-
In this paper, experiments on 208 MeV Ge ion irradiation with different source-drain bias voltages are carried out for the double-trench SiC metal–oxide–semiconductor field-effect transistors, and the physical mechanism of the single event effect is analyzed. The experimental results show that the drain leakage current of the device increases more obviously with the increase of the initial bias voltage during irradiation. When the bias voltage is 400 V during irradiation, the device has a single event burned at a fluence of 9×104 ion/cm2, and when the bias voltage is 500 V, the device has a single event burned at a fluence of 3×104 ion/cm2, so when the LET value is 37.3 MeV·cm2/mg, the SEB threshold of DUT does not exceed 400 V, which is lower than 34% of the rated operational voltage. The post gate-characteristics test results show that the leakage current of the device with a bias voltage of 100 V does not change significantly during irradiation. When the bias voltage is 200 V, the gate leakage and the drain leakage of the device both increase, so do they when the bias voltage is 300 V, which is positively related to bias voltage. In order to further analyze the single particle effect mechanism of device, the simulation is conducted by using TCAD tool. The simulation results show that at low bias voltage, the heavy ion incident device generates electron-hole pairs, the electrons are quickly swept out, and the holes accumulate at the gate oxygen corner under the effect of the electric field, which combines the source-drain bias voltage, leading to the formation of leakage current channels in the gate oxygen layer. The simulation results also show that at high bias voltage, the electrons generated by the incident heavy ion move towards the junction of the N– drift layer and the N+ substrate under the effect of the electric field, which further increases the electric field strength and causes significant impact ionization. The local high current density generated by the impact ionization and the load large electric field causes the lattice temperature to exceed the melting point of silicon carbide, causing single event burnout. This work provides a reference and support for studying the radiation effect mechanism and putting silicon carbide power devices into aerospace applications.
1. 引 言
作为第三代半导体材料, SiC材料具有禁带宽度大、击穿电场大、饱和漂移速度快和热导率高等优异性能, 可以用来制备抗辐射、大功率、高频和高温器件[1–3]. 相比于Si基器件, 同等性能下, SiC基器件可以做到成本更低, 尺寸更小以及寿命更长, 因此SiC基器件更能满足新一代航天器对大功率、高频等性能方面的要求, 有望在空间和航天领域中扮演重要角色[4–6]. 然而, SiC 金属-氧化物-半导体型场效应管(metal-oxide-semiconductor field-effect transistor, MOSFET)在空间领域的应用处于验证阶段, 由于空间环境中存在大量的高能重离子, SiC MOSFET经重离子辐照后会发生单粒子泄漏电流(single event leakage current, SELC)、单粒子栅穿(single event gate rupture, SEGR)或单粒子烧毁(single event burnout, SEB)[7], 显著影响器件的工作.
近些年, 许多团队通过实验和仿真研究了重离子辐照下SiC MOSFET的退化和烧毁机制. Martinella等[8,9]通过重离子辐照SiC MOSFET的实验发现在低偏置电压下, 被测器件的泄漏电流路径是从漏极到栅极, 涉及栅氧化层的损伤; 而在高偏置电压下, 泄漏电流路径主要是从漏极到源极, 这是由于碳化硅晶格的改变. Witulski等[10]通过不同LET值的重离子实验发现器件SEB阈值电压会随入射离子LET值的增大而显著降低, 当LET > 10 MeV·cm2/mg时, SiC MOSFET的SEB阈值电压几乎为器件额定最大工作电压的一半. Ball等[11]通过仿真模拟重离子入射SiC MOSFET器件, 发现离子入射诱导产生高局域态能量脉冲导致器件性能退化或者烧毁; 同时该团队[12]通过实验对比和仿真模拟发现, 更厚的外延层、更低的掺杂浓度可以显著增大器件SEB阈值电压.
目前商用的SiC MOSFET分为平面栅型和沟槽型两种结构[13], 在相同元胞尺寸下, 双沟槽型碳化硅MOSFET (double-trench MOSFET, DTMOSFET)相比于传统平面栅型碳化硅MOSFET(vertical double-diffused MOSFET, VDMOSFET), 具有更高的沟道迁移率、更低的比导通电阻以及更大的电流密度, 优异的性能使得SiC DTMOSFET具有更广阔的应用前景[14–17]. 然而, 目前大多数研究都是针对SiC VDMOSFET的单粒子效应, 关于SiC DTMOSFET的单粒子效应研究较少. Zhou等[18]通过TCAD模拟了不同LET值的重离子轰击SiC DTMOSFET器件敏感区, 研究其单粒子效应机理, 该团队[19]还进行SiC DTMOSFET的2005 MeV Ta离子重离子实验, 实验结果表明其SEB阈值电压不超过其额定电压的42%. Cheng等[20]借助TCAD模拟仿真软件研究了3种不同结构的槽栅型SiC MOSFET的单粒子效应, 发现DTMOSFET结构由于较深的源极深沟槽结构, 有助于快速收集离子入射后碰撞产生的载流子, 从而SEB阈值电压更高. 关于SiC DTMOSFET的单粒子效应研究缺乏更多的实验验证, 因此对SiC DTMOSFET的重离子实验有必要进一步开展和深入全面研究.
本文利用208 MeV Ge离子对碳化硅双沟槽MOSFET开展重离子辐照实验. 在辐照实验过程中, 实时监测了漏极电流和烧毁瞬间脉冲电流. 并在辐照实验后, 对器件进行了静态参数测试和栅特性测试. 结合TCAD工具, 模拟了不同偏置电压下重离子入射器件, 发现沿离子入射路径上的N–外延层和N+衬底交界处温度超过了碳化硅的熔点, 这可能是导致器件发生SEB的原因.
2. 实验信息
本次实验选用的是Rohm公司生产的第四代双沟槽型碳化硅场效应晶体管SCT4060 KR, 其额定电流为26 A, 导通电阻为62 mΩ. 实验器件的单元结构如图1(a)所示, 在每个栅极沟槽的两个侧壁上都有沟道, 两侧都有一个源极沟槽, 延伸到漂移区, 更好地保护栅极氧化物. 在重离子实验前对器件进行了去封装处理, 以确保重离子能入射到器件的有源区, 并进行静态参数的测试, 以确保器件具有良好的电学性能.
利用中国原子能科学研究院的HI-13串列加速器进行重离子实验, 选取能量为208 MeV的Ge离子, 其作用在器件表面的LET值为37.3 MeV·cm2/mg. 图1(b)为实验中使用的测试电路示意图, Keithley两台数字万用表分别监测和记录漏极电流和栅极电流, 示波器接入阻值为0.01 Ω的电阻两端, 用于捕获和存储器件烧毁瞬间的脉冲电流. 为了研究辐照损伤与源漏偏置电压的关系, 在辐照过程中, 器件的栅极电压Vg设置为0 V, 以确保器件处于关闭状态, 漏极电压VDSirr设置为100, 200, 300, 400和500 V.
在重离子辐照实验中, 如果器件发生烧毁或者器件漏极电流持续增大, 注量累积到2×106 ion/cm2时, 则停止辐照. 图2为不同偏置电压下SiC DTMOSFET的SELC和SEB. 如图2(a)所示, 当VDSirr为100, 200, 300 V时, 漏极电流随重离子入射逐渐增大, 达到2×106 ion/cm2的注量时, 电流未达到限制电流, 重离子入射到器件后产生的损伤导致漏极电流持续增长; 而在VDSirr为400和500 V, 重离子入射到器件后在注量分别达到9×104和3×104 ion/cm2时, 漏极电流骤增到限制电流, 见图2(b), 器件发生单粒子烧毁, 器件源漏之间的电阻由数兆欧降到数百欧, 从而导致器件电流瞬间上升, 通过示波器可以捕获到这一电流的变化, 如图2(c)所示, VDSirr为400 V时, 示波器捕获到的烧毁瞬间脉冲电流, 脉冲电流宽度为纳秒级别, 最大脉冲电流为4 A左右, 500 V同样出现此现象. 换而言之, 双沟槽SiC MOSFET的SEB阈值电压小于其额定电压的34%.
3. 实验结果与分析
3.1 辐照前后SiC MOSFET静态参数测试
器件在辐照实验中表现出不同程度的退化, 这也导致其电学性能受到不同程度的损害. 图3给出了在辐照过程中的不同初始偏置电压下, 器件在辐照前后的传输特性曲线和输出特性曲线. 未烧毁器件以图3(a), (c)中辐照过程中初始偏置电压为100 V为例, 器件的阈值电压在辐照后出现了较小的负向偏移, 漂移了0.06 V, 然而, Vg = 6 V时的输出特性曲线显示漏极电流上升约77.51 mA; 其余偏压下变化见表1, 其退化程度与初偏压呈正相关. 烧毁器件以图3(b), (d)中辐照过程中偏置电压为400 V为例, 该器件在受到辐射后完全丧失其功能.
表 1 辐照前后SiC MOSFET阈值电压偏移量和电流变化量Table 1. Threshold voltage offset and current change of SiC MOSFET before and after irradiation.辐照过程中初始偏置条件 ΔVth/V ΔId/mA 100 V –0.06 77.51 200 V –0.09 78.73 300 V –0.16 80.56 3.2 栅特性测试
进行辐照后栅特性测试. 栅压从0 V扫描到10 V, 源-漏短接, 测量栅极电流和漏极电流, 用于进一步确定辐照对器件造成损伤. 如图4所示, 辐照过程中初始偏置电压为100 V的被辐照器件泄漏电流与辐照前几乎无变化, 说明栅氧层并未受到损伤. 辐照过程中偏置电压大于200 V后, 被辐照的器件栅极泄漏电流的增长速度随着偏压的增大而增大, 说明其栅氧层的损伤也随之加深, 其泄漏电流退化程度与初始偏压呈正相关. 器件虽然没有发生SEB, 但因为泄漏电流的增大, 出于安全考虑也将不能在实际中正常使用.
3.3 实验分析
通过双沟槽型碳化硅MOSFET重离子辐照前后静态参数的对比发现, 其阈值电压负漂, 泄漏电流增长. N沟道MOSFET的阈值电压Vth数学模型为[21]
Vth=qCOX(Nit−Not)+COX(4εsqNAϕFp)12+2ϕFp+φMS, (1) ϕFp=kTqlnNAni, (2) 其中COX为氧化层特征电容, Not为氧化层陷阱电荷面密度, Nit为界面态陷阱电荷面密度, εs为SiC的介电常, NA为P型基区的有效掺杂浓度, ϕFp为准费米势, φMS为金属-半导体的功函数差, k为玻尔兹曼常数, T为绝对温度, ni为SiC的本征载流子浓度.
N沟道MOSFET的饱和区的电流数学模型为[21]
IDS=12μnCOXWL(VGS−Vth)2, (3) 其中μn为沟道载流子迁移率, W和L分别为沟道的宽度和长度.
本文中, 阈值电压的负漂主要是由于重离子入射到器件在栅氧化层中产生电子-空穴对, 在栅氧化层中电子的迁移率明显高于空穴, 受到电场的作用, 电子快速向漏极移动, 而空穴缓慢移动, 在这个过程中会被栅氧化层的本征缺陷俘获, 导致栅氧化层陷阱电荷面密度Not增大, 同时在SiC/SiO2界面附近由重离子入射产生的空穴也可能在电场的作用下隧穿或者跃迁到氧化层被深能级缺陷俘获形成陷阱电荷, 最终阈值电压Vth降低[22]. 由于阈值电压的负向漂移, 会导致器件SiC/SiO2界面处的P型基区更容易形成反型层, 在较低的栅压下器件就能开启, 这解释了器件辐照后的输出特征曲线电流会出现了增长现象. 同时空穴在SiC/SiO2界面处积累, 与源-漏偏压共同作用, 导致栅氧化层中的电场增大, 进而导致栅氧化层出现损伤, 导致栅应力测试中的栅电流增大, 其与源-漏偏压呈正相关[19].
4. 数值仿真
根据图1(a)扫描电子显微镜的分析结果, 利用TCAD仿真工具建立了SiC DTMOSFET的二维模型, 其栅极沟槽的深度和宽度为1 μm和0.5 μm, 源极沟槽深度和宽度为1.8 μm和0.7 μm. 在进行二维结构仿真的过程中, 定性分析器件单粒子效应, 在模拟中添加了基本模型(包括和掺杂、温度相关的SRH复合模型、俄歇复合模型、迁移率模型和不完全电离模型等[23]), 此外还添加了重离子入射模型和热力学模型. 其中重离子入射器件产生电子-空穴对的产生率[24]可由公式(4)计算:
G(l,w,t)=GLET(l)R(w,l)T(t), (4) 其中, R(w,l)和T(t)是描述电子-空穴对产生率的时空分布函数, GLET(l)是与入射粒子LET有关的LET产生密度, w和l为入射粒子的轨迹半径和长度.
本文根据入射路径上经过不同区域为条件, 选择了5种不同入射路径, 如图5所示,入射点为路径 A经过多晶硅栅极中心、氧化层、外延层, 最终进入衬底; 路径 B经过多晶硅栅极边缘、氧化层、外延层, 最终进入衬底; 路径 C经过N+源区、P–基区、外延层, 最终进入衬底; 路径 D经过N+源区、P–屏蔽层、外延层, 最终进入衬底; 路径 E经过源极沟槽、P+屏蔽层、P–屏蔽层、外延层, 最终进入衬底.
4.1 栅氧化层损伤仿真模拟
图6为VDSirr = 200 V, LET = 37.3 MeV·cm2/mg时, 不同位置入射器件栅氧化层电场强度随时间的演化过程. 仿真结果表明, 随着入射位置远离栅极中央, 栅氧化层中的电场强度逐渐变小. 由图7观察到, 离子从路径 A、路径 B和路径 C入射, 在栅氧化层拐角处都存在一个较大的电场强度, 并且从路径 B入射时, 其栅氧化层拐角处电场强度最大. 这是离子入射到器件中产生电子-空穴对, 空穴在栅氧化层的拐角处产生严重的堆积效应所导致. 较大的电场强度使器件的栅氧化层形成潜在损伤, 形成泄漏电流通道, 这种损伤机制解释了辐照后的器件在栅特性测试中栅极泄漏电流增大.
4.2 单粒子烧毁仿真模拟
碳化硅平面栅场效应晶体管的单粒子烧毁是由于其内部晶格温度高于其材料的熔点(3000 K)所导致[25,26]. 因此在本文中, 将仿真模拟中器件内部晶格温度超过3000 K时所施加的源漏偏置电压定义为器件SEB的阈值电压.
从图8可以看到, 离子从路径 A入射到器件后不同时刻器件内部的晶格温度情况, 在重离子入射到器件后的N–外延层和N+衬底处产生一个明显的高温点, 该点的晶格温度随着时间增大, 在t = 1 ns时, 达到最大值. 图9为沿离子入射路径的碰撞电离率和电场强度随深度的变化情况, 重离子入射器件后产生电子-空穴对, 电子在电场作用下向漏极移动, 使得该处电场强度进一步增大, 引起显著的碰撞电离, 在N–外延层和N+衬底处碰撞电离率高达3.25×1027 cm–3·s–1, 电离出更多的电子-空穴对, 电子在电场作用下继续被加速移动, 在局域产生大电流密度, 使得瞬时关态电流大大增大, 由热功率公式P=UI, 局域大电流密度导致其晶格温度超过SiC材料的熔点, 发生单粒子烧毁事件.
5. 结 论
本文研究了不同源漏偏置电压下双沟槽型碳化硅场效应晶体管的重离子单粒子效应. 实验结果表明, 与平面栅结构相比, 当辐照过程中偏置电压较低时, 双沟槽SiC MOSFET未出现泄漏电流通道, 当辐照过程中偏置电压大于200 V时, 辐照引起的泄漏电流在漏极到栅极和漏极到源极之间分配; 结合TCAD仿真模拟, 泄漏电流增大是由于栅氧化层拐角处高电场强度引起的损伤; 栅氧化层拐角处是沟槽型结构的敏感区域. 当LET值为37.3 MeV·cm2/mg, 双沟槽型碳化硅场效应晶体管的SEB阈值电压在400 V以下, 重离子入射到器件后, 在N–外延层和N+衬底处的局域大电场强度和大电流密度导致晶格温度超过SiC的熔点, 引发单粒子烧毁事件. 这为宇航用碳化硅功率器件的辐照效应机理研究和应用提供了一定的参考和支撑.
[1] Dimitrijev S, Jamet P 2003 Microelectron. Reliab. 43 225
Google Scholar
[2] Zeng Z, Zhang X, Miao L J 2019 10th International Conference on Power Electronics and ECCE Asia Busan, Korea, May 27–30, 2019 p2139
[3] Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 551 [张林, 肖剑, 邱彦章, 程鸿亮 2011 物理学报 60 551
Google Scholar
Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin.60 551 Google Scholar
[4] Liu X Y, Li C Z, Luo Y H, Chen H, Gao X X, Bai Y 2020 Acta Electron. Sin. 48 2313 [刘新宇, 李诚瞻, 罗烨辉, 陈宏, 高秀秀, 白云 2020 电子学报 48 2313
Google Scholar
Liu X Y, Li C Z, Luo Y H, Chen H, Gao X X, Bai Y 2020 Acta Electron. Sin.48 2313 Google Scholar
[5] Wang J, Zhao T F, Li J, Huang A Q, Callanan R, Husna F, Agarwal A 2008 IEEE Trans. Electron. Dev. 55 1798
Google Scholar
[6] Liu J W, Lu J, Tian X L, Chen H, Bai Y, Liu X Y 2020 Electron. Lett. 56 1273
Google Scholar
[7] Kuboyama S, Kamezawa C, Satoh Y, Hirao T, Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379
Google Scholar
[8] Martinella C, Natzke P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022 Microelectron. Reliab. 128 114423
Google Scholar
[9] Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G, Kadi Y, Grossner U, Javanainen A 2020 IEEE Trans. Nucl. Sci. 67 1381
Google Scholar
[10] Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J-M, Sternberg A L, Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 1951
Google Scholar
[11] Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22
Google Scholar
[12] Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Lauenstein J M 2021 IEEE Trans. Nucl. Sci. 68 1430
Google Scholar
[13] Liu C C, Guo G, Li Z M, Zhang F Q, Chen Q M, Han J H, Yang X Y 2022 Nucl. Tech. 45 3 [刘翠翠, 郭刚, 李治明, 张付强, 陈启明, 韩金华, 杨新宇 2022 核技术 45 3
Google Scholar
Liu C C, Guo G, Li Z M, Zhang F Q, Chen Q M, Han J H, Yang X Y 2022 Nucl. Tech.45 3 Google Scholar
[14] Pappis D, Zacharias P 2017 19th European Conference on Power Electronics and Applications Warsaw, Poland, September 11–14, 2017 p1
[15] Sato I, Tanaka T, Hori M, Yamada R, Toba A, Kubota H 2021 Electr. Eng. Jpn. 214 e23323
Google Scholar
[16] Sampath M, Morisette D T, Cooper J A 2018 Mater. Sci. Forum 924 752
Google Scholar
[17] 顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天 2011 物理学报 70 166101
Google Scholar
Gu C Q, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Zhang H, Ju A A, Liu Y T 2021 2011 Acta Phys. Sin. 70 166101
Google Scholar
[18] Zhou X T, Tang Y, Jia Y P, Hu D Q, Wu Y, Xia T, Gong H, Pang H Y 2019 IEEE Trans. Nucl. Sci. 66 2312
Google Scholar
[19] Wang L H, Jia Y P, Zhou X T, Zhao Y F, Wang L, Li T D, Hu D Q, Wu Y, Deng Z H 2022 Microelectron. Reliab. 137 114770
Google Scholar
[20] Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466 [成国栋, 陆江, 翟露青, 白云, 田晓丽, 左欣欣, 杨成樾, 汤益丹, 陈宏, 刘新宇 2022 微电子学 52 466
Google Scholar
Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics52 466 Google Scholar
[21] 唐常钦, 王多为, 龚敏, 马瑶, 杨治美 2021 电子与封装 21 080402
Google Scholar
Tang C Q, Wang D W, Gong M, Ma Y, Yang Z M 2021 Electron. Packag. 21 080402
Google Scholar
[22] 王敬轩, 吴昊, 王永维, 李永平, 王勇, 杨霏 2016 智能电网 4 1078
Google Scholar
Wang J X, Wu H, Wang Y W, Li Y P, Wang Y, Yang F 2016 Smart Grid 4 1078
Google Scholar
[23] Zhou X T, Pang H Y, Jia Y P, Hu D Q, Wu Y, Tang Y, Xia T, Gong H, Zhao Y F 2020 IEEE Trans. Electron. Dev. 67 582
Google Scholar
[24] Zhou X T, Pang H Y, Jia Y P, Hu D Q, Wu Y , Zhang S D, Li Y, Li X Y, Wang L H, Fang X Y, Zhao Y F 2021 IEEE Trans. Electron. Dev. 68 4010
Google Scholar
[25] Cheng Y Z 2021 M. S. Thesis (Hangzhou: Hangzhou Dianzi University) [程有忠 2021 硕士 (杭州电子科技大学)
Cheng Y Z 2021 M. S. Thesis (Hangzhou: Hangzhou Dianzi University) [26] Wang Y, Lin M, Li X J, Wu X, Yang J Q, Bao M T, Yu C H, Cao F 2019 IEEE Trans. Electron. Dev. 66 4264
Google Scholar
-
表 1 辐照前后SiC MOSFET阈值电压偏移量和电流变化量
Table 1. Threshold voltage offset and current change of SiC MOSFET before and after irradiation.
辐照过程中初始偏置条件 ΔVth/V ΔId/mA 100 V –0.06 77.51 200 V –0.09 78.73 300 V –0.16 80.56 -
[1] Dimitrijev S, Jamet P 2003 Microelectron. Reliab. 43 225
Google Scholar
[2] Zeng Z, Zhang X, Miao L J 2019 10th International Conference on Power Electronics and ECCE Asia Busan, Korea, May 27–30, 2019 p2139
[3] Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 551 [张林, 肖剑, 邱彦章, 程鸿亮 2011 物理学报 60 551
Google Scholar
Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin.60 551 Google Scholar
[4] Liu X Y, Li C Z, Luo Y H, Chen H, Gao X X, Bai Y 2020 Acta Electron. Sin. 48 2313 [刘新宇, 李诚瞻, 罗烨辉, 陈宏, 高秀秀, 白云 2020 电子学报 48 2313
Google Scholar
Liu X Y, Li C Z, Luo Y H, Chen H, Gao X X, Bai Y 2020 Acta Electron. Sin.48 2313 Google Scholar
[5] Wang J, Zhao T F, Li J, Huang A Q, Callanan R, Husna F, Agarwal A 2008 IEEE Trans. Electron. Dev. 55 1798
Google Scholar
[6] Liu J W, Lu J, Tian X L, Chen H, Bai Y, Liu X Y 2020 Electron. Lett. 56 1273
Google Scholar
[7] Kuboyama S, Kamezawa C, Satoh Y, Hirao T, Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379
Google Scholar
[8] Martinella C, Natzke P, Alia R G, Kadi Y, Niskanen K, Rossi M, Jaatinen J, Kettunen H, Tsibizov A, Grossner U, Javanainen A 2022 Microelectron. Reliab. 128 114423
Google Scholar
[9] Martinella C, Ziemann T, Stark R, Tsibizov A, Voss K O, Alia R G, Kadi Y, Grossner U, Javanainen A 2020 IEEE Trans. Nucl. Sci. 67 1381
Google Scholar
[10] Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J-M, Sternberg A L, Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 1951
Google Scholar
[11] Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22
Google Scholar
[12] Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Lauenstein J M 2021 IEEE Trans. Nucl. Sci. 68 1430
Google Scholar
[13] Liu C C, Guo G, Li Z M, Zhang F Q, Chen Q M, Han J H, Yang X Y 2022 Nucl. Tech. 45 3 [刘翠翠, 郭刚, 李治明, 张付强, 陈启明, 韩金华, 杨新宇 2022 核技术 45 3
Google Scholar
Liu C C, Guo G, Li Z M, Zhang F Q, Chen Q M, Han J H, Yang X Y 2022 Nucl. Tech.45 3 Google Scholar
[14] Pappis D, Zacharias P 2017 19th European Conference on Power Electronics and Applications Warsaw, Poland, September 11–14, 2017 p1
[15] Sato I, Tanaka T, Hori M, Yamada R, Toba A, Kubota H 2021 Electr. Eng. Jpn. 214 e23323
Google Scholar
[16] Sampath M, Morisette D T, Cooper J A 2018 Mater. Sci. Forum 924 752
Google Scholar
[17] 顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天 2011 物理学报 70 166101
Google Scholar
Gu C Q, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Zhang H, Ju A A, Liu Y T 2021 2011 Acta Phys. Sin. 70 166101
Google Scholar
[18] Zhou X T, Tang Y, Jia Y P, Hu D Q, Wu Y, Xia T, Gong H, Pang H Y 2019 IEEE Trans. Nucl. Sci. 66 2312
Google Scholar
[19] Wang L H, Jia Y P, Zhou X T, Zhao Y F, Wang L, Li T D, Hu D Q, Wu Y, Deng Z H 2022 Microelectron. Reliab. 137 114770
Google Scholar
[20] Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics 52 466 [成国栋, 陆江, 翟露青, 白云, 田晓丽, 左欣欣, 杨成樾, 汤益丹, 陈宏, 刘新宇 2022 微电子学 52 466
Google Scholar
Cheng G D, Lu J, Zhai L Q, Bai Y, Tian X L, Zuo X X, Yang C Y, Tang Y D, Chen H, Liu X Y 2022 Microelectronics52 466 Google Scholar
[21] 唐常钦, 王多为, 龚敏, 马瑶, 杨治美 2021 电子与封装 21 080402
Google Scholar
Tang C Q, Wang D W, Gong M, Ma Y, Yang Z M 2021 Electron. Packag. 21 080402
Google Scholar
[22] 王敬轩, 吴昊, 王永维, 李永平, 王勇, 杨霏 2016 智能电网 4 1078
Google Scholar
Wang J X, Wu H, Wang Y W, Li Y P, Wang Y, Yang F 2016 Smart Grid 4 1078
Google Scholar
[23] Zhou X T, Pang H Y, Jia Y P, Hu D Q, Wu Y, Tang Y, Xia T, Gong H, Zhao Y F 2020 IEEE Trans. Electron. Dev. 67 582
Google Scholar
[24] Zhou X T, Pang H Y, Jia Y P, Hu D Q, Wu Y , Zhang S D, Li Y, Li X Y, Wang L H, Fang X Y, Zhao Y F 2021 IEEE Trans. Electron. Dev. 68 4010
Google Scholar
[25] Cheng Y Z 2021 M. S. Thesis (Hangzhou: Hangzhou Dianzi University) [程有忠 2021 硕士 (杭州电子科技大学)
Cheng Y Z 2021 M. S. Thesis (Hangzhou: Hangzhou Dianzi University) [26] Wang Y, Lin M, Li X J, Wu X, Yang J Q, Bao M T, Yu C H, Cao F 2019 IEEE Trans. Electron. Dev. 66 4264
Google Scholar
期刊类型引用(1)
1. 岑政,向飞,吴兆希,杨蕊亦,叶思楠,王祖正. 基于LabVIEW的SiC MOSFET器件单粒子效应测试系统. 电子元器件与信息技术. 2024(09): 26-29 . 百度学术
其他类型引用(1)
Catalog
Metrics
- Abstract views: 3385
- PDF Downloads: 111
- Cited By: 2