Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Proton single-event effects in high-speed polysilicon-emitter bipolar transistors

LI Pei HAN Chengxiang HE Zijie DONG Zhiyong HE Huan HE Chaohui WEI Jianan

Citation:

Proton single-event effects in high-speed polysilicon-emitter bipolar transistors

LI Pei, HAN Chengxiang, HE Zijie, DONG Zhiyong, HE Huan, HE Chaohui, WEI Jianan
cstr: 32037.14.aps.74.20250276
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Deep-trench isolation (DTI) bipolar transistors have been increasingly adopted in high-performance, highly integrated advanced semiconductor devices due to their superior electrical characteristics and isolation capabilities. However, existing research has shown that DTI bipolar transistors exhibit a lower linear energy transfer (LET) threshold for single-event effects (SEEs) and a larger saturated cross-section than traditional structures, making the traditional rectangular parallelepiped (RPP) model unsuitable for such devices.In this study, we investigate the influence of proton incidence angle on single-event effects in high-speed DTI bipolar transistors. Proton multi-angle irradiation experiments reveal that the incidence angle significantly changes the amplitude characteristics of single-event transient voltage pulses at the collector. By introducing a nested sensitive volume in TCAD numerical simulations, the sensitive region of the DTI device is accurately defined. Geant4 simulations further demonstrate that with the increase of proton incidence angle, the integral cross-section of secondary ions in the sensitive volume significantly increases, which is determined to be the primary reason for the voltage amplitudes at the collector and base increasing with augment of tilt angle. This work provides theoretical support for radiation hardening of DTI bipolar transistors against single-event effects.
      Corresponding author: WEI Jianan, weijianan93@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12105252).
    [1]

    Pease R L 2003 IEEE Tran. Nucl. Sci. 50 539Google Scholar

    [2]

    李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 物理学报 64 118502Google Scholar

    Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502Google Scholar

    [3]

    彭超, 雷志锋, 张鸿, 张战刚, 何玉娟 2022 原子能科学技术 56 2187Google Scholar

    Peng C, Lei Z F, Zhang H, Zhang Z G, He Y J 2022 Atom. Energy Sci. Tech. 56 2187Google Scholar

    [4]

    Rung R D, Momose H, Nagakubo Y 1982 1982 International Electron Devices Meeting San Francisco, USA, December 13–15, 1982 p237

    [5]

    罗志伟 2022 硕士学位论文(杭州: 浙江大学)

    Luo Z W 2022 M. S. Thesis (Hangzhou: Zhejiang University

    [6]

    李志栓, 汤光洪, 於广军, 杨新刚, 杨富宝 2016 半导体技术 41 933

    Li Z S, Yang G H, Yu G J, Yang X G, Yang F B 2016 Semicond. Tech. 41 933

    [7]

    Reed R A, Marshall P W, Ainspan H, Marshall C J, Kim H S, Cressler J D, Niu G, LaBel K A 2001 2001 IEEE Radiation Effects Data Workshop. NSREC 2001. Workshop Record. Held in Conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No. 01TH8588) p172

    [8]

    Duzellier S, Falguere D, Mouliere L, Ecoffet R, Buisson J 1995 IEEE Tran. Nucl. Sci. 42 1797Google Scholar

    [9]

    Dodd P E, Schwank J R, Shaneyfelt M R, Felix J A, Paillet P, Ferlet-Cavrois V, Baggio J, Reed R A, Warren K M, Weller R A, Schrimpf R D, Hash G L, Dalton S M, Hirose K, Saito H 2007 IEEE Tran. Nucl. Sci. 54 2303Google Scholar

    [10]

    黄建国, 韩建伟, 林云龙, 黄治, 路秀琴, 张新, 符长波, 郭继宇, 赵葵 2002 空间科学学报 22 268

    Huang J G, Han J W, Lin Y L, Huang Z, Lu X Q, Zhang X, Fu C B, Guo J Y, Zhao K 2002 Chin. J. Space Sci. 22 268

    [11]

    Enrique J M, Robert A R, Jonathan A P, Michael L A, Ronald D S, Robert A W, Muthubalan V, Niu G F, Akil K S, Ryan D, Gustavo E, Ramkumar K, Jonathan P C, John D C, Paul W M, Gyorgy V 2008 IEEE Tran. Nucl. Sci. 55 1581Google Scholar

    [12]

    Stanley D P, Akil K S, Aravind A, Marco B, John D C, Alex G, Gyorgy V, Paul D, Mike M, Robert R, Paul M 2009 IEEE International Reliability Physics Symposium p157–164

    [13]

    赖祖武, 1998 抗辐射电子学: 辐射效应及加固原理(北京: 国防工业出版社)第16 —18页

    Lai Z W 1998 Radiation Effects and Hardening Techniques (Beijing: National Defense Industry Press) pp16–18

    [14]

    Gregory B L, Gwyn C W 1974 Proce. IEEE 62 1264Google Scholar

    [15]

    韩郑生 2011 抗辐射集成电路概论(北京: 清华大学出版社)第8页

    Han Z S 2011 Introduction to Radiation Hardened Integrated Circuit (Beijing: Tsinghua University Press) p8

    [16]

    李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523Google Scholar

    Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523Google Scholar

    [17]

    魏佳男, 张小磊, 冯治华, 张培健, 傅婧, 付晓君 2023 微电子学 53 945

    Wei J N, Zhang X L, Feng Z H, Zhang J P, Fu Q, Fu X J 2023 Microelectronics 53 945

    [18]

    Sutton Akil K, Moen K, Cressler J D, Carts M A, Marshall P W, PellishJ A, Ramachandran V, Reed R A, Alles M L, Niu G 2008 Solid-State Electronics 52 1652Google Scholar

    [19]

    刘默寒, 陆妩, 贾金成, 施炜雷, 王信, 李小龙, 孙静, 郭旗, 吴雪, 张培健 2018 核技术 41 48Google Scholar

    Liu M H, Lu W, Jia J C, Shi W L, Wang X, Li X L, Sun J, Guo Q, Wu X, Zhang P J 2018 Nucl. Techn. 41 48Google Scholar

    [20]

    贾金成, 陆妩, 吴雪, 张培健, 孙静, 王信, 李小龙, 刘默寒, 郭旗, 刘元 2018 微电子学 48 120

    Jia J C, Lu W, Wu X, Zhang P J, Sun J, Wang X, Li X L, Liu M H, Guo Q, Liu Y 2018 Microelectronics 48 120

    [21]

    史一凡 2021 硕士学位论文(西安: 西安理工大学)

    Shi Y F 2021 M. S. Thesis (Xi’an: Xi’an University of Technology

    [22]

    冯亚辉 2024 硕士学位论文(湘潭: 湘潭大学)

    Feng Y H 2024 M. S. Thesis (Xiangtan: Xiangtan University

    [23]

    张晋新, 郭红霞, 文林, 郭旗, 崔江维, 范雪, 肖尧, 席善斌, 王信, 邓伟 2013 强激光与粒子束 25 2433Google Scholar

    Zhang J X, Guo H X, Wen Lin, Guo Q, Cui J W, Fan X, Xiao Y, Xi S B, Wang X Deng W 2013 High Power Laser Part. Beams 25 2433Google Scholar

    [24]

    张晋新, 郭红霞, 吕玲, 王信, 潘霄宇 2022 太赫兹科学与电子信息学报 20 869Google Scholar

    Zhang J X, Guo H X, Lu L, Wang X, Pan X Y 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 869Google Scholar

    [25]

    Jonathan A P, Robert A R, Akil K S, Paul W M, Cheryl J M, Ramkumar K, John D C, Marcus H M, Ronald D S, Kevin M W, Brian D S, Niu G F 2007 IEEE Tran. Nucl. Sci. 54 2322

    [26]

    曾超, 许献国, 钟乐 2023 太赫兹科学与电子信息学报 21 452Google Scholar

    Zeng C, Xu X G, Zhong L 2023 J. Terahertz Sci. Electron. Inf. Technol. 21 452Google Scholar

  • 图 1  DPSA NPN晶体管剖面结构

    Figure 1.  Cross-sectional structure of the DPSA NPN transistor

    图 2  不同入射角度下质子引起的基极和集电极的瞬态电压脉冲随时间的变化 (a)—(c) 质子0°入射后基极与集电极的瞬态脉冲图像; (d)—(f) 质子45°入射后基极与集电极的瞬态脉冲图像

    Figure 2.  Transient voltage pulse of base and collector vs. time, induced by protons at different incidence angles: (a)–(c) Transient pulse images of the base and collector after 0° proton incidence; (d)–(f) transient pulse images of the base and collector after 45° proton incidence.

    图 3  不同入射角度质子引起的集电极与基极瞬态电压脉冲幅度随时间的变化 (a)—(c) 质子以不同角度入射后集电极电压随时间的变化图像; (d)—(f)质子以不同角度入射后基极电压随时间的变化图像

    Figure 3.  Changes of collector and base transient voltage pulse amplitude with time caused by protons at different incident angles: (a)–(c) Collector voltage variation over time under proton irradiation at different angles; (d)–(f) base voltage variation over time under proton irradiation at different angles.

    图 4  PE BJT器件模型与电学特性曲线 (a) PE BJT模型仿真截面; (b) 仿真器件与实验器件的Gummel特性曲线

    Figure 4.  PE BJT device model and electrical characteristics: (a) Cross-sectional view of the PE BJT simulation model; (b) Gummel characteristics comparison between simulated and experimental devices.

    图 5  TCAD模拟重离子入射位置分布示意图

    Figure 5.  Distribution of heavy ion incidence in TCAD simulation.

    图 6  TCAD模拟重离子入射不同位置后集电极电流与电荷收集的变化 (a) 离子不同位置入射时集电极瞬态电流随时间的变化关系; (b) 集电极电荷收集量随离子入射位置的变化关系

    Figure 6.  TCAD Simulation of collector current and charge collection under heavy-ion strikes at different positions: (a) Transient collector current vs. time for ion strikes at different locations; (b) collected charge as a function of ion strike position.

    图 7  仿真所得PE BJT器件单粒子效应灵敏体积分布 (a) 俯视图; (b) 侧视图

    Figure 7.  Simulated sensitive volume distribution of the PE BJT device under single-event effects: (a) Top view; (b) side view.

    图 8  质子多角度入射PE BJT灵敏体积Geant4仿真示意图 (a) 0°入射; (b) 30°入射; (c) 45°入射; (d) 60°入射

    Figure 8.  Geant4 simulation schematic of the sensitive volume in a PE BJT under proton irradiation at different angles: (a) 0° incidence; (b) 30° incidence; (c) 45° incidence; (d) 60° incidence.

    图 9  不同入射角度下质子入射时积分截面随灵敏体积中电离能量沉积的变化

    Figure 9.  Integrated cross sections of proton induced at different angles vs ionizing energy deposition in the sensitive volume.

    表 1  不同灵敏区域电荷收集效率

    Table 1.  Charge collection efficiency in different sensitivity regions.

    灵敏区域电荷收集效率/%
    SV131.84
    SV214.14
    SV37.99
    DownLoad: CSV

    表 2  60 MeV质子多角度入射后产生的次级粒子信息

    Table 2.  Information on secondary particles generated by 60 MeV proton incidence at multiple angles.

    次级粒子种类
    (0°/30°/45°/60°)
    最高能量/MeV
    (0°/30°/45°/60°)
    LET/(MeV·cm2·mg–1)
    (0°/30°/45°/60°)
    射程/μm
    (0°/30°45°/60°)
    Si8.1/5.9/6.5/6.612.4/11.6/11.9/11.94.2/3.4/3.6/3.7
    P6.1/3.2/3.3/3.211.3/9.2/9.3/9.23.5/2.3/2.4/2.3
    O11.1/8.3/2.2/6.76.8/7.0/6.5/7.17.8/6.1/2.4/5.1
    Ne11.3/7.0/9.9/10.28.9/8.6/8.8/8.96.9/4.8/6.2/6.4
    Na11.9/9.5/8.9/7.610.3/10.2/10.8/10.06.7/5.7/5.5/4.9
    Mg11.5/9.3/8.5/9.011.4/11.2/11.0/11.16.2/5.4/5.1/5.3
    Al8.2/8.3/7.1/7.311.3/11.4/11.0/11.14.8/4.9/4.4/4.5
    F(仅30°入射)1.25.21.6
    DownLoad: CSV
  • [1]

    Pease R L 2003 IEEE Tran. Nucl. Sci. 50 539Google Scholar

    [2]

    李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 物理学报 64 118502Google Scholar

    Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502Google Scholar

    [3]

    彭超, 雷志锋, 张鸿, 张战刚, 何玉娟 2022 原子能科学技术 56 2187Google Scholar

    Peng C, Lei Z F, Zhang H, Zhang Z G, He Y J 2022 Atom. Energy Sci. Tech. 56 2187Google Scholar

    [4]

    Rung R D, Momose H, Nagakubo Y 1982 1982 International Electron Devices Meeting San Francisco, USA, December 13–15, 1982 p237

    [5]

    罗志伟 2022 硕士学位论文(杭州: 浙江大学)

    Luo Z W 2022 M. S. Thesis (Hangzhou: Zhejiang University

    [6]

    李志栓, 汤光洪, 於广军, 杨新刚, 杨富宝 2016 半导体技术 41 933

    Li Z S, Yang G H, Yu G J, Yang X G, Yang F B 2016 Semicond. Tech. 41 933

    [7]

    Reed R A, Marshall P W, Ainspan H, Marshall C J, Kim H S, Cressler J D, Niu G, LaBel K A 2001 2001 IEEE Radiation Effects Data Workshop. NSREC 2001. Workshop Record. Held in Conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No. 01TH8588) p172

    [8]

    Duzellier S, Falguere D, Mouliere L, Ecoffet R, Buisson J 1995 IEEE Tran. Nucl. Sci. 42 1797Google Scholar

    [9]

    Dodd P E, Schwank J R, Shaneyfelt M R, Felix J A, Paillet P, Ferlet-Cavrois V, Baggio J, Reed R A, Warren K M, Weller R A, Schrimpf R D, Hash G L, Dalton S M, Hirose K, Saito H 2007 IEEE Tran. Nucl. Sci. 54 2303Google Scholar

    [10]

    黄建国, 韩建伟, 林云龙, 黄治, 路秀琴, 张新, 符长波, 郭继宇, 赵葵 2002 空间科学学报 22 268

    Huang J G, Han J W, Lin Y L, Huang Z, Lu X Q, Zhang X, Fu C B, Guo J Y, Zhao K 2002 Chin. J. Space Sci. 22 268

    [11]

    Enrique J M, Robert A R, Jonathan A P, Michael L A, Ronald D S, Robert A W, Muthubalan V, Niu G F, Akil K S, Ryan D, Gustavo E, Ramkumar K, Jonathan P C, John D C, Paul W M, Gyorgy V 2008 IEEE Tran. Nucl. Sci. 55 1581Google Scholar

    [12]

    Stanley D P, Akil K S, Aravind A, Marco B, John D C, Alex G, Gyorgy V, Paul D, Mike M, Robert R, Paul M 2009 IEEE International Reliability Physics Symposium p157–164

    [13]

    赖祖武, 1998 抗辐射电子学: 辐射效应及加固原理(北京: 国防工业出版社)第16 —18页

    Lai Z W 1998 Radiation Effects and Hardening Techniques (Beijing: National Defense Industry Press) pp16–18

    [14]

    Gregory B L, Gwyn C W 1974 Proce. IEEE 62 1264Google Scholar

    [15]

    韩郑生 2011 抗辐射集成电路概论(北京: 清华大学出版社)第8页

    Han Z S 2011 Introduction to Radiation Hardened Integrated Circuit (Beijing: Tsinghua University Press) p8

    [16]

    李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523Google Scholar

    Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523Google Scholar

    [17]

    魏佳男, 张小磊, 冯治华, 张培健, 傅婧, 付晓君 2023 微电子学 53 945

    Wei J N, Zhang X L, Feng Z H, Zhang J P, Fu Q, Fu X J 2023 Microelectronics 53 945

    [18]

    Sutton Akil K, Moen K, Cressler J D, Carts M A, Marshall P W, PellishJ A, Ramachandran V, Reed R A, Alles M L, Niu G 2008 Solid-State Electronics 52 1652Google Scholar

    [19]

    刘默寒, 陆妩, 贾金成, 施炜雷, 王信, 李小龙, 孙静, 郭旗, 吴雪, 张培健 2018 核技术 41 48Google Scholar

    Liu M H, Lu W, Jia J C, Shi W L, Wang X, Li X L, Sun J, Guo Q, Wu X, Zhang P J 2018 Nucl. Techn. 41 48Google Scholar

    [20]

    贾金成, 陆妩, 吴雪, 张培健, 孙静, 王信, 李小龙, 刘默寒, 郭旗, 刘元 2018 微电子学 48 120

    Jia J C, Lu W, Wu X, Zhang P J, Sun J, Wang X, Li X L, Liu M H, Guo Q, Liu Y 2018 Microelectronics 48 120

    [21]

    史一凡 2021 硕士学位论文(西安: 西安理工大学)

    Shi Y F 2021 M. S. Thesis (Xi’an: Xi’an University of Technology

    [22]

    冯亚辉 2024 硕士学位论文(湘潭: 湘潭大学)

    Feng Y H 2024 M. S. Thesis (Xiangtan: Xiangtan University

    [23]

    张晋新, 郭红霞, 文林, 郭旗, 崔江维, 范雪, 肖尧, 席善斌, 王信, 邓伟 2013 强激光与粒子束 25 2433Google Scholar

    Zhang J X, Guo H X, Wen Lin, Guo Q, Cui J W, Fan X, Xiao Y, Xi S B, Wang X Deng W 2013 High Power Laser Part. Beams 25 2433Google Scholar

    [24]

    张晋新, 郭红霞, 吕玲, 王信, 潘霄宇 2022 太赫兹科学与电子信息学报 20 869Google Scholar

    Zhang J X, Guo H X, Lu L, Wang X, Pan X Y 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 869Google Scholar

    [25]

    Jonathan A P, Robert A R, Akil K S, Paul W M, Cheryl J M, Ramkumar K, John D C, Marcus H M, Ronald D S, Kevin M W, Brian D S, Niu G F 2007 IEEE Tran. Nucl. Sci. 54 2322

    [26]

    曾超, 许献国, 钟乐 2023 太赫兹科学与电子信息学报 21 452Google Scholar

    Zeng C, Xu X G, Zhong L 2023 J. Terahertz Sci. Electron. Inf. Technol. 21 452Google Scholar

  • [1] Zhang Xing, Liu Yu-Lin, Li Gang, Yan Shao-An, Xiao Yong-Guang, Tang Ming-Hua. Erratum: Three-dimensional numerical simulation of single event upset effect based on 55 nm DICE latch unit[Acta Phys. Sin. 2024, 73(6): 066103]. Acta Physica Sinica, 2024, 73(7): 079901. doi: 10.7498/aps.73.079901
    [2] Zhang Xing, Liu Yu-Lin, Li Gang, Yan Shao-An, Xiao Yong-Guang, Tang Ming-Hua. Three-dimensional numerical simulation of single event upset effect based on 55 nm DICE latch unit. Acta Physica Sinica, 2024, 73(6): 066103. doi: 10.7498/aps.73.20231564
    [3] Li Yang-Fan, Guo Hong-Xia, Zhang Hong, Bai Ru-Xue, Zhang Feng-Qi, Ma Wu-Ying, Zhong Xiang-Li, Li Ji-Fang, Lu Xiao-Jie. Heavy ion single event effect in double-trench SiC metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, 2024, 73(2): 026103. doi: 10.7498/aps.73.20231440
    [4] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [5] Li Pei, Dong Zhi-Yong, Guo Hong-Xia, Zhang Feng-Qi, Guo Ya-Xin, Peng Zhi-Gang, He Chao-Hui. Investigation of laser-induced single event effect on SiGe BiCMOS low noise amplifiers. Acta Physica Sinica, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [6] Ju An-An, Guo Hong-Xia, Zhang Feng-Qi, Liu Ye, Zhong Xiang-Li, Ouyang Xiao-Ping, Ding Li-Li, Lu Chao, Zhang Hong, Feng Ya-Hui. Simulation research on single event effect of N-well resistor. Acta Physica Sinica, 2023, 72(2): 026102. doi: 10.7498/aps.72.20220125
    [7] Cui Yi-Xin, Ma Ying-Qi, Shangguan Shi-Peng, Kang Xuan-Wu, Liu Peng-Cheng, Han Jian-Wei. Research on Single Event Burnout of GaN power devices with femtosecond pulsed laser. Acta Physica Sinica, 2022, 71(13): 136102. doi: 10.7498/aps.71.20212297
    [8] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [9] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [10] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Wojtek Hajdas. Prediction of proton single event upset sensitivity based on heavy ion test data in nanometer hardened static random access memory. Acta Physica Sinica, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [11] Li Hua-Mei, Hou Peng-Fei, Wang Jin-Bin, Song Hong-Jia, Zhong Xiang-Li. Single-event-upset effect simulation of HfO2-based ferroelectric field effect transistor read and write circuits. Acta Physica Sinica, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [12] Ju An-An,  Guo Hong-Xia,  Zhang Feng-Qi,  Guo Wei-Xin,  Ouyang Xiao-Ping,  Wei Jia-Nan,  Luo Yin-Hong,  Zhong Xiang-Li,  Li Bo,  Qin Li. Experimental study about single event functional interrupt of ferroelectric random access memory induced by 30-90 MeV proton. Acta Physica Sinica, 2018, 67(23): 237803. doi: 10.7498/aps.67.20181225
    [13] Luo Yin-Hong, Zhang Feng-Qi, Wang Yan-Ping, Wang Yuan-Ming, Guo Xiao-Qiang, Guo Hong-Xia. Single event upsets sensitivity of low energy proton in nanometer static random access memory. Acta Physica Sinica, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [14] Zeng Jun-Zhe, He Cheng-Fa, Li Yu-Dong, Guo Qi, Wen Lin, Wang Bo, Maria, Wang Hai-Jiao. Particle transport simulation and effect analysis of CCD irradiated by protons. Acta Physica Sinica, 2015, 64(11): 114214. doi: 10.7498/aps.64.114214
    [15] Zhao Wen, Guo Xiao-Qiang, Chen Wei, Qiu Meng-Tong, Luo Yin-Hong, Wang Zhong-Ming, Guo Hong-Xia. Effects of nuclear reactions between protons and metal interconnect overlayers on single event effects of micro/nano scaled static random access memory. Acta Physica Sinica, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [16] Zhang Jin-Xin, He Chao-Hui, Guo Hong-Xia, Tang Du, Xiong Cen, Li Pei, Wang Xin. Three-dimensional simulation study of bias effect on single event effects of SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2014, 63(24): 248503. doi: 10.7498/aps.63.248503
    [17] Zhang Jin-Xin, Guo Hong-Xia, Guo Qi, Wen Lin, Cui Jiang-Wei, Xi Shan-Bin, Wang Xin, Deng Wei. 3D simulation of heavy ion induced charge collection of single event effects in SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
    [18] Zhang Ke-Ying, Guo Hong-Xia, Luo Yin-Hong, He Bao-Ping, Yao Zhi-Bin, Zhang Feng-Qi, Wang Yuan-Ming. Three-dimensional numerial simulation of single event upset effects in static random access memory. Acta Physica Sinica, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [19] Wu Peng, Han Yi-Ping, Liu De-Fang. Computation of Gaussian beam scattering for larger particle. Acta Physica Sinica, 2005, 54(6): 2676-2679. doi: 10.7498/aps.54.2676
    [20] QIU YUN-QING, XIA MENG-FEN. THE EFFECTS OF TRANSITIONAL PARTICLES DRIVEN BY SINGLE WAVE. Acta Physica Sinica, 1988, 37(4): 666-669. doi: 10.7498/aps.37.666
Metrics
  • Abstract views:  365
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  04 March 2025
  • Accepted Date:  24 April 2025
  • Available Online:  16 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回