搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型载流子积累的RC-LIGBT

段宝兴 王佳森 唐春萍 杨银堂

引用本文:
Citation:

新型载流子积累的RC-LIGBT

段宝兴, 王佳森, 唐春萍, 杨银堂

Noval Carrier Accumulation RC-LIGBT

Duan Bao-Xing, Wang Jia-Sen, Tang Chun-Ping, Yang Yin-Tang
PDF
导出引用
  • 通过引入n+阳极在体内集成续流二极管的逆导型横向绝缘栅双极晶体管(Reverse-Conducting Lateral Insulated Gate Bipolar Transistor,RC-LIGBT)可以实现反向导通,并且优化器件的关断特性,是功率集成电路中一个有竞争力的器件。本文提出了一种新型载流子积累的RC-LIGBT,它具有电子控制栅(Electron-controlled Gate,EG)和分离短路阳极(Separated Short-Anode,SSA),可以同时实现较低的导通压降和关断损耗。在正向导通状态,漂移区上方的EG结构可以在漂移区的表面积累一个高密度的电子层,从而大大地降低器件的导通压降。同时,SSA结构的使用也极大优化了器件的关断损耗。另外,低掺杂p型漂移区与SSA结构配合,可以简单地实现反向导通并且消除回吸电压。仿真结果表明,所提出的器件具有优秀的导通压降与关断损耗之间的折衷关系,其导通压降为1.16V,比SSA LIGBT低55%,其关断损耗为0.099mJ/cm2,比SSA LIGBT和常规LIGBT分别低38.5%和94.7%。
    Reverse-Conducting Lateral Insulated Gate Bipolar Transistor (RC-LIGBT) with freewheeling diode integrated in the body by introducing n+ anode can realize the reverse conduction and optimize the turn-off characteristics of the device, which is a promising device in power integrated circuits. In this paper, a novel RC-LIGBT with Electron-controlled Gate (EG) and Separated Short-Anode (SSA) is proposed and investigated by TCAD simulation, which can achieve low on-state voltage drop (Von) and low turn-off loss (Eoff) at the same time. The EG structure of p-n-n+-p (p+ region/ n-type silicon region/n-type barrier layer/p+ region) is adopted, the gate and anode electrodes are connected by the EG structure. In the forward conduction state, a high-density electron accumulation layer is formed on the surface of the drift region by EG structure, which greatly reduces the Von of the device. At the same time, the use of the SSA structure can also optimize the Eoff of the device by forming an additional electron extraction channel. In addition, based on the EG structure, a low-doping p-drift can be combined with the SSA structure to simply achieve reverse-conduction and snapback-free characteristics. What's more, the EG structure and the SSA structure can complement each other. On the one hand, the high-density electron accumulation layer formed by EG structure compensates for the weakened conductance modulation effect caused by the SSA structure. On the other hand, the electron extraction channel of the SSA structure enables a large number of accumulated electrons to be removed quickly. The simulation results show that the proposed device has an excellent tradeoff relationship between Von and Eoff, the Von is 1.16V, which is 55% lower than that of SSA LIGBT, and the Eoff is 0.099mJ/cm2, which is 38.5% and 94.7% lower than that of SSA LIGBT and conventional LIGBT, respectively.
  • [1]

    Sakurai N, Mori M, Yatsuo T 1990 Proceedings of the 2nd International Symposium on Power Semiconductor Devices and ICs Tokyo, Japan, April 4-6, 1990 p66

    [2]

    Disney D, Letavic T, Trajkovic T, Terashima T, Nakagawa A 2017 IEEE Transactions on Electron Devices 64 659

    [3]

    Letavic T, Petruzzello J, Claes J, Eggenkamp P, Janssen E, van der Wal A 2006 IEEE International Symposium on Power Semiconductor Devices and IC's Naples, Italy, June 4-8, 2006 p1

    [4]

    Gu Y, Ma J, Zhang L, Wei J X, Li S, Liu S Y, Zhang S, Zhu J, Sun W F 2024 IEEE Transactions on Electron Devices 71 381

    [5]

    Hara K, Wada S, Sakano J, Oda T, Sakurai K, Yamashita H, Utsumi T 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's Waikoloa, Hawaii, USA, June 15-19, 2014 p418

    [6]

    Gough P A, Simpson M R, Rumennik V 1986 International Electron Devices Meeting Los Angeles, CA, USA, December 7-10, 1986 p218

    [7]

    Sin J K O,Mukherjee S 1991 IEEE Electron Device Letters 12 45

    [8]

    Duan S, Qiao M, Mao K, Zhong B, Jiang L, Zhang B 2010 IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, China, November 1-4, 2010 p897

    [9]

    Simpson M R 1991 IEEE Transactions on Electron Devices 38 1633

    [10]

    Chen W S, Zhang B, Li Z J 2010 IEEE Electron Device Letters 31 467

    [11]

    Sun L C, Duan B X, Yang Y T 2021 IEEE Transactions on Electron Devices 68 2408

    [12]

    Chul J H, Byeon D S, Oh J K, Han M K, Choi Proc Y I. 2002 12th International Symposium on Power Semiconductor Devices & ICs Toulouse, France, May 22-25, 2002 p149

    [13]

    Zhu J, Zhang L, Sun W F, Chen M, Zhou F, Zhao M N, Shi L X, Gu Y, Zhang S 2016 IEEE Transactions on Electron Devices 63 2003

    [14]

    Huang L H, Luo X R, Wei J, Zhou K, Deng G Q, Sun T, Ouyang D F, Fan D, Zhang B 2017 IEEE Transactions on Electron Devices 64 3961

    [15]

    Hardikar S, Tadikonda R, Sweet M, Vershinin K, Narayanan E M S 2003 IEEE Electron Device Letters 24 701

    [16]

    Sun L C, Duan B X, Wang Y D, Yang Y T 2019 IEEE Transactions on Electron Devices 66 2675

    [17]

    Duan B X, Sun L C, Yang Y T 2019 IEEE Electron Device Letters 40 63

    [18]

    Liu S Y, Zhang Y, Zhang Z J, Inuishi M 2022 6th IEEE Electron Devices Technology & Manufacturing Conference Oita, Japan, March 6-9, 2022 p204

    [19]

    Xia Y, Chen W J, Liu C, Sun R Z, Li Z J, Zhang B Zhang 2022 IEEE Transactions on Electron Devices 69 6956

    [20]

    Xia Q F 2007 Ph. D. Dissertation (Zhejiang: Zhejiang University) (in Chinese) [夏庆锋 2007 博士学位论文 (浙江:浙江大学)]

    [21]

    Bruel M, Aspar B, Charlet B, Maleville C, Poumeyrol T, Soubie A, Auberton-Herve A J, Lamure J M, Barge T, Metral F, Trucchi S 1995 IEEE International SOI Conference Proceedings Tucson, AZ, USA, October 3-5,1995 p178

  • [1] 段宝兴, 刘雨林, 唐春萍, 杨银堂. 肖特基结多数载流子积累新型绝缘栅双极晶体管. 物理学报, doi: 10.7498/aps.73.20231768
    [2] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象. 物理学报, doi: 10.7498/aps.69.20191896
    [3] 周庆中, 郭丰, 张明睿, 尤庆亮, 肖标, 刘继延, 刘翠, 刘学清, 王亮. 载流子复合及能量无序对聚合物太阳电池开路电压的影响. 物理学报, doi: 10.7498/aps.69.20191699
    [4] 冯西安, 张杨梅. 任意复包络信号的匀速运动目标回波脉间补偿及相干积累. 物理学报, doi: 10.7498/aps.67.20172203
    [5] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究. 物理学报, doi: 10.7498/aps.63.236102
    [6] 王斌, 张鹤鸣, 胡辉勇, 张玉明, 舒斌, 周春宇, 李妤晨, 吕懿. 应变Si NMOS积累区电容特性研究. 物理学报, doi: 10.7498/aps.62.057103
    [7] 刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎. 氟化时间对环氧树脂绝缘表面电荷积累的影响. 物理学报, doi: 10.7498/aps.61.158201
    [8] 陈暄, 安振连, 刘晨霞, 张冶文, 郑飞虎. 表层氟化温度对聚乙烯中空间电荷积累的影响. 物理学报, doi: 10.7498/aps.61.138201
    [9] 董刚, 薛萌, 李建伟, 杨银堂. 考虑工艺波动的RC互连树统计功耗. 物理学报, doi: 10.7498/aps.60.036601
    [10] 王金平, 许建平, 徐杨军. 恒定导通时间控制buck变换器多开关周期振荡现象分析. 物理学报, doi: 10.7498/aps.60.058401
    [11] 陈高飞, 公茂琼, 沈俊, 邹鑫, 吴剑峰. 水平管内二氟乙烷两相流动摩擦压降实验研究. 物理学报, doi: 10.7498/aps.59.8669
    [12] 肖 哲, 黄 铭, 巫跃凤, 彭金辉. 三维RC网络仿真异质材料的通用介质响应. 物理学报, doi: 10.7498/aps.57.957
    [13] 熊 飞, 张 辉, 李洪山, 张鹏翔, 蒋最敏. 退火氧压对YBa2Cu3O7-x薄膜中的激光感生热电电压效应的影响. 物理学报, doi: 10.7498/aps.57.5237
    [14] 刘 婷, 谈松林, 张 辉, 秦 毅, 张鹏翔. 氧压对SrTiO3和SrNb0.2Ti0.8O3薄膜晶格参数的影响及激光感生热电电压效应. 物理学报, doi: 10.7498/aps.57.4424
    [15] 王龙海, 于 军, 王耘波, 彭 刚, 刘 锋, 高峻雄. 基于静态电滞回线的铁电电容模型. 物理学报, doi: 10.7498/aps.54.949
    [16] 汤晓燕, 张义门, 张玉明. 界面态电荷对6H碳化硅N沟MOSFET阈值电压和跨导的影响. 物理学报, doi: 10.7498/aps.51.771
    [17] 李印峰, 陈笃行, 沈保根, M.VAZQUEZ, A.HERNANDO. 非晶态铁基合金退火样品的偏移回线. 物理学报, doi: 10.7498/aps.50.953
    [18] 蒋春萍, 桂永胜, 郑国珍, 马智训, 李 标, 郭少令, 褚君浩. n-Hg0.80Mg0.20Te界面积累层中二维电子气的输运特性研究. 物理学报, doi: 10.7498/aps.49.1804
    [19] 桂永胜, 褚君浩, 蔡 毅, 郑国珍, 汤定元. n-HgCdTe表面积累层中子带电子迁移率的研究. 物理学报, doi: 10.7498/aps.47.1354
    [20] 黄启圣, 汤定元. 锑化铟中载流子的复合过程. 物理学报, doi: 10.7498/aps.21.1038
计量
  • 文章访问数:  95
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-06-21

/

返回文章
返回