Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A mesoscopic numerical method for enhanced pool boiling heat transfer on conical surfaces under action of electric field

Zhang Sen Lou Qin

Citation:

A mesoscopic numerical method for enhanced pool boiling heat transfer on conical surfaces under action of electric field

Zhang Sen, Lou Qin
PDF
HTML
Get Citation
  • The saturated pool boiling heat transfer on a conical structure surface under the action of an electric field is numerically investigated by using the lattice Boltzmann (LB) model coupled with an electric field model. A comparison study of boiling heat transfer phenomenon smooth surface and conical surface without the action of an electric field is first conducted in order to quantitatively analyze the mechanism of the electric field effect on boiling heat transfer on the conical structure surface. It is discovered that the conical structure has more active nucleation sites during the nucleate boiling regime, improving the boiling heat transfer efficiency and enhancing the critical heat flux (CHF). However, in the transition boiling stage and film boiling stage, the conical structure increases the flow resistance of the fluid on the fin surface, hindering heat transfer between the vapor and liquid and producing lower heat transfer performance than smooth surface. Based on the aforementioned findings, the boiling heat transmission on the conical structure surface is enhanced by applying an electric field. Numerical results indicate that the effect of the electric field on the boiling heat transfer performance on the conical structure surface is related to the boiling regime. In the earlier stage of the nucleation boiling regime, when an electric field is present, the onset time of bubble nucleation is slightly delayed, bubble size decreases a little, and boiling is slightly suppressed. However, the combination effect of electric field and conical structure, especially the tip effect, prevents the spread and diffusion of dry areas on the heating surface, thereby enhancing boiling heat transfer in the fully developed nucleate boiling stage. The tip effect grows more evidently in the transition boiling regime and film boiling regime, and increasing electric field intensity causes boiling to continue in the nucleate boiling regime at a higher superheat level. As a result, boiling heat transfer performance is greatly improved, and CHF steadily rises.
      Corresponding author: Lou Qin, louqin560916@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51976128, 52376068) and the Shanghai Pujiang Program, China (Grant No. 22PJD047).
    [1]

    Zaidi S 2015 Chem. Eng. Res. Des. 98 44Google Scholar

    [2]

    Massih A R, Persson S 1992 J. Nucl. Mater. 188 323Google Scholar

    [3]

    Mohammed H I, Giddings D, Walker G S 2019 Int. J. Heat Mass Transfer 130 710Google Scholar

    [4]

    Nikolayev V S, Chatain D, Garrabos Y, Beysens D 2006 Phys. Rev. Lett. 97 184503Google Scholar

    [5]

    Li W, Dai R K, Zeng M, Wang Q W 2020 Renew. Sust. Energ. Rev. 130 109926Google Scholar

    [6]

    Tian Z, Etedali S, Afrand M, Abdollahi A, Goodarzi M 2019 Powder Technol. 356 391Google Scholar

    [7]

    Wei J J, Honda H 2003 Int. J. Heat Mass Transfer 46 4059Google Scholar

    [8]

    Li Q, Zhao J H, Sun X Z, Liu B 2022 Appl. Therm. Eng. 215 118924Google Scholar

    [9]

    Kong X, Zhang Y H, Wei J J 2018 Exp. Therm. Fluid Sci. 91 9Google Scholar

    [10]

    Kim S H, Lee C G, Kang J Y, Moriyama K, Kim M H, Park H S 2015 Int. J. Heat Mass Transfer 91 1140Google Scholar

    [11]

    Elkholy A, Swift J, Kempers R 2023 Appl. Therm. Eng 219 119665Google Scholar

    [12]

    Clubb L 1916 UK Patent 100796 [1916-07-09

    [13]

    Dong W, Li R Y, Yu H L, Yan Y Y 2006 Exp. Therm. Fluid Sci. 30 579Google Scholar

    [14]

    Gao M, Cheng P, Quan X J 2013 Int. J. Heat Mass Transfer 67 984Google Scholar

    [15]

    Hristov Y, Zhao D, Kenning D B R, Sefiane K, Karayiannis T G 2009 Heat Mass Transfer 45 999Google Scholar

    [16]

    Garivalis A I, Manfredini G, Saccone G, Di Marco P, Kossolapov A, Bucci M 2021 NPJ Microgravity 7(1) 37Google Scholar

    [17]

    Quan X J, Gao M, Cheng P, Li J S 2015 Int. J. Heat Mass Transfer 85 595Google Scholar

    [18]

    Liu B, Garivalis A I, Cao Z, Zhang Y, Wei J 2022 Int. J. Heat Mass Transfer 183 122154Google Scholar

    [19]

    Liu X, Chai Z H, Shi B C 2019 Phys. Fluids 31 092103Google Scholar

    [20]

    Liu X, Chai Z H, Shi B C 2021 Commun. Comput. Phys. 30 1346Google Scholar

    [21]

    Feng Y, Li H, Guo K, Lei X, Zhao J 2019 Int. J. Heat Mass Transfer 135 885Google Scholar

    [22]

    Li W X, Li Q, Chang H Z, Yu Y, Tang S 2022 Phys. Fluids 34 123327Google Scholar

    [23]

    Lou Q, Wang H Y, Li L 2023 Phys. Fluids 35 123327Google Scholar

    [24]

    Ezzatneshan E, Salehi A, Vaseghnia H 2023 Int. J. Therm. Sci 184 107913Google Scholar

    [25]

    Gong S, Cheng P 2012 Int. J. Heat Mass Transfer 55 4923Google Scholar

    [26]

    Guo Z L, Zheng C G, Shi B C 2011 Phys. Rev. E 83 036707Google Scholar

    [27]

    Chai Z H, Zhao T S 2012 Phys. Rev. E 86 016705Google Scholar

    [28]

    Panofsky W, Phillips M, Jauch J M 1956 Am. J. Phys. 24 416

    [29]

    He X Y, Ning L 2000 Comput. Phys. Commun. 129 158Google Scholar

    [30]

    Chai Z H, Shi B C 2008 Appl. Math. Model. 32 2050Google Scholar

    [31]

    Chai Z H, Liang H, Du R, Shi B C 2019 SIAM J. Sci. Comput. 41 B746Google Scholar

    [32]

    Wang L, Wei Z C, Li T F, Chai Z H, Shi B C 2021 Appl. Math. Model. 95 361Google Scholar

    [33]

    Wang H Y, Lou Q, Liu G J, Li L 2022 Int. J. Therm. Sci. 178 107554Google Scholar

    [34]

    Lou Q, Guo Z L, Shi B C 2013 Phys. Rev. E 87 063301Google Scholar

    [35]

    Ladd A J C 1994 J. Fluid Mech. 271 285Google Scholar

    [36]

    Li L, Chen C, Mei R, Mei M, Klausner J 2014 Phys. Rev. E 89 043308Google Scholar

    [37]

    Gong S, Cheng P 2017 Int. Commun. Heat Mass Transfer 87 61Google Scholar

    [38]

    Li Q, Yu Y, Luo K H 2019 Phys. Rev. E 100 053313Google Scholar

    [39]

    Sadasivan P, Unal C, Nelson R 1995 J. Heat Transfer 117 558Google Scholar

    [40]

    柴立和, 彭晓峰, 王补宣 1999 原子能科学技术 33 533

    Chai L H, Peng X F, Wang B X 1999 Atomic Energy Sci. Techno. 33 533

    [41]

    Berghmans J 1976 Int. J. Heat Mass Transfer 19 791Google Scholar

    [42]

    Johnson R 1968 AIAA J. 6 8

  • 图 1  物理问题示意图

    Figure 1.  Schematic diagram of the physical problem.

    图 2  平滑表面和锥翅表面的沸腾曲线

    Figure 2.  Boiling curves for smooth and conical surfaces.

    图 3  $ T_{\rm{b}}=0.96 T_{\rm{c}} $时, 平滑表面和锥翅表面的沸腾过程

    Figure 3.  Snapshots of the boiling processes on smooth and conical surfaces under $ T_{\rm{b}}=0.96 T_{\rm{c}} $.

    图 4  $ t^*=33.50 $时刻, 加热温度为$ T_{\rm{b}}=0.96 T_{\rm{c}} $的温度分布

    Figure 4.  Temperature distribution during the boiling process with $ T_{\rm{b}} = 0.96 T_{\rm{c}} $ and $ t^*=33.50 $.

    图 5  $ T_{\rm{b}}=1.04 T_{\rm{c}} $时, 平滑表面 (a)和锥翅表面 (b)的沸腾过程及流场分布

    Figure 5.  Snapshots of the boiling process and the flow field distributions on smooth (a) and conical (b) surfaces under $ T_{\rm{b}}=1.04 T_{\rm{c}} $.

    图 6  加热温度$ T_{\rm{b}}=1.04 T_{\rm{c}} $下, 平滑表面和锥翅表面空间平均热流密度随时间的变化

    Figure 6.  The time histories of space-averaged heat flux on smooth and conical surfaces under $ T_{\rm{b}}=1.04 T_{\rm{c}} $.

    图 7  $ T_{\rm{b}}=1.06 T_{\rm{c}} $, 平滑表面 (a)和锥翅表面 (b)的沸腾过程和对应的流场分布

    Figure 7.  Snapshots of the boiling process and the flow field distributions on smooth (a) and conical (b) surfaces under $ T_{\rm{b}}=1.06 T_{\rm{c}} $.

    图 8  $ T_{\rm{b}}=1.12 T_{\rm{c}} $, 平滑表面 (a)和锥翅表面 (b)的沸腾过程

    Figure 8.  Snapshots of the boiling processes on smooth (a) and conical (b) surfaces under $ T_{\rm{b}}=1.12 T_{\rm{c}} $.

    图 9  加热温度为$ T_{\rm{b}}=1.12 T_{\rm{c}} $, $ t^*=96.03 $时刻平滑表面和锥翅表面的局部热流密度

    Figure 9.  Local heat flux on smooth and conical surfaces with $ T_{\rm{b}}=1.12 T_{\rm{c}} $ and $ t^*=96.03 $.

    图 10  $ T_{\rm{b}}=0.96 T_{\rm{c}} $时, 不同电场强度下锥翅表面的沸腾过程 (a) E0 = 0; (b) E0 = 0.0517; (c) E0 = 0.0862; (d) E0 = 0.1207

    Figure 10.  Snapshots of boiling processes on the conical surface at $ T_{\rm{b}}=0.96 T_{\rm{c}} $ under different electric field intensities: (a) E0 = 0; (b) E0 = 0.0517; (c) E0 = 0.0862; (d) E0 = 0.1207

    图 11  加热温度$ T_{\rm{b}}=0.96 T_{\rm{c}} $, 不同电场强度作用下锥翅表面空间平均热流密度随时间的变化

    Figure 11.  The time histories of space-averaged heat flux on the conical surface with $ T_{\rm{b}}=0.96 T_{\rm{c}} $ under different electric field intensities.

    图 12  $ T_{\rm{b}}=1.04 T_{\rm{c}} $下, 电场强度$ E_0=0 $ (a) 和 $ E_0= $$ 0.0862 $ (b)时锥翅表面的沸腾过程及局部电场力分布

    Figure 12.  Snapshots of boiling processes and the distribution of localized electric field forces on the conical surface at $ T_{\rm{b}}=1.04 T_{\rm{c}} $ with $ E_0=0 $ (a) and $ E_0=0.0862 $ (b).

    图 13  锥翅结构周围电场强度的模$ |\boldsymbol{E}| $的分布(电势差$ V= $$ 50 $, $ t^*=44.66 $)

    Figure 13.  Distribution of electric field strength $ |\boldsymbol{E}| $ around the conical structure (potential difference $ V=50 $, $ t^*= $$ 44.66 $).

    图 14  加热温度$ T_{\rm{b}}=1.04 T_{\rm{c}} $时, 电场强度分别为$ E_0=0 $和$ E_0=0.0862 $的空间平均热流密度随时间的变化

    Figure 14.  The time histories of space-averaged heat flux with $ T_{\rm{b}}=1.04 T_{\rm{c}} $ under different electric intensities of $ E_0=0 $ and $ E_0=0.0862 $.

    图 15  $ E_0=0.1207 $时不同壁面过热度得到的锥翅表面的沸腾过程及局部电场力分布 (a) Tb = 1.06 Tc; (b) Tb = 1.12 Tc

    Figure 15.  Snapshots of boiling processes and the distribution of localized electric field forces on the conical surface with $ E_0=0.1207 $ under different wall superheat degrees: (a) Tb = 1.06 Tc; (b) Tb = 1.12 Tc.

    图 16  电场强度$ E_0=0 $和$ E_0=0.1207 $时(a)$ T_{\rm{b}}=1.06 T_{\rm{c}} $ 和(b)$ T_{\rm{b}}=1.12 T_{\rm{c}} $的空间热流密度随时间的变化

    Figure 16.  The time histories of space-averaged heat flux with $ E_0=0 $ and $ E_0=0.1207 $ under (a)$ T_{\rm{b}}=1.06 T_{\rm{c}} $ and (b)$ T_{\rm{b}}=1.12 T_{\rm{c}} $.

    图 17  锥翅表面不同电场强度下的沸腾曲线

    Figure 17.  Boiling curves on the conical surface for different electric field intensities.

    表 1  格子单位与物理单位转换

    Table 1.  The unit conversion from lattice unit to physical unit.

    符号 格子单位 物理单位 转换因子
    $ \rho_{\rm{l}} $ 5.426 570.02 $ {\rm{kg/m^3}} $ 106.16 $ {\rm{kg/m^3}} $
    $ \rho_{\rm{v}} $ 0.8113 86.13 $ {\rm{kg/m^3}} $ 106.16 $ {\rm{kg/m^3}} $
    $ l_0 $ 16 $ 4.72\times 10^{-6}\;{\rm{m}} $ $ 2.95\times 10^{-7}\;{\rm{m}} $
    $ u_0 $ 0.0358 38.56 $ {\rm{m/s}} $ 1077.09 $ {\rm{m/s}} $
    $ t_0 $ 447.8 $ 1.224\times 10^{-7}\;{\rm{s}} $ $ 2.734\times 10^{-10}\;{\rm{s}} $
    $ \nu $ 0.06 $ 0.19\times 10^{-4}\;{\rm{m^2/s}} $ $ 3.18\times 10^{-4}\;{\rm{m^2/s}} $
    $ T_{\rm{c}} $ 0.1961 647.2 $ {\rm{K}} $ 3300.36 $ {\rm{K}} $
    $ p_{\rm{c}} $ 0.1784 $ 0.221\times 10^{8}\;{\rm{Pa}} $ $ 1.24\times 10^{8}\;{\rm{Pa}} $
    $ c_{\rm{vl}} $ 4.0 1405.9 $ {\rm{J/(kg\cdot K)}} $ 351.48 $ {\rm{J/(kg\cdot K)}} $
    $ h_{\rm{fg}} $ 0.624 $ 0.726\times 10^{6}\;{\rm{J/kg}} $ $ 1.16\times 10^{6}\;{\rm{J/kg}} $
    $ \lambda_{\rm{s}} $ 32.556 390.67 $ {\rm{W/(m\cdot K)}} $ 12.0 $ {\rm{W/(m\cdot K)}} $
    $ q_0 $ 0.01269 $ 1.69\times 10^{9}\;{\rm{J/(m^2\cdot s)}} $ $ 1.33\times 10^{11}\;{\rm{J/(m^2\cdot s)}} $
    $ \varepsilon_0\varepsilon_{\rm{l}} $ 2.236 $ 1.98\times 10^{-11}\;{\rm{F/m}} $ $ 8.85\times 10^{-12}\;{\rm{F/m}} $
    $ \varepsilon_0\varepsilon_{\rm{v}} $ 1 $ 8.85\times 10^{-12}\;{\rm{F/m}} $ $ 8.85\times 10^{-12}\;{\rm{F/m}} $
    $ V $ 1 1096.96 $ {\rm{V}} $ 1096.96 $ {\rm{V}} $
    DownLoad: CSV
  • [1]

    Zaidi S 2015 Chem. Eng. Res. Des. 98 44Google Scholar

    [2]

    Massih A R, Persson S 1992 J. Nucl. Mater. 188 323Google Scholar

    [3]

    Mohammed H I, Giddings D, Walker G S 2019 Int. J. Heat Mass Transfer 130 710Google Scholar

    [4]

    Nikolayev V S, Chatain D, Garrabos Y, Beysens D 2006 Phys. Rev. Lett. 97 184503Google Scholar

    [5]

    Li W, Dai R K, Zeng M, Wang Q W 2020 Renew. Sust. Energ. Rev. 130 109926Google Scholar

    [6]

    Tian Z, Etedali S, Afrand M, Abdollahi A, Goodarzi M 2019 Powder Technol. 356 391Google Scholar

    [7]

    Wei J J, Honda H 2003 Int. J. Heat Mass Transfer 46 4059Google Scholar

    [8]

    Li Q, Zhao J H, Sun X Z, Liu B 2022 Appl. Therm. Eng. 215 118924Google Scholar

    [9]

    Kong X, Zhang Y H, Wei J J 2018 Exp. Therm. Fluid Sci. 91 9Google Scholar

    [10]

    Kim S H, Lee C G, Kang J Y, Moriyama K, Kim M H, Park H S 2015 Int. J. Heat Mass Transfer 91 1140Google Scholar

    [11]

    Elkholy A, Swift J, Kempers R 2023 Appl. Therm. Eng 219 119665Google Scholar

    [12]

    Clubb L 1916 UK Patent 100796 [1916-07-09

    [13]

    Dong W, Li R Y, Yu H L, Yan Y Y 2006 Exp. Therm. Fluid Sci. 30 579Google Scholar

    [14]

    Gao M, Cheng P, Quan X J 2013 Int. J. Heat Mass Transfer 67 984Google Scholar

    [15]

    Hristov Y, Zhao D, Kenning D B R, Sefiane K, Karayiannis T G 2009 Heat Mass Transfer 45 999Google Scholar

    [16]

    Garivalis A I, Manfredini G, Saccone G, Di Marco P, Kossolapov A, Bucci M 2021 NPJ Microgravity 7(1) 37Google Scholar

    [17]

    Quan X J, Gao M, Cheng P, Li J S 2015 Int. J. Heat Mass Transfer 85 595Google Scholar

    [18]

    Liu B, Garivalis A I, Cao Z, Zhang Y, Wei J 2022 Int. J. Heat Mass Transfer 183 122154Google Scholar

    [19]

    Liu X, Chai Z H, Shi B C 2019 Phys. Fluids 31 092103Google Scholar

    [20]

    Liu X, Chai Z H, Shi B C 2021 Commun. Comput. Phys. 30 1346Google Scholar

    [21]

    Feng Y, Li H, Guo K, Lei X, Zhao J 2019 Int. J. Heat Mass Transfer 135 885Google Scholar

    [22]

    Li W X, Li Q, Chang H Z, Yu Y, Tang S 2022 Phys. Fluids 34 123327Google Scholar

    [23]

    Lou Q, Wang H Y, Li L 2023 Phys. Fluids 35 123327Google Scholar

    [24]

    Ezzatneshan E, Salehi A, Vaseghnia H 2023 Int. J. Therm. Sci 184 107913Google Scholar

    [25]

    Gong S, Cheng P 2012 Int. J. Heat Mass Transfer 55 4923Google Scholar

    [26]

    Guo Z L, Zheng C G, Shi B C 2011 Phys. Rev. E 83 036707Google Scholar

    [27]

    Chai Z H, Zhao T S 2012 Phys. Rev. E 86 016705Google Scholar

    [28]

    Panofsky W, Phillips M, Jauch J M 1956 Am. J. Phys. 24 416

    [29]

    He X Y, Ning L 2000 Comput. Phys. Commun. 129 158Google Scholar

    [30]

    Chai Z H, Shi B C 2008 Appl. Math. Model. 32 2050Google Scholar

    [31]

    Chai Z H, Liang H, Du R, Shi B C 2019 SIAM J. Sci. Comput. 41 B746Google Scholar

    [32]

    Wang L, Wei Z C, Li T F, Chai Z H, Shi B C 2021 Appl. Math. Model. 95 361Google Scholar

    [33]

    Wang H Y, Lou Q, Liu G J, Li L 2022 Int. J. Therm. Sci. 178 107554Google Scholar

    [34]

    Lou Q, Guo Z L, Shi B C 2013 Phys. Rev. E 87 063301Google Scholar

    [35]

    Ladd A J C 1994 J. Fluid Mech. 271 285Google Scholar

    [36]

    Li L, Chen C, Mei R, Mei M, Klausner J 2014 Phys. Rev. E 89 043308Google Scholar

    [37]

    Gong S, Cheng P 2017 Int. Commun. Heat Mass Transfer 87 61Google Scholar

    [38]

    Li Q, Yu Y, Luo K H 2019 Phys. Rev. E 100 053313Google Scholar

    [39]

    Sadasivan P, Unal C, Nelson R 1995 J. Heat Transfer 117 558Google Scholar

    [40]

    柴立和, 彭晓峰, 王补宣 1999 原子能科学技术 33 533

    Chai L H, Peng X F, Wang B X 1999 Atomic Energy Sci. Techno. 33 533

    [41]

    Berghmans J 1976 Int. J. Heat Mass Transfer 19 791Google Scholar

    [42]

    Johnson R 1968 AIAA J. 6 8

  • [1] Lai Yao-Yao, Chen Xin-Meng, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann method based feedback control approach for pinned spiral waves. Acta Physica Sinica, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] Meng Xian-Wen. Structural influence of electric field direction on water bridges in one-dimensional disjoint nanochannels. Acta Physica Sinica, 2024, 73(9): 093102. doi: 10.7498/aps.73.20240027
    [3] Zhang Ming-Mei, Guo Ya-Tao, Fu Xu-Ri, Li Meng-Lei, Ren Bao-Cang, Zheng Jun, Yuan Rui-Yang. Spin-switching effect and giant magnetoresistance in quantum structure of monolayer MoS2 nanoribbons with ferromagnetic electrode. Acta Physica Sinica, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [4] Hu Jian, Zhang Sen, Lou Qin. Mesoscopic study on effect of electric field and heater characteristics on saturated pool boiling heat transfer. Acta Physica Sinica, 2023, 72(17): 176401. doi: 10.7498/aps.72.20230341
    [5] Cao Chun-Lei, He Xiao-Tian, Ma Xiao-Jing, Xu Jin-Liang. Enhanced pool boiling heat transfer on soft liquid metal surface. Acta Physica Sinica, 2021, 70(13): 134703. doi: 10.7498/aps.70.20202053
    [6] Zhang Li, Lin Zhi-Yu, Luo Jun, Wang Shu-Long, Zhang Jin-Cheng, Hao Yue, Dai Yang, Chen Da-Zheng, Guo Li-Xin. High breakdown voltage lateral AlGaN/GaN high electron mobility transistor with p-GaN islands buried buffer layer for power applications. Acta Physica Sinica, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [7] Ren Sheng, Zhang Jia-Zhong, Zhang Ya-Miao, Wei Ding. Phase transition in liquid due to zero-net-mass-flux jet and its numerical simulation using lattice Boltzmann method. Acta Physica Sinica, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [8] Xie Wen-Jun, Teng Peng-Fei. Study of acoustic levitation by lattice Boltzmann method. Acta Physica Sinica, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [9] Shi Dong-Yan, Wang Zhi-Kai, Zhang A-Man. A novel lattice Boltzmann method for dealing with arbitrarily complex fluid-solid boundaries. Acta Physica Sinica, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [10] Ling Zhi-Gang, Tang Yan-Lin, Li Tao, Li Yu-Peng, Wei Xiao-Nan. Molecular structure and properties of zirconiumdioxide under the external electric field. Acta Physica Sinica, 2014, 63(2): 023102. doi: 10.7498/aps.63.023102
    [11] Liu Qiu-Zu, Kou Zi-Ming, Han Zhen-Nan, Gao Gui-Jun. Dynamic process simulation of droplet spreading on solid surface by lattic Boltzmann method. Acta Physica Sinica, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [12] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [13] Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming. Numerical investigation of bubble nucleation process using the lattice Boltzmann method. Acta Physica Sinica, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [14] Ling Zhi-Gang, Tang Yan-Lin, Li Tao, Li Yu-Peng, Wei Xiao-Nan. Molecular structure and electronic spectrum of 2, 2, 5, 5-tetrachlorobiphenyl under the extenal electric field. Acta Physica Sinica, 2013, 62(22): 223102. doi: 10.7498/aps.62.223102
    [15] Jiang Fang-Ming, Liao Quan, Zeng Jian-Bang, Li Long-Jian. Simulation of bubble growth process in pool boilingusing lattice Boltzmann method. Acta Physica Sinica, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [16] Zeng Jian-Bang, Li Long-Jian, Liao Quan, Chen Qing-Hua, Cui Wen-Zhi, Pan Liang-Ming. Application of lattice Boltzmann method to phase transition process. Acta Physica Sinica, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [17] Xiao Bo-Qi, Chen Ling-Xia, Jiang Guo-Ping, Rao Lian-Zhou, Wang Zong-Chi, Wei Mao-Jin. Mathematical analysis of pool boiling heat transfer. Acta Physica Sinica, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [18] Ruan Wen, Luo Wen-Lang, Zhang Li, Zhu Zheng-He. Molecular structure and electronic spectrum of styrene under the external electric field. Acta Physica Sinica, 2008, 57(10): 6207-6212. doi: 10.7498/aps.57.6207
    [19] Lu Yu-Hua, Zhan Jie-Min. Three-dimensional numerical simulation of thermosolutal convection in enclosures using lattice Boltzmann method. Acta Physica Sinica, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] LI HUA-BING, HUANG PING-HUA, LIU MU-REN, KONG LING-JIANG. SIMULATION OF THE MKDV EQUATION WITH LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
Metrics
  • Abstract views:  2147
  • PDF Downloads:  133
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2023
  • Accepted Date:  27 September 2023
  • Available Online:  20 October 2023
  • Published Online:  20 January 2024

/

返回文章
返回