Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Corrosion behavior of aluminum reinforced austenitic steel in liquid lead bismuth at 550 ℃

Gan Shu-Yun Xu Shuai Li Bing-Sheng Chai Lin-Jiang Chen Li-Ming He Xiao-Xun Wang Li Liu Si-Jie Wen Chun-Mei Li Jia-Qi Wu Zhong-Zheng

Citation:

Corrosion behavior of aluminum reinforced austenitic steel in liquid lead bismuth at 550 ℃

Gan Shu-Yun, Xu Shuai, Li Bing-Sheng, Chai Lin-Jiang, Chen Li-Ming, He Xiao-Xun, Wang Li, Liu Si-Jie, Wen Chun-Mei, Li Jia-Qi, Wu Zhong-Zheng
PDF
HTML
Get Citation
  • The key material issue for the commercialization of advanced lead cooled fast reactors and accelerator driven subcritical systems is the compatibility between structural materials and lead based coolants. Structural steel materials require excellent corrosion resistance in high-temperature liquid lead bismuth eutectic (LBE) alloy. Aluminum forming austenitic steel (AFA steel) has excellent corrosion resistance in extreme environments due to its ability to form an Al2O3 film on its surface. However, excessively high Ni elements are more easily dissolved or oxidized in LBE than Fe and Cr elements. Therefore, this work investigates the effect of reducing Ni element composition (25-Ni steel and 18-Ni steel) on the corrosion resistance of steel in LBE. Surface treatment can protect the substrate from corrosion to some extent, so herein we explore whether it has a protective effect on AFA steel in LBE by generating Al2O3 through high-temperature pre oxidation. The morphology and structure of the oxide layer of AFA steel corroded for 600 h in LBE with saturated dissolved oxygen at 550 ℃ are characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and other technologies. The results indicate that the oxide film formed after corrosion of 18-Ni steel is thinner than that after corrosion of 25-Ni steel. Performing high-temperature pre oxidation is beneficial to forming a protective Al2O3 oxide film on the surface of the sample, thereby reducing the thickness of the oxide layer and improving the material’s LBE corrosion resistance. The reduction in thickness of the oxide layer generated after pre oxidation of 18-Ni steel is greater than that of 25-Ni steel, so the anti-corrosion effect of 18-Ni steel after pre oxidation is better than that of 25-Ni steel.
      Corresponding author: Xu Shuai, shuaixu2020@swust.edu.cn
    • Funds: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20zx7104).
    [1]

    Lu Y H, Song Y Y, Chen S H, Rong L J 2016 Acta Met. Sin. 52 298

    [2]

    Schroer C, Wedemeyer O, Novotny J, Skrypnik A, Konys J 2014 Corros. Sci. 84 113Google Scholar

    [3]

    Yamaki E, Ginestar K , Martinelli L 2011 Corros. Sci. 53 3075

    [4]

    Sapundjiev D, Dyck V S, Bogaerts W 2006 Corros. Sci. 48 577Google Scholar

    [5]

    Kurata Y, Futakawa M, Saito S 2005 J. Nucl. Mater. 343 333Google Scholar

    [6]

    Anderoglu O, Byun T S, Toloczko M, Maloy S A 2012 Metall. Mater. Trans. A 44 70

    [7]

    陈灵芝, 周张健, Schroer C 2020 材料导报 34 05098Google Scholar

    Chen L Z, Zhou Z J, Schroer C 2020 Mater. Rep. 34 05098Google Scholar

    [8]

    Gong X, Marmy P, Qin L, Verlinden B, Wevers M, Seefeldt M 2014 Mater. Sci. Eng. A 618 406Google Scholar

    [9]

    Vogt J , Proriol-Serre I 2013 Procedia Eng. 55 814

    [10]

    Gong X, Li R, Sun M Z, Ren Q S, Liu T, Short M P 2016 J. Nucl. Mater. 482 225

    [11]

    梁娜, 姚存峰, 龙斌, 付晓钢 2022 材料导报 36 21090168Google Scholar

    Liang N, Yao C F, Long B, Fu X G 2022 Mater. Rep. 36 21090168Google Scholar

    [12]

    Kurata Y, Futakawa M, Saito S 2008 J. Nucl. Mater. 373 167

    [13]

    鞠娜, 雷玉成, 陈钢, 朱强, 李天庆, 王丹 2019 原子能科学技术 53 432Google Scholar

    Ju N, Lei Y C, Chen G, Zhu Q, Li T Q 2019 Atomic Energy Sci. Techno. 53 432Google Scholar

    [14]

    Brady M P, Yamamoto Y, Santella M L, Pint B A 2007 Scripta Mater. 57 1119

    [15]

    Yamamoto Y, Takeyama M, Lu Z P, Liu C T, Evans N D, Maziasz P J, Brady M P 2008 Nature 30 191

    [16]

    Lutz B S, Yanar N M, Holcomb G R, Meier G H 2017 Oxid. Met. 87 587

    [17]

    Gao Q Z, Liu Z Y, Li H J, Zhang H L, Jiang C C, Hao A M, Qu F, Lin X P 2021 J. Mater. Sci. Technol. 68 99

    [18]

    Meng H J, Wang J, Wang L, Fang X D, Dong N, Zhang C L, Han P D 2020 Mater. Charact. 163 110233Google Scholar

    [19]

    Shi H, Tang C C, Jianu A, Fetzer R, Weisenburger A, Steinbrueck M, Grosse M, Stieglitz R, Müller G 2020 Corros. Sci. 170 108654Google Scholar

    [20]

    Shen L, Wu B J, Zhao K, Peng H B Wen Y H 2021 Corros. Sci. 191 109754Google Scholar

    [21]

    Yamamoto Y, Brady M P, Ren Q Q, Poplawsky J D, Hoelzer D T, Lance M J 2022 JOM 74 1462

    [22]

    Yamamoto Y, Ren Q Q, Brady M P 2022 Metals 12 717-7Google Scholar

    [23]

    Zhao W X, Jiang S H, Liu W H, Peng X Y, Wang H, Wu Y, Liu X J, Lu Z P 2022 Mater. Sci. Eng. A 857 143995Google Scholar

    [24]

    经济合作与发展组织/核能署 著 (戎利建, 张玉妥, 陆善平, 陈星秋, 王培, 熊超, 叶中飞, 李依依 译) 2007 铅与铅铋共晶合金手册 (北京: 科学出版社)第72—73页

    OECD/NEA (translated by Rong L J, Zhang Y T, Lu S P, Chen X Q, Wang P, Xiong C, Ye Z F, Li Y Y) 2007 Handbook on Lead–Bismuth Eutectic Alloy and Lead (Beijing: Science Press) pp72–73

    [25]

    Brady M P, Yamamoto Y, Santella M L, Maziasz P J, Pint B A, Liu C T, Lu Z P, Bei H 2008 JOM 60 12

    [26]

    Yamamoto Y, Takeyama M, Lu Z P, Liu C T, Evans N D, Maziasz P J, Brady M P 2008 Intermetallics 16 458

    [27]

    程晓农, 姚永泉, 李冬升, 罗锐, 郑琦, 唐桢丁 2017 金属热处理 42 75

    Chen X N, Yao Y Q, Li D S, Luo R, Zheng Q, Tang Z D 2017 Heat Treat. Met. 42 75

    [28]

    Hosemann P, Bai S, Bickel J, Qiu J 2021 JOM 73 4014

    [29]

    Liu Y C, Chen S M, Ouyang F Y, Kai J J 2018 J. Nucl. Mater. 505 13

    [30]

    Chen L Z, Tsisar V, Wang M, Schroer C, Zhou Z J 2021 Corros. Sci. 189 109591Google Scholar

    [31]

    陈灵芝 2021 博士学位论文 (北京: 北京科技大学)

    Chen L Z 2021 Ph. D. Dissertation (Beijing: University of Science and Technology

    [32]

    Wang M, Sun Y D, Feng J K , Zhang R Q, Tang R, Zhou Z J 2016 Int. J. Min. Met. Mater. 23 316

    [33]

    周德强 2014 博士学位论文 (北京: 北京科技大学)

    Zhou D Q 2014 Ph. D. Dissertation (Beijing: University of Science and Technology

    [34]

    Ejenstam J, Szakálos P 2015 J. Nucl. Mater. 461 164Google Scholar

    [35]

    Muller G, Heinzel A, Konys J, Schumacher G, Weisenburger A, Zimmermann F, Engelko V, Rusanov A, Markov V 2002 J. Nucl. Mater. 301 42

    [36]

    熊静, 邓平, 高军, 赵永福 2022 科学技术创新 10 55

    Xiong J, Deng P, Gao J, Zhao Y F 2022 Sci. Technol. Inno. 10 55

    [37]

    王军健, 李华鑫, 李红菊, 郑文健, 闾川阳, 马英鹤, 任森栋, 包士毅, 贺艳明, 杨建国 2023 强激光与粒子束 35 056001

    Wang J J, Li H X, Li H J, Zheng W J, Lv C Y, Ma Y H, Ren S D, Bao S Y, He Y M, Yang J G 2023 High Power Laser Part. Beams 35 056001

    [38]

    吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜 2023 金属学报 59 504

    Wu X Q, Rong L J, Tan J B, Chen S H, Hu X F, Zhang Y P, Zhang Z Y 2023 Acta Metall. Sin. 59 504

    [39]

    Bischoff J, Motta A T 2012 J. Nucl. Mater. 424 261Google Scholar

    [40]

    Bischoff J, Motta A T, Eichfeld C, Comstock R J, Cao G P, Allen T R 2013 J. Nucl. Mater. 441 604Google Scholar

    [41]

    Tan L, Ren X, Allen T R 2010 Corros. Sci. 52 1520Google Scholar

    [42]

    肖纪美, 曹楚南 2002 材料腐蚀学原理 (北京: 化学工业出版社) 第96—99页

    Xiao J M, Cao C N 2002 Principles of Material Corrosion (Beijing: Chemical Industry Press) pp96–99

    [43]

    Xu S, Long F, Persaud S Y, Guo N, Yao Z W, Daymond M R, Gao W H, Zhang L F, Zhou Z J 2020 Corros. Sci. 165 108380Google Scholar

    [44]

    刘培生 2003 稀有金属材料与工程 32 684

    Liu P S 2023 Rare Metal Mat. Eng. 32 684

    [45]

    Boggs W E 1971 J. Electrochem. Soc. 118 906Google Scholar

    [46]

    李美栓, 周延春 2005 腐蚀科学与防护技术 17 409

    Li M S, Zhou Y C 2005 Corros. Sci. Prot. Technol. 17 409

    [47]

    Stott F H, Wei F I, 1989 Oxid. Met. 31 386

    [48]

    李铁藩 2003 金属高温氧化和热腐蚀 (北京: 化学工业出版社) 第31—35页

    Li T F 2003 High Temperature Oxidation and Hot Corrosion of Metals (Beijing: Chemical Industry Press) pp31–35

    [49]

    Ellingham H J T 1944 J. Soc. Chem. Ind. 63 125Google Scholar

    [50]

    康新婷, 杨坤, 迟煜頔, 王建, 王辉, 李亚宁, 王建永 2012 稀有金属材料与工程 41 822

    Kang X T, Yang K, Chi Y D, Wang J, Wang H, Li Y N, Wang J Y 2012 Rare Metal Mat. Eng. 41 822

  • 图 1  锻造态钢的EBSD图和SEM图 (a) 18-Ni钢EBSD图; (b) 基于图(a)的18-Ni钢相分布图; (c) 18-Ni钢SEM图, 右上角图像放大了α相区域; (d) 25-Ni钢EBSD图; (e) 基于图(d)的25-Ni钢相分布图; (f) 25-Ni钢SEM图

    Figure 1.  EBSD and SEM images of steels: (a) EBSD images of 18-Ni steel; (b) phase distribution of 18-Ni steel; (c) SEM image of 18-Ni steel, the upper right corner picture magnifies the of α phase area; (d) 25-Ni steel EBSD image; (e) phase distribution of 25-Ni steel; (f) 25-Ni steel SEM image.

    图 2  不同成分钢相体积占比随温度变化相图 (a) 18-Ni钢; (b) 25-Ni钢

    Figure 2.  Phase volume-temperature phase diagrams of different steels: (a) 18-Ni steel; (b) 25-Ni steel.

    图 3  锻造态样品在550 ℃ LBE腐蚀600 h后宏观形貌图 (a) 18-Ni钢; (b) 25-Ni钢

    Figure 3.  Macro morphology of the forged steels after 600 h LBE corrosion at 550 ℃: (a) 18 Ni steel; (b) 25-Ni steel.

    图 4  锻造态18-Ni钢和25-Ni钢在550 ℃ LBE中腐蚀600 h后表面XRD图

    Figure 4.  XRD patterns of forged 18-Ni steel and 25-Ni steel after 600 h LBE corrosion at 550 ℃.

    图 5  样品在550 ℃ LBE腐蚀600 h后表面SEM图 (a), (b) 18-Ni钢; (c), (d) 25-Ni钢

    Figure 5.  The surface SEM image of the sample after LBE corrosion at 550 °C for 600 h: (a), (b) 18-Ni steel; (c), (d) 25-Ni steel.

    图 6  锻造态样品在550 ℃ LBE中腐蚀600 h的截面SEM图 (a) 18-Ni钢; (b) 25-Ni钢

    Figure 6.  SEM images show the cross-sectional oxide layer morphology of the forged steels after LBE corrosion at 550 °C: (a) 18-Ni steel; (b) 25-Ni steel.

    图 7  锻造态样品在550 ℃ LBE中腐蚀600 h的截面EDS图  (a) 18-Ni钢; (b) 25-Ni钢

    Figure 7.  Cross-section EDS diagram of forged steels after LBE corrosion at 550 °C: (a) 18-Ni steel; (b) 25-Ni steel.

    图 8  锻造态钢和850 ℃高温预氧化后钢的XRD图

    Figure 8.  XRD patterns of the forged steels and pre-oxidized steels at 850 ℃.

    图 9  850 ℃预氧化20 h后18-Ni钢和25-Ni钢的拉曼光谱图

    Figure 9.  Raman spectra of different samples obtained with 532 nm excitation wavelength: (a) 18-Ni steel; (b) 25-Ni steel.

    图 10  850 ℃预氧化20 h后18-Ni钢的表面SEM图

    Figure 10.  SEM images of the surface of 18-Ni steel after pr-oxidation at 850 ℃ for 20 h.

    图 11  850 ℃预氧化20 h后25-Ni钢的表面SEM图

    Figure 11.  SEM image of the surface of 25-Ni steel after pre-oxidation at 850 ℃ for 20 h.

    图 12  850 ℃预氧化20 h后18-Ni钢和25-Ni钢的截面EDS图 (a) 18-Ni钢; (b) 25-Ni钢

    Figure 12.  Cross-section EDS diagrams of 18-Ni steel and 25-Ni steel after pre-oxidation at 850 ℃ for 20 h: (a) 18-Ni steel; (b) 25-Ni steel.

    图 13  预氧化后的18-Ni钢和25-Ni钢在550 ℃ LBE腐蚀600 h后的XRD图

    Figure 13.  The XRD diagram of pre-oxidized 18-Ni steel and 25-Ni steel after LBE corrosion at 550 ℃.

    图 14  预氧化样品在550 ℃ LBE腐蚀600 h后的表面SEM图 (a), (b) 18-Ni钢; (c), (d) 25-Ni钢

    Figure 14.  Surface SEM images of pre oxidized samples after LBE corrosion at 550 ℃ for 600 h: (a) (b) 18-Ni steel; (c), (d) 25-Ni steel.

    图 15  预氧化样品在550 ℃ LBE腐蚀600 h后的截面EDS图 (a) 18-Ni钢; (b) 25-Ni钢

    Figure 15.  Cross section EDS diagram of pre-oxidized sample after 600 h of LBE corrosion at 550 ℃: (a) 18-Ni steel; (b) 25-Ni steel.

    图 16  锻造态样品钢腐蚀过程示意图 (a) 18-Ni钢; (b) 25-Ni钢

    Figure 16.  Schematic diagram shows the corrosion process of the forged steels: (a) 18-Ni steel; (b) 25-Ni steel.

    图 17  预氧化后样品钢腐蚀过程示意图 (a) 18-Ni钢; (b) 25-Ni钢

    Figure 17.  Schematic diagram shows the corrosion process of the pre-oxidized steels: (a) 18-Ni steel; (b) 25-Ni steel.

    表 1  18-Ni钢和25-Ni钢的实际化学成分(质量分数, %)

    Table 1.  The actual chemical composition of 18-Ni steel and 25-Ni steel (mass percentage, %).

    Ni Cr Al Mo Nb Fe
    18-Ni 19.25 14.21 2.66 3.62 1.8 Bal.
    25-Ni 26.67 14.11 2.76 3.55 1.81 Bal.
    DownLoad: CSV

    表 2  图7中氧化物点扫描成分组成(%)

    Table 2.  Composition of oxides after point scanning analysis in Fig.7(%).

    区域CrAlFeNbO
    点10.3043.32.753.6
    点22.213.610.612.447.0
    点31.916.67.32.048.2
    点41.30.558.90.735.5
    点518.81.936.42.237.0
    点68.68.634.017.57.9
    DownLoad: CSV

    表 3  图10图11中氧化物点扫描成分组成(%)

    Table 3.  Composition of oxides after point scanning analysis in Fig.10 and Fig.11(%).

    区域CrAlFeO
    点73.281.5150.1238.59
    点89.9414.2444.269.46
    点97.562.1851.1136.15
    点1025.005.8838.6222.34
    点1115.420.6975.675.20
    DownLoad: CSV

    表 4  图15中氧化物点扫描成分组成(%)

    Table 4.  Composition of oxides after point scanning analysis in Fig.15 (%).

    区域CrAlFeNiO
    点129.24.449.54.230.9
    点131.539.72.62.153.5
    点141.11.185.70.010.9
    点152.117.87.420.95.20
    DownLoad: CSV
  • [1]

    Lu Y H, Song Y Y, Chen S H, Rong L J 2016 Acta Met. Sin. 52 298

    [2]

    Schroer C, Wedemeyer O, Novotny J, Skrypnik A, Konys J 2014 Corros. Sci. 84 113Google Scholar

    [3]

    Yamaki E, Ginestar K , Martinelli L 2011 Corros. Sci. 53 3075

    [4]

    Sapundjiev D, Dyck V S, Bogaerts W 2006 Corros. Sci. 48 577Google Scholar

    [5]

    Kurata Y, Futakawa M, Saito S 2005 J. Nucl. Mater. 343 333Google Scholar

    [6]

    Anderoglu O, Byun T S, Toloczko M, Maloy S A 2012 Metall. Mater. Trans. A 44 70

    [7]

    陈灵芝, 周张健, Schroer C 2020 材料导报 34 05098Google Scholar

    Chen L Z, Zhou Z J, Schroer C 2020 Mater. Rep. 34 05098Google Scholar

    [8]

    Gong X, Marmy P, Qin L, Verlinden B, Wevers M, Seefeldt M 2014 Mater. Sci. Eng. A 618 406Google Scholar

    [9]

    Vogt J , Proriol-Serre I 2013 Procedia Eng. 55 814

    [10]

    Gong X, Li R, Sun M Z, Ren Q S, Liu T, Short M P 2016 J. Nucl. Mater. 482 225

    [11]

    梁娜, 姚存峰, 龙斌, 付晓钢 2022 材料导报 36 21090168Google Scholar

    Liang N, Yao C F, Long B, Fu X G 2022 Mater. Rep. 36 21090168Google Scholar

    [12]

    Kurata Y, Futakawa M, Saito S 2008 J. Nucl. Mater. 373 167

    [13]

    鞠娜, 雷玉成, 陈钢, 朱强, 李天庆, 王丹 2019 原子能科学技术 53 432Google Scholar

    Ju N, Lei Y C, Chen G, Zhu Q, Li T Q 2019 Atomic Energy Sci. Techno. 53 432Google Scholar

    [14]

    Brady M P, Yamamoto Y, Santella M L, Pint B A 2007 Scripta Mater. 57 1119

    [15]

    Yamamoto Y, Takeyama M, Lu Z P, Liu C T, Evans N D, Maziasz P J, Brady M P 2008 Nature 30 191

    [16]

    Lutz B S, Yanar N M, Holcomb G R, Meier G H 2017 Oxid. Met. 87 587

    [17]

    Gao Q Z, Liu Z Y, Li H J, Zhang H L, Jiang C C, Hao A M, Qu F, Lin X P 2021 J. Mater. Sci. Technol. 68 99

    [18]

    Meng H J, Wang J, Wang L, Fang X D, Dong N, Zhang C L, Han P D 2020 Mater. Charact. 163 110233Google Scholar

    [19]

    Shi H, Tang C C, Jianu A, Fetzer R, Weisenburger A, Steinbrueck M, Grosse M, Stieglitz R, Müller G 2020 Corros. Sci. 170 108654Google Scholar

    [20]

    Shen L, Wu B J, Zhao K, Peng H B Wen Y H 2021 Corros. Sci. 191 109754Google Scholar

    [21]

    Yamamoto Y, Brady M P, Ren Q Q, Poplawsky J D, Hoelzer D T, Lance M J 2022 JOM 74 1462

    [22]

    Yamamoto Y, Ren Q Q, Brady M P 2022 Metals 12 717-7Google Scholar

    [23]

    Zhao W X, Jiang S H, Liu W H, Peng X Y, Wang H, Wu Y, Liu X J, Lu Z P 2022 Mater. Sci. Eng. A 857 143995Google Scholar

    [24]

    经济合作与发展组织/核能署 著 (戎利建, 张玉妥, 陆善平, 陈星秋, 王培, 熊超, 叶中飞, 李依依 译) 2007 铅与铅铋共晶合金手册 (北京: 科学出版社)第72—73页

    OECD/NEA (translated by Rong L J, Zhang Y T, Lu S P, Chen X Q, Wang P, Xiong C, Ye Z F, Li Y Y) 2007 Handbook on Lead–Bismuth Eutectic Alloy and Lead (Beijing: Science Press) pp72–73

    [25]

    Brady M P, Yamamoto Y, Santella M L, Maziasz P J, Pint B A, Liu C T, Lu Z P, Bei H 2008 JOM 60 12

    [26]

    Yamamoto Y, Takeyama M, Lu Z P, Liu C T, Evans N D, Maziasz P J, Brady M P 2008 Intermetallics 16 458

    [27]

    程晓农, 姚永泉, 李冬升, 罗锐, 郑琦, 唐桢丁 2017 金属热处理 42 75

    Chen X N, Yao Y Q, Li D S, Luo R, Zheng Q, Tang Z D 2017 Heat Treat. Met. 42 75

    [28]

    Hosemann P, Bai S, Bickel J, Qiu J 2021 JOM 73 4014

    [29]

    Liu Y C, Chen S M, Ouyang F Y, Kai J J 2018 J. Nucl. Mater. 505 13

    [30]

    Chen L Z, Tsisar V, Wang M, Schroer C, Zhou Z J 2021 Corros. Sci. 189 109591Google Scholar

    [31]

    陈灵芝 2021 博士学位论文 (北京: 北京科技大学)

    Chen L Z 2021 Ph. D. Dissertation (Beijing: University of Science and Technology

    [32]

    Wang M, Sun Y D, Feng J K , Zhang R Q, Tang R, Zhou Z J 2016 Int. J. Min. Met. Mater. 23 316

    [33]

    周德强 2014 博士学位论文 (北京: 北京科技大学)

    Zhou D Q 2014 Ph. D. Dissertation (Beijing: University of Science and Technology

    [34]

    Ejenstam J, Szakálos P 2015 J. Nucl. Mater. 461 164Google Scholar

    [35]

    Muller G, Heinzel A, Konys J, Schumacher G, Weisenburger A, Zimmermann F, Engelko V, Rusanov A, Markov V 2002 J. Nucl. Mater. 301 42

    [36]

    熊静, 邓平, 高军, 赵永福 2022 科学技术创新 10 55

    Xiong J, Deng P, Gao J, Zhao Y F 2022 Sci. Technol. Inno. 10 55

    [37]

    王军健, 李华鑫, 李红菊, 郑文健, 闾川阳, 马英鹤, 任森栋, 包士毅, 贺艳明, 杨建国 2023 强激光与粒子束 35 056001

    Wang J J, Li H X, Li H J, Zheng W J, Lv C Y, Ma Y H, Ren S D, Bao S Y, He Y M, Yang J G 2023 High Power Laser Part. Beams 35 056001

    [38]

    吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜 2023 金属学报 59 504

    Wu X Q, Rong L J, Tan J B, Chen S H, Hu X F, Zhang Y P, Zhang Z Y 2023 Acta Metall. Sin. 59 504

    [39]

    Bischoff J, Motta A T 2012 J. Nucl. Mater. 424 261Google Scholar

    [40]

    Bischoff J, Motta A T, Eichfeld C, Comstock R J, Cao G P, Allen T R 2013 J. Nucl. Mater. 441 604Google Scholar

    [41]

    Tan L, Ren X, Allen T R 2010 Corros. Sci. 52 1520Google Scholar

    [42]

    肖纪美, 曹楚南 2002 材料腐蚀学原理 (北京: 化学工业出版社) 第96—99页

    Xiao J M, Cao C N 2002 Principles of Material Corrosion (Beijing: Chemical Industry Press) pp96–99

    [43]

    Xu S, Long F, Persaud S Y, Guo N, Yao Z W, Daymond M R, Gao W H, Zhang L F, Zhou Z J 2020 Corros. Sci. 165 108380Google Scholar

    [44]

    刘培生 2003 稀有金属材料与工程 32 684

    Liu P S 2023 Rare Metal Mat. Eng. 32 684

    [45]

    Boggs W E 1971 J. Electrochem. Soc. 118 906Google Scholar

    [46]

    李美栓, 周延春 2005 腐蚀科学与防护技术 17 409

    Li M S, Zhou Y C 2005 Corros. Sci. Prot. Technol. 17 409

    [47]

    Stott F H, Wei F I, 1989 Oxid. Met. 31 386

    [48]

    李铁藩 2003 金属高温氧化和热腐蚀 (北京: 化学工业出版社) 第31—35页

    Li T F 2003 High Temperature Oxidation and Hot Corrosion of Metals (Beijing: Chemical Industry Press) pp31–35

    [49]

    Ellingham H J T 1944 J. Soc. Chem. Ind. 63 125Google Scholar

    [50]

    康新婷, 杨坤, 迟煜頔, 王建, 王辉, 李亚宁, 王建永 2012 稀有金属材料与工程 41 822

    Kang X T, Yang K, Chi Y D, Wang J, Wang H, Li Y N, Wang J Y 2012 Rare Metal Mat. Eng. 41 822

  • [1] Xie JiaMiao, Li JingYang, Zhou JiaYi, Hao WenQian. Analysis of electrode crack propagation in solid oxide fuel cell with pre-crack. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.73.20241176
    [2] Cheng Da-Zhao, Liu Cai-Yan, Zhang Chao-Ran, Qu Jia-Hui, Zhang Jing. Phase field simulation of intra/intergranular pore morphology evolution in neutron-irradiated austenitic stainless steel. Acta Physica Sinica, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [3] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [4] Liao Qing, Li Bing-Sheng, Ge Fang-Fang, Zhang Hong-Peng, Shen Tie-Long, Mao Xue-Li, Wang Ren-Da, Sheng Yan-Bin, Chang Hai-Long, Wang Zhi-Guang, Xu Shuai, Chen Li-Ming, He Xiao-Xun. Stability and corrosion behavior of AlOx coating on T91 steel and SIMP steel in static liquid Pb-Bi eutectic at 600 ℃. Acta Physica Sinica, 2022, 71(15): 156103. doi: 10.7498/aps.71.20220356
    [5] Chen Dong-Yun, Gao Ming, Li Yong-Hua, Xu Fei, Zhao Lei, Ma Zhong-Quan. First principle study of formation mechanism of molybdenum-doped amorphous silica in MoO3/Si interface. Acta Physica Sinica, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [6] Ding Cui, Liu Chong, Zhang Qing-Hua, Gong Guan-Ming, Wang Heng, Liu Xiao-Zhi, Meng Fan-Qi, Yang Hao-Hao, Wu Rui, Song Can-Li, Li Wei, He Ke, Ma Xu-Cun, Gu Lin, Wang Li-Li, Xue Qi-Kun. Interface enhanced superconductivity in monolayer FeSe film on oxide substrate. Acta Physica Sinica, 2018, 67(20): 207415. doi: 10.7498/aps.67.20181681
    [7] Gao Ya-Na, Li Xi-Feng, Zhang Jian-Hua. Solution-processed high performance HIZO thin film transistor with AZO gate dielectric. Acta Physica Sinica, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [8] Wang Ping, Guo Li-Xin, Yang Yin-Tang, Zhang Zhi-Yong. First-principles study on electronic structures of Al, N Co-doped ZnO nanotubes. Acta Physica Sinica, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [9] Liu Gui-Li, Li Yong. The electronic theory study on high-temperature oxidation mechanism of TiAl alloy. Acta Physica Sinica, 2012, 61(17): 177101. doi: 10.7498/aps.61.177101
    [10] Zhang Guo-ying, Li Dan, Liang Ting. Electronic structure and high-temperature oxidation behavior of Nb alloy. Acta Physica Sinica, 2010, 59(11): 8031-8036. doi: 10.7498/aps.59.8031
    [11] Liu Gui-Li. High temperature oxidation mechanism of Nb-Al alloys. Acta Physica Sinica, 2010, 59(1): 499-503. doi: 10.7498/aps.59.499
    [12] Ma Xiao-Hua, Hao Yue, Chen Hai-Feng, Cao Yan-Rong, Zhou Peng-Ju. The breakdown characteristics of ultra-thin gate oxide n-MOSFET under voltage stress. Acta Physica Sinica, 2006, 55(11): 6118-6122. doi: 10.7498/aps.55.6118
    [13] Jin Hui-Ming, Felix Adriana, Aroyave Majorri. Influence of yttrium ion-implantation on oxidation behavior of nickel and property of oxide scale at 900℃. Acta Physica Sinica, 2006, 55(11): 6157-6162. doi: 10.7498/aps.55.6157
    [14] Ma Zhong-Fa, Zhuang Yi-Qi, Du Lei, Bao Jun-Lin, Li Wei-Hua. A physical-based percolation model for gate oxide TDDB. Acta Physica Sinica, 2003, 52(8): 2046-2051. doi: 10.7498/aps.52.2046
    [15] Liu Hong-Xia, Zheng Xue-Feng, Hao Yao. . Acta Physica Sinica, 2002, 51(1): 163-166. doi: 10.7498/aps.51.163
    [16] LIU HONG-XIA, HAO YUE. STUDY ON STRESS INDEUCED LEAKAGE CURRENT TRANSIENT CHARACTERISTICS IN THIN GATE OXIDE. Acta Physica Sinica, 2001, 50(9): 1769-1773. doi: 10.7498/aps.50.1769
    [17] YAN HUI, MA LI-JUN, CHEN GUANG-HUA, S.P.WONG, W.K.MAN, R.W.M.KWOK. OXIDATION AT ENHANCED TEMPERATURES AND SURFACE CHARACTERIZATION OF METAL Sn THIN FILMS. Acta Physica Sinica, 1997, 46(8): 1658-1664. doi: 10.7498/aps.46.1658
    [18] WU JIAN, LU HUAl-XIAN, DU YOU-WEI, GAO XUE-KUI, WANG TING-XIANG. A STUDY ON THE MAGNETIC PROPERTIES OF SURFACE OXIDE LAYERS OF ULTRAFINE IRON PARTICLES. Acta Physica Sinica, 1988, 37(12): 2044-2047. doi: 10.7498/aps.37.2044
    [19] ДИФФУЗИЯ ФОСФОРА В ОКИСНОМ СЛОЕ НА ПОВЕРХНОСТИ КРЕМНИЯ. Acta Physica Sinica, 1965, 21(3): 496-502. doi: 10.7498/aps.21.496
    [20] BY THE SPECTRUM LINE WIDTH METHODS TO ANALYZE LAYER AFTER LAYER THE ALUMINIZED STEEL. Acta Physica Sinica, 1959, 15(6): 305-310. doi: 10.7498/aps.15.305
Metrics
  • Abstract views:  2248
  • PDF Downloads:  55
  • Cited By: 0
Publishing process
  • Received Date:  07 July 2023
  • Accepted Date:  27 November 2023
  • Available Online:  30 November 2023
  • Published Online:  20 January 2024

/

返回文章
返回