-
Deep-trench isolation (DTI) bipolar transistors have been increasingly adopted in high-performance, highly integrated advanced semiconductor devices due to their superior electrical characteristics and isolation capabilities. However, existing research has shown that DTI bipolar transistors exhibit a lower linear energy transfer (LET) threshold for single-event effects (SEEs) and a larger saturated cross-section compared to conventional structures, rendering the traditional Rectangular Parallelepiped (RPP) model inadequate for such devices.
In this study, we investigate the influence of proton incidence angle on single-event effects in high-speed DTI bipolar transistors. Proton multi-angle irradiation experiments reveal that the incidence angle significantly alters the amplitude characteristics of single-event transient voltage pulses at the collector. By introducing a nested sensitive volume in TCAD numerical simulations, the sensitive region of the DTI device is accurately defined. Geant4 simulations further demonstrate that as the proton incidence angle increases, the integral cross-section of secondary ions within the sensitive volume exhibits a notable rise, which is identified as the primary cause of the increased voltage amplitudes at the collector and base with larger tilt angles.This work provides theoretical support for the radiation hardening of DTI bipolar transistors against single-event effects.-
Keywords:
- Deep Trench Isolation /
- Proton Single event effects /
- TCAD numerical simulation /
- Geant4 Particle Simulation
-
[1] Pease R L 2003 IEEE Transactions on Nuclear Science 50 539
[2] Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502 (in Chinese) [李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 物理学报 64 118502]
[3] Peng C, Lei Z F, Zhang H, Zhang Z G, He Y J 2022 Atomic Energy Science and Technology 56 2187 (in Chinese) [彭超, 雷志锋, 张鸿, 张战刚, 何玉娟 2022 原子能科学技术56 2187]
[4] Rung R D, Momose H, Nagakubo Y 1982 1982 International Electron Devices Meeting p237
[5] Luo Z W 2022 M.S. Dissertation (Hangzhou:Zhejiang University) (in Chinese) [罗志伟 2022 硕士学位论文(杭州:浙江大学)]
[6] Li Z S, Yang G H, Yu G J, Yang X G, Yang F B 2016 Semiconductor Technology 41 933 (in Chinese) [李志栓, 汤光洪, 於广军, 杨新刚, 杨富宝 2016 半导体技术 41 933]
[7] Reed R A, Marshall P W, Ainspan H, Marshall C J, Kim H S, Cressler J D, Niu G, LaBel K A 2001 2001 IEEE Radiation Effects Data Workshop. NSREC 2001. Workshop Record. Held in Conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.01TH8588) p172
[8] Duzellier S, Falguere D, Mouliere L, Ecoffet R, Buisson J 1995 IEEE Transactions on Nuclear Science 42 1797
[9] Dodd P E, Schwank J R, Shaneyfelt M R, Felix J A, Paillet P, Ferlet-Cavrois V, Baggio J, Reed R A, Warren K M, Weller R A, Schrimpf R D, Hash G L, Dalton S M, Hirose K, Saito H 2007 IEEE Transactions on Nuclear Science 54 2303
[10] Huang J G, Han J W, Lin Y L, Huang Z, Lu X Q, Zhang X, Fu C B, Guo J Y, Zhao K 2002 Chinese Journal of Space Science 268 (in Chinese) [黄建国, 韩建伟, 林云龙, 黄治, 路秀琴, 张新, 符长波, 郭继宇, 赵葵 2002 空间科学学报 268]
[11] Enrique J M, Robert A R, Jonathan A P, Michael L A, Ronald D S, Robert A W, Muthubalan V, Niu G F, Akil K S, Ryan D, Gustavo E, Ramkumar K, Jonathan P C, John D C, Paul W M, Gyorgy V 2008 IEEE Transactions on Nuclear Science 55 1581
[12] Stanley D P, Akil K S, Aravind A, Marco B, John D C, Alex G, Gyorgy V, Paul D, Mike M, Robert R, Paul M 2009 IEEE International Reliability Physics Symposium p157-164
[13] Lai Z W 1998 Radiation Effects and Hardening Techniques (Beijing: National Defense Industry Press) pp16—18 (in Chinese) [赖祖武,1998 抗辐射电子学:辐射效应及加固原理(北京:国防工业出版社)第16 —18页]
[14] Gregory B L, Gwyn C W 1974 Proceedings of the IEEE 62 1264
[15] Han Z S 2011 Introduction to Radiation Hardened Integrated Circuit (Beijing: Tsinghua University Press) p8 (in Chinese) [韩郑生,2011 抗辐射集成电路概论(北京:清华大学出版社)第8页]
[16] Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J.Terahertz Sci. Electron. Inf. Technol. 20 523 (in Chinese) [李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523]
[17] Wei J N, Zhang X L, Feng Z H, Zhang J P, Fu Q, Fu X J 2023 Microelectronics 53 945 (in Chinese) [魏佳男, 张小磊, 冯治华, 张培健, 傅婧, 付晓君 2023 微电子学 53 945]
[18] Sutton Akil K, Moen K, Cressler J D, Carts M A, Marshall P W, PellishJ A, Ramachandran V, Reed R A, Alles M L, Niu G 2008 Solid-State Electronics 52 1652
[19] Liu M H, Lu W, Jia J C, Shi W L, Wang X, Li X L, Sun J, Guo Q, Wu X, Zhang P J 2018 Nuclear Techniques 41 48 (in Chinese) [刘默寒, 陆妩, 贾金成, 施炜雷, 王信, 李小龙, 孙静, 郭旗, 吴雪, 张培健 2018 核技术 41 48]
[20] Jia J C, Lu W, Wu X, Zhang P J, Sun J, Wang X, Li X L, Liu M H, Guo Q, Liu Y 2018 Microelectronics 48 120 (in Chinese) [贾金成, 陆妩, 吴雪, 张培健, 孙静, 王信, 李小龙, 刘默寒, 郭旗, 刘元 2018 微电子学 48 120]
[21] Shi Y F 2021 M.S. Dissertation (Xi’an: Xi’an University of Technology) (in Chinese) [史一凡 2021 硕士学位论文(西安:西安理工大学)]
[22] Feng Y H 2024 M.S. Dissertation (Xiangtan: Xiangtan University) (in Chinese) [冯亚辉 2024 硕士学位论文(湘潭:湘潭大学)]
[23] Zhang J X, Guo H X, Wen Lin, Guo Q, Cui J W, Fan X, Xiao Y, Xi S B, Wang X Deng W 2013 High Power Laser and Particle Beams 25 2433 (in Chinese) [张晋新, 郭红霞, 文林, 郭旗, 崔江维, 范雪, 肖尧, 席善斌, 王信, 邓伟 2013 强激光与粒子束 25 2433]
[24] Zhang J X, Guo H X, Lu L, Wang X, Pan X Y 2022 J.Terahertz Sci. Electron. Inf. Technol. 20 869 (in Chinese) [张晋新, 郭红霞, 吕玲, 王信, 潘霄宇 2022 太赫兹科学与电子信息学报 20 869]
[25] Jonathan A P, Robert A R, Akil K S, Robert A W, Martin A C, Paul W M, Cheryl J M, Ramkumar K, John D C, Marcus H M, Ronald D S, Kevin M W, Brian D S, Niu G F 2007 IEEE Transactions on Nuclear Science 54 2322
[26] Zeng C, Xu X G, ZHONG L 2023 J.Terahertz Sci. Electron. Inf. Technol. 21 452 (in Chinese) [曾超, 许献国, 钟乐 2023 太赫兹科学与电子信息学报 21 452]
Metrics
- Abstract views: 35
- PDF Downloads: 1
- Cited By: 0