang, Xu Shou-Xi, Geng Zhi-Hui, Gu Wei, Su Yi-Nong, Liu Gao-Feng. Research on the mode competition in a w-band lossy ceramic-loaded gyrotron backward-wave oscillator. Acta Physica Sinica, 2012, 61(7): 070703. doi: 10.7498/aps.61.070703
    [9] Shi Wei-Wei, Li-Wen, Yi Ming-Dong, Xie Ling-Hai, Wei-Wei, Huang Wei. Progress of the improved mobilities of organic field-effect transistors based on dielectric surface modification. Acta Physica Sinica, 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [10] Liu Ya-Qiang, An Zhen-Lian, Cang Jun, Zhang Ye-Wen, Zheng Fei-Hu. Influence of fluorination time on surface charge accumulation on epoxy resin insulation. Acta Physica Sinica, 2012, 61(15): 158201. doi: 10.7498/aps.61.158201
    [11] Ma Zhen-Yang, Chai Chang-Chun, Ren Xing-Rong, Yang Yin-Tang, Chen Bin. The damage effect and mechanism of the bipolar transistor caused by microwaves. Acta Physica Sinica, 2012, 61(7): 078501. doi: 10.7498/aps.61.078501
    [12] Xi Shan-Bin, Lu Wu, Ren Di-Yuan, Zhou Dong, Wen Lin, Sun Jing, Wu Xue. Quantitative separation of radiation induced charges for gate controlled later PNP bipolar transistors. Acta Physica Sinica, 2012, 61(23): 236103. doi: 10.7498/aps.61.236103
    [13] Xi Shan-Bin, Lu Wu, Wang Zhi-Kuan, Ren Di-Yuan, Zhou Dong, Wen Lin, Sun Jing. Use the subthreshold-current technique to separate radiation induced defects in gate controlled lateral pnp bipolar transistors. Acta Physica Sinica, 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [14] Chen Jian-Jun, Chen Shu-Ming, Liang Bin, Liu Bi-Wei, Chi Ya-Qing, Qin Jun-Rui, He Yi-Bai. Influence of interface traps of p-type metal-oxide-semiconductor field effect transistor on single event charge sharing collection. Acta Physica Sinica, 2011, 60(8): 086107. doi: 10.7498/aps.60.086107
    [15] Chai Chang-Chun, Xi Xiao-Wen, Ren Xing-Rong, Yang Yin-Tang, Ma Zhen-Yang. The damage effect and mechanism of the bipolar transistor induced by the intense electromagnetic pulse. Acta Physica Sinica, 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [16] Cheng Peng-Fei, Li Sheng-Tao, Li Jian-Ying. Dielectric loss of ZnO varistor ceramics by variable temperature spectroscopy. Acta Physica Sinica, 2009, 58(8): 5721-5725. doi: 10.7498/aps.58.5721
    [17] Zhang Hu, Wang Qiu-Guo, Yang Bo-Jun, Yu Li. Modal characteristics and leakage loss of hollow-core photonic-bandgap fibers based on a square lattice. Acta Physica Sinica, 2008, 57(9): 5722-5728. doi: 10.7498/aps.57.5722
    [18] Wu Fan, Wang Tai-Hong. Stabilitydiagramsforsingle electrontransistors. Acta Physica Sinica, 2002, 51(12): 2829-2835. doi: 10.7498/aps.51.2829
    [19] ZHANG XING-HONG, HU YU-SHENG, WU JIE, CHENG ZHI-QUN, XIA GUAN-QUN, XU YUAN-SEN, CHEN ZHANG-HAI, GUI YONG-SHENG, CHU JUN-HAO. INFLUENCE OF DEEP LEVELS ON THE PERFORMANCE OF AlGaInP/GaAs HETEROJUNCTION BIPOLAR TRANSISTOR. Acta Physica Sinica, 1999, 48(3): 556-560. doi: 10.7498/aps.48.556
    [20] WANG XIAO-HUI, JIN XIN, YAO XI-XIAN. FLUX TRANSITION PROPERTIES OF RF-SQUID IN THE DIS-SIPATIVE MODE IN THE PRESENCE OF LARGE FLUCTUATION. Acta Physica Sinica, 1991, 40(10): 1689-1693. doi: 10.7498/aps.40.1689
Metrics
  • Abstract views:  2235
  • PDF Downloads:  92
Publishing process
  • Received Date:  07 November 2023
  • Accepted Date:  26 December 2023
  • Available Online:  08 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回