搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象

卢超 陈伟 罗尹虹 丁李利 王勋 赵雯 郭晓强 李赛

引用本文:
Citation:

纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象

卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛

Effect of source-drain conduction in single-event transient on nanoscaled bulk fin field effect transistor

Lu Chao, Chen Wei, Luo Yin-Hong, Ding Li-Li, Wang Xun, Zhao Wen, Guo Xiao-Qiang, Li Sai
PDF
HTML
导出引用
  • 体硅鳍形场效应晶体管(FinFET)是晶体管尺寸缩小到30 nm以下应用最多的结构, 其单粒子瞬态产生机理值得关注. 利用脉冲激光单粒子效应模拟平台开展了栅长为30, 40, 60, 100 nm FinFET器件的单粒子瞬态实验, 研究FinFET器件单粒子瞬态电流脉冲波形随栅长变化情况; 利用计算机辅助设计(technology computer-aided design, TCAD)软件仿真比较电流脉冲产生过程中器件内部电子浓度和电势变化, 研究漏电流脉冲波形产生的物理机理. 研究表明, 不同栅长FinFET器件瞬态电流脉冲尾部都存在明显的平台区, 且平台区电流值随着栅长变短而增大; 入射激光在器件沟道区下方体区产生高浓度电子将源漏导通产生导通电流, 而源漏导通升高了体区电势, 抑制体区高浓度电子扩散, 使得导通状态维持时间长, 形成平台区电流; 尾部平台区由于持续时间长, 收集电荷量大, 会严重影响器件工作状态和性能. 研究结论为纳米FinFET器件抗辐射加固提供理论支撑.
    Fin field effect transistor (FinFET) is a most widely used structure when the field effect transistor is scaled down to 30 nm or less. And there are few studies on single-event transient of FinFET devices with gate length below 30 nm. The single-event-transient on FinFET with gate length below 30 nm is worth studying. The single-event-transient responses of bulk FinFETs with 30 nm, 40 nm, 60 nm and 100 nm gate length are examined by using the pulsed laser and technology computer-aided design (TCAD) simulation in this article. First, we use the pulsed laser to ionize the gate of the FinFET device and detect the transient drain current of the FinFET device. The experimental results show that there are obvious platforms for the transient drain current tails of FinFETs with different gate lengths, and the platform current increases as the gate length of FinFET becomes shorter. The charges collected in the platform of FinFET devices with gate lengths of 100, 60, 40, and 30 nm are 34%, 40%, 51%, and 65% of the total charge collected in transient drain current, respectively. Therefore, when the FinFET device with the gate length below 100 nm, the platform current will seriously affect the device performance. Second, we use TCAD to simulate the heavy ion single-event effect of FinFET device and study the generation mechanism of platform region in transient drain current. The TCAD simulation explains this mechanism. Laser or heavy ions ionize high concentration electron-hole pairs in the device. The holes are quickly collected and the high concentration electrons are left under the FinFET channel. High concentration electrons conduct source and drain, generating the source-to-drain current at the tail of the transient drain current. Moreover the source-drain conduction enhances the electrostatic potential below the FinFET channel and suppresses high-concentration electron diffusion, making source-to-drain current decrease slowly and form the platform. The transient drain current tail has a long duration and a large quantity of collected charges, which seriously affects FinFET performance. This is a problem that needs studying in the single-event effect of FinFET device. It is also a problem difficult to solve when the FinFET devices are applied to spacecraft. And the generation mechanism of the transient drain current plateau region of FinFET device can provide theoretical guidance for solving these problems.
      通信作者: 陈伟, chenwei6802@163.com
    • 基金项目: 国家级-国家自然科学基金重大项目(11690043)
      Corresponding author: Chen Wei, chenwei6802@163.com
    [1]

    Colinge J P 2008 FinFETs and Other Multi-Gate Transistors (New York: Springer) pp257–258

    [2]

    Herman C H J, Michiel S M, van AHM Arthur R 2011 Analog Circuit Design-Robust Design, Sigma Delta Converters, RFID (New York: Springer) pp69–87

    [3]

    Nsengiyumva P, Ball D R, Kauppila J S, Tam N, McCurdy M, Holman W T, Alles M L, Bhuva B L, Massengill L W 2016 IEEE Trans. Nucl. Sci. 63 266Google Scholar

    [4]

    Nsengiyumva P, Massengill L W, Alles M L, Bhuva B L, Ball D R, Kauppila J S, Haeffner T D, Holman W T, Reed R A 2017 IEEE Trans. Nucl. Sci. 64 441Google Scholar

    [5]

    Zhang H F, Jiang H, Assis T R, et al. 2017 IEEE Trans. Nucl. Sci. 64 457Google Scholar

    [6]

    Nsengiyumva P, Massengill L W, Kauppila J S, Maharrey J A, Harrington R C, Haeffner T D, Ball D R, Alles M L, Bhuva B L, Holman W T, Zhang E X, Rowe J D, Sternberg A L 2018 IEEE Trans. Nucl. Sci. 65 223Google Scholar

    [7]

    Narasimham B, Hatami S, Anvar A, Harris D M, Lin A, Wang J K, Chatterjee I, Ni K, Bhuva B L, Schrimpf R D, Reed R A, McCurdy M W 2015 IEEE Trans. Nucl. Sci. 62 2578Google Scholar

    [8]

    Harrington R C, Maharrey J A, Kauppila J S, Nsengiyumva P, Ball D R, Haeffner T D, Zhang E X, Bhuva B L, Massengill L W 2018 IEEE Trans. Nucl. Sci. 65 1807Google Scholar

    [9]

    Karp J, Hart M J, Maillard P, Hellings G, Linten D 2018 IEEE Trans. Nucl. Sci. 65 217Google Scholar

    [10]

    Gong H Q, Ni K, Zhang E X, Sternberg A L, Kozub J A, Ryder K L, Keller R F, Ryder L D, Weiss S M, Weller R A, Alles M L, Reed R A, Fleetwood D M, Schrimpf R D, Vardi A, Jesús A 2018 IEEE Trans. Nucl. Sci. 65 296Google Scholar

    [11]

    Gong H Q, Ni K, Zhang E X, Sternberg A L, Kozub J A, Alles M L, Reed R A, Fleetwood D M, Schrimpf R D, Waldron N, Kunert B, Linten D 2019 IEEE Trans. Nucl. Sci. 66 376Google Scholar

    [12]

    Ni K, Sternberg A L, Zhang E X, Kozub J A, Rong J, Schrimpf R D, Reed R A, Fleetwood D M, Alles M L, McMorrow D, Lin J Q, Vardi A, Jesús A 2017 IEEE Trans. Nucl. Sci. 64 2069Google Scholar

    [13]

    El-Mamouni F, Zhang E X, Pate N D, Hooten N, Schrimpf R D, Reed R A, Galloway K F, McMorrow D, Warner J, Simoen E, Claeys C, Griffoni A, Linten D, Vizkelethy G 2011 IEEE Trans. Nucl. Sci. 58 2563Google Scholar

    [14]

    El-Mamouni F, Zhang E X, Ball D R, Sierawski B, King M P, Schrimpf R D, Reed R A, Alles M L, Fleetwood D M, Linten D, Simoen E, Vizkelethy G 2012 IEEE Trans. Nucl. Sci. 59 2674Google Scholar

    [15]

    于俊庭 2017 博士学位论文 (长沙: 国防科技大学)

    Yu J T 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [16]

    Yu J T, Chen S M, Chen J J, Huang P C, Song R Q 2016 Chin. Phys. B 25 049401Google Scholar

    [17]

    Yu J T, Chen S M, Chen J J, Huang P C 2015 Chin. Phys. B 24 119401Google Scholar

    [18]

    Wu Z Y, Zhu B N, Yi T Y, Li C, Liu Y, Yang Y T 2018 J. Comput. Electron. 17 1608Google Scholar

    [19]

    Li G S, An X, Ren Z X, Wang J N, Huang R 2018 IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) Qingdao, China, Oct. 31–Nov. 3, 2018 p1

    [20]

    田恺, 曹洲, 薛玉雄, 杨世宇 2010 原子能科学技术 44 489

    Tian K, Cao Z, Xue Y X, Yang S Y 2010 At. Energ. Sci. Technol. 44 489

    [21]

    黄建国, 韩建伟 2004 中国科学G辑: 物理学 力学 天文学 34 601

    Haung J G, Han J W 2004 Science in China Series G: Physics, Mechanics & Astronomy 34 601

    [22]

    Adams J H 1983 IEEE Trans. Nucl. Sci. 30 4475Google Scholar

    [23]

    卓青青, 刘红侠, 郝跃 2012 物理学报 61 218501Google Scholar

    Zhuo Q Q, Liu H X, Hao Y 2012 Acta Phys. Sin. 61 218501Google Scholar

  • 图 1  双鳍FinFET器件结构模型

    Fig. 1.  The structure of two fin FinFET device.

    图 2  实验测试电路图

    Fig. 2.  The circuit schematic of experience.

    图 3  4鳍不同栅长FinFET器件在5 nJ激光照射下的漏电流脉冲

    Fig. 3.  Drain current transients for 4 fin FinFET of different gate length during the 5 nJ laser testing.

    图 4  4鳍不同栅长器件在5 nJ激光入射下漏端收集电荷与时间关系

    Fig. 4.  Drain charge collected for 4 fin FinFET of different gate length during the 5 nJ laser testing as a function of time.

    图 5  双鳍 100和30 nm栅长器件在5 nJ激光入射下漏电流脉冲

    Fig. 5.  Drain current transients for 2 fin FinFET of different gate length during the 5 nJ laser testing.

    图 6  单鳍FinFET仿真器件和2鳍、4鳍FinFET实验器件$ I_{\rm d}\text{-}V_{\rm g} $曲线

    Fig. 6.  $ I_{\rm d}\text{-}V_{\rm g} $ for simulation single-fin FinFET and experimental 2 and 4 fins FinFET.

    图 7  TCAD模拟下衬底厚度为0.1和0.9 μm, 栅长为30 nm FinFET器件漏电流脉冲

    Fig. 7.  Drain current transients for FinFET of different substrate thickness from TCAD simulation.

    图 8  TCAD模拟下不同栅长FinFET器件漏电流脉冲

    Fig. 8.  Drain current transients for FinFET of different gate length from TCAD simulation.

    图 9  重离子产生的电荷径向分布

    Fig. 9.  Charge generation radial distribution of heavy ion

    图 10  重离子入射前、入射中和入射后30 nm FinFET器件内部电子浓度和电势分布

    Fig. 10.  Temporary evolution of electronic density and electrostatic potential for a 30 nm FinFET.

    图 11  不同栅长FinFET器件在1.5 ns时的电子浓度

    Fig. 11.  Electronic density for FinFET of different gate length at 1.5 ns.

    图 12  30 nm器件在不同特征半径重离子入射下漏电流脉冲

    Fig. 12.  Drain current transient for 30 nm FinFET when heavy ion incident device with different radius.

    图 13  当重离子从栅极和漏极入射时, FinFET器件的漏电流脉冲

    Fig. 13.  Drain current transient for a FinFET when heavy ion incident at drain and gate.

  • [1]

    Colinge J P 2008 FinFETs and Other Multi-Gate Transistors (New York: Springer) pp257–258

    [2]

    Herman C H J, Michiel S M, van AHM Arthur R 2011 Analog Circuit Design-Robust Design, Sigma Delta Converters, RFID (New York: Springer) pp69–87

    [3]

    Nsengiyumva P, Ball D R, Kauppila J S, Tam N, McCurdy M, Holman W T, Alles M L, Bhuva B L, Massengill L W 2016 IEEE Trans. Nucl. Sci. 63 266Google Scholar

    [4]

    Nsengiyumva P, Massengill L W, Alles M L, Bhuva B L, Ball D R, Kauppila J S, Haeffner T D, Holman W T, Reed R A 2017 IEEE Trans. Nucl. Sci. 64 441Google Scholar

    [5]

    Zhang H F, Jiang H, Assis T R, et al. 2017 IEEE Trans. Nucl. Sci. 64 457Google Scholar

    [6]

    Nsengiyumva P, Massengill L W, Kauppila J S, Maharrey J A, Harrington R C, Haeffner T D, Ball D R, Alles M L, Bhuva B L, Holman W T, Zhang E X, Rowe J D, Sternberg A L 2018 IEEE Trans. Nucl. Sci. 65 223Google Scholar

    [7]

    Narasimham B, Hatami S, Anvar A, Harris D M, Lin A, Wang J K, Chatterjee I, Ni K, Bhuva B L, Schrimpf R D, Reed R A, McCurdy M W 2015 IEEE Trans. Nucl. Sci. 62 2578Google Scholar

    [8]

    Harrington R C, Maharrey J A, Kauppila J S, Nsengiyumva P, Ball D R, Haeffner T D, Zhang E X, Bhuva B L, Massengill L W 2018 IEEE Trans. Nucl. Sci. 65 1807Google Scholar

    [9]

    Karp J, Hart M J, Maillard P, Hellings G, Linten D 2018 IEEE Trans. Nucl. Sci. 65 217Google Scholar

    [10]

    Gong H Q, Ni K, Zhang E X, Sternberg A L, Kozub J A, Ryder K L, Keller R F, Ryder L D, Weiss S M, Weller R A, Alles M L, Reed R A, Fleetwood D M, Schrimpf R D, Vardi A, Jesús A 2018 IEEE Trans. Nucl. Sci. 65 296Google Scholar

    [11]

    Gong H Q, Ni K, Zhang E X, Sternberg A L, Kozub J A, Alles M L, Reed R A, Fleetwood D M, Schrimpf R D, Waldron N, Kunert B, Linten D 2019 IEEE Trans. Nucl. Sci. 66 376Google Scholar

    [12]

    Ni K, Sternberg A L, Zhang E X, Kozub J A, Rong J, Schrimpf R D, Reed R A, Fleetwood D M, Alles M L, McMorrow D, Lin J Q, Vardi A, Jesús A 2017 IEEE Trans. Nucl. Sci. 64 2069Google Scholar

    [13]

    El-Mamouni F, Zhang E X, Pate N D, Hooten N, Schrimpf R D, Reed R A, Galloway K F, McMorrow D, Warner J, Simoen E, Claeys C, Griffoni A, Linten D, Vizkelethy G 2011 IEEE Trans. Nucl. Sci. 58 2563Google Scholar

    [14]

    El-Mamouni F, Zhang E X, Ball D R, Sierawski B, King M P, Schrimpf R D, Reed R A, Alles M L, Fleetwood D M, Linten D, Simoen E, Vizkelethy G 2012 IEEE Trans. Nucl. Sci. 59 2674Google Scholar

    [15]

    于俊庭 2017 博士学位论文 (长沙: 国防科技大学)

    Yu J T 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [16]

    Yu J T, Chen S M, Chen J J, Huang P C, Song R Q 2016 Chin. Phys. B 25 049401Google Scholar

    [17]

    Yu J T, Chen S M, Chen J J, Huang P C 2015 Chin. Phys. B 24 119401Google Scholar

    [18]

    Wu Z Y, Zhu B N, Yi T Y, Li C, Liu Y, Yang Y T 2018 J. Comput. Electron. 17 1608Google Scholar

    [19]

    Li G S, An X, Ren Z X, Wang J N, Huang R 2018 IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) Qingdao, China, Oct. 31–Nov. 3, 2018 p1

    [20]

    田恺, 曹洲, 薛玉雄, 杨世宇 2010 原子能科学技术 44 489

    Tian K, Cao Z, Xue Y X, Yang S Y 2010 At. Energ. Sci. Technol. 44 489

    [21]

    黄建国, 韩建伟 2004 中国科学G辑: 物理学 力学 天文学 34 601

    Haung J G, Han J W 2004 Science in China Series G: Physics, Mechanics & Astronomy 34 601

    [22]

    Adams J H 1983 IEEE Trans. Nucl. Sci. 30 4475Google Scholar

    [23]

    卓青青, 刘红侠, 郝跃 2012 物理学报 61 218501Google Scholar

    Zhuo Q Q, Liu H X, Hao Y 2012 Acta Phys. Sin. 61 218501Google Scholar

  • [1] 黄馨雨, 张晋新, 王信, 吕玲, 郭红霞, 冯娟, 闫允一, 王辉, 戚钧翔. 基于锗硅异质结双极晶体管的低噪声放大器及其反模结构的单粒子瞬态数值仿真研究. 物理学报, 2024, 73(12): 126103. doi: 10.7498/aps.73.20240307
    [2] 何广龙, 薛莉, 吴诚, 李慧, 印睿, 董大兴, 王昊, 徐迟, 黄慧鑫, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 夏凌昊, 张蜡宝, 吴培亨. 面向机载平台的小型超导单光子探测系统. 物理学报, 2023, 72(9): 098501. doi: 10.7498/aps.72.20230248
    [3] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [4] 赵雯, 陈伟, 罗尹虹, 贺朝会, 沈忱. 离子径迹特征与纳米反相器链单粒子瞬态的关联性研究. 物理学报, 2021, 70(12): 126102. doi: 10.7498/aps.70.20210192
    [5] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究. 物理学报, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [6] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟. 物理学报, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [7] 胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄. 应用中国散裂中子源9号束线端研究65 nm微控制器大气中子单粒子效应. 物理学报, 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [8] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估. 物理学报, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [9] 高占占, 侯鹏飞, 郭红霞, 李波, 宋宏甲, 王金斌, 钟向丽. 选择性埋氧层上硅器件的单粒子瞬态响应的温度相关性. 物理学报, 2019, 68(4): 048501. doi: 10.7498/aps.68.20191932
    [10] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性. 物理学报, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [11] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变SiNMOSFET源漏电流特性模型. 物理学报, 2015, 64(19): 197301. doi: 10.7498/aps.64.197301
    [12] 赵星, 梅博, 毕津顺, 郑中山, 高林春, 曾传滨, 罗家俊, 于芳, 韩郑生. 0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体电路单粒子瞬态特性研究. 物理学报, 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [13] 白玉蓉, 徐静平, 刘璐, 范敏敏, 黄勇, 程智翔. 高k栅介质小尺寸全耗尽绝缘体上锗p型金属氧化物半导体场效应晶体管漏源电流模型. 物理学报, 2014, 63(23): 237304. doi: 10.7498/aps.63.237304
    [14] 李安梁, 蔡洪, 张士峰, 白锡斌. 浮球式惯导平台悬浮稳定问题的动力学建模与控制. 物理学报, 2013, 62(15): 150203. doi: 10.7498/aps.62.150203
    [15] 毕津顺, 刘刚, 罗家俊, 韩郑生. 22 nm工艺超薄体全耗尽绝缘体上硅晶体管单粒子瞬态效应研究. 物理学报, 2013, 62(20): 208501. doi: 10.7498/aps.62.208501
    [16] 卓青青, 刘红侠, 郝跃. NMOS器件中单粒子瞬态电流收集机制的二维数值分析. 物理学报, 2012, 61(21): 218501. doi: 10.7498/aps.61.218501
    [17] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压. 物理学报, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [18] 李 宏, 王炜路, 公丕锋. 单量子阱的自旋电流. 物理学报, 2007, 56(4): 2405-2408. doi: 10.7498/aps.56.2405
    [19] 郭荣辉, 赵正平, 郝 跃, 刘玉贵, 武一宾, 吕 苗. 多岛单电子晶体管的实现及其源漏特性分析. 物理学报, 2005, 54(4): 1804-1808. doi: 10.7498/aps.54.1804
    [20] 刘红侠, 郝跃. 应力导致的薄栅氧化层漏电流瞬态特性研究. 物理学报, 2001, 50(9): 1769-1773. doi: 10.7498/aps.50.1769
计量
  • 文章访问数:  8276
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-15
  • 修回日期:  2020-01-27
  • 刊出日期:  2020-04-20

/

返回文章
返回