Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on Single Event Burnout of GaN power devices with femtosecond pulsed laser

Cui Yi-Xin Ma Ying-Qi Shangguan Shi-Peng Kang Xuan-Wu Liu Peng-Cheng Han Jian-Wei

Citation:

Research on Single Event Burnout of GaN power devices with femtosecond pulsed laser

Cui Yi-Xin, Ma Ying-Qi, Shangguan Shi-Peng, Kang Xuan-Wu, Liu Peng-Cheng, Han Jian-Wei
PDF
HTML
Get Citation
  • The femtosecond pulsed laser is used to study the quantitative evaluation technology of the single event burnout (SEB) effect in GaN power devices. In this work, we establish two pulsed-laser effective energy transmission models for different device structures, analyzing and verifying the equivalent relationship between the effective laser energy and the heavy ion linear energy transmission (LET). The critical parameters of models are confirmed, including laser parameters and device parameters. The interface reflectivity between the layers is mainly considered. Meanwhile, the parameters are corrected by the multiple reflections between the interfaces, and the laser energy of the second reflection of the metal layer is considered. These measures can be used to reduce the error of the effective energy in the device active area. In addition, we validate the models experimentally. A gallium nitride high electron mobility transistor (GaN HEMT) and a schottky barrier diode (SBD) power device are used in the experiment on the irradiation by a femtosecond pulse laser. The effective laser energy thresholds and the laser equivalent LET threshold with two incident wavelengths of the SEB are calculated. The theoretical calculation value and the actual measured value are compared. The selcction basis of the laser wavelengths is given by the detailed study. The support for the laser quantitative evaluation and the protection design of the SEB in GaN power devices is provided by this work.
      Corresponding author: Ma Ying-Qi, myq@nssc.ac.cn
    • Funds: Project supported by Youth Innovation Promotion Association of Chinese Academy of Sciences, China(Grant No. 2018179), the Key Research and Development Program of Guangdong Province, China(Grant No. 2020B010170001), and the Beijing Municipal Science and Technology Commission, China(Grant No. Z201100003520002).
    [1]

    Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T, Ohashi H 2003 IEEE Trans. Electron Devices. 50 2528Google Scholar

    [2]

    Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini A, Zanoni E 2008 IEEE Trans. Device Mater. Reliab. 8 332Google Scholar

    [3]

    Millán J, Godignon P, Perpiñà X, Tomás A P, Rebollo J 2014 IEEE Trans. Power Electron. 29 2155Google Scholar

    [4]

    Zerarka M, Crepel O 2018 Microelectron. Reliab. 88 984Google Scholar

    [5]

    Shikhar S, Ashish S, Subhashish B 2015 IEEE Applied Power Electronics Conference and Exposition Charlotte, NC, USA, March 15–19, 2015 p1048

    [6]

    陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 物理学报 11 116102Google Scholar

    Chen R, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 11 116102Google Scholar

    [7]

    Zhang F, Wang Y, Wu X, Cao F 2020 IEEE Access 8 12445Google Scholar

    [8]

    Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881Google Scholar

    [9]

    Cai S J, Tang Y S, Wei Y Y, Wong L, Chen Y L, Wang K L, Chen M, Schrimpf R D, Keay J C, Galloway K F 2000 IEEE Trans. Electron Devices. 47 304Google Scholar

    [10]

    Luo B, Johnson J W, Ren F 2001 Appl. Phys. Let. 79 2196Google Scholar

    [11]

    Kim H Y, Kim J, Liu L, Lo C F, Ren F, Pearton S J 2012 J. Vac. Sci. Technol. 30 012202Google Scholar

    [12]

    Zerarka M, Austin P, Toulon G, Morancho F, Arbess H, Tasselli J 2012 IEEE Trans. Electron Devices. 59 3482Google Scholar

    [13]

    Martinez M J, King M P, Baca A G, Allerman A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar

    [14]

    Luo X, Wang Y, Hao Y, Li X J, Liu C M, Fei X X, Yu C H, Cao F 2019 IEEE Trans. Electron Devices. 66 1118Google Scholar

    [15]

    Buchner S, Howard J, Poivey C, McMorrow D, Pease R 2004 IEEE Trans. Nucl. Sci. 51 3716Google Scholar

    [16]

    韩建伟, 上官士鹏, 马英起, 朱翔, 陈睿, 李赛 2017 深空探测学报 4 577Google Scholar

    Han J W, Shangguan S P, Ma Y Q, Zhu X, Chen R, Li S 2017 J. Deep Space Explor. 4 577Google Scholar

    [17]

    Buchner S, Miller F, Pouget V, McMorrow D 2013 IEEE Trans. Nucl. Sci. 60 1852Google Scholar

    [18]

    Ngom C, Pouget V, Zerarka M, Coccetti F, Crepel O, Touboul A, Matmat M 2021 Microelectron. Reliab. 126 114339

    [19]

    Khachatrian A, Roche N J, Buchner S, Koehler A D, Greenlee J D, Anderson T J, Warner J H, McMorrow D 2016 IEEE Trans. Nucl. Sci. 63 1995Google Scholar

    [20]

    Roche N J, Khachatrian A, King M, Buchner S, Halles J, Kaplar R, Armstrong A, Kizilyalli I C, Cunningham P D, Melinger J S, Warner J H, McMorrow D 2016 16 th European Conference on Radiation and Its Effects on Components and Systems(RADECS) Bremen, Germany, September 19–23, 2016

    [21]

    Khachatrian A, Roche N J, Buchner S, Koehler A D, Anderson T J, Cavrois V F, Muschitiello M, McMorrow D, Weaver B, Hobart K D 2015 IEEE Trans. Nucl. Sci. 62 2743Google Scholar

    [22]

    上官士鹏 2020 博士学位论文 (北京: 中国科学院大学)

    Shangguan S P 2020 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [23]

    Refractive index database, Polyanskiy M N https://refractiveindex.info/ [2021-12-5]

    [24]

    Mizuta E, Kuboyama S, Nakada Y, Takeyama A, Ohshima T, Iwata Y, Suzuki K 2018 IEEE Trans. Nucl. Sci. 65 1956Google Scholar

    [25]

    Sun C K, Liang J C, Wang J C, Kao F J 2000 Appl. Phys. Let. 76 439Google Scholar

    [26]

    Chen H, Huang X, Fu H, Lu Z, Zhang X, Montes J A, Zhao Y 2017 Appl. Phys. Lett. 110 181110Google Scholar

  • 图 1  正面入射的脉冲激光能量传输模型

    Figure 1.  Pulsed-laser energy transmission model with frontal incidence.

    图 2  背部入射的脉冲激光能量传输模型 (a) 背部开孔的HEMT器件; (b) SBD器件

    Figure 2.  Pulsed-laser energy transmission model with back incidence: (a) HEMT device with hole on the back; (b) SBD device.

    图 3  不同波长下激光在GaN材料中的穿透深度

    Figure 3.  Laser penetration depth in GaN materials at different wavelengths.

    图 4  脉冲激光在介质层间多次反射示意图

    Figure 4.  Schematic diagram of the pulsed laser light reflecting between dielectric layers.

    图 5  不同波长下GaN材料的$ \beta $

    Figure 5.  $ \beta $ of GaN materials at different wavelengths.

    图 6  飞秒脉冲激光单粒子效应试验装置 (a) 原理图; (b) 实物图

    Figure 6.  Femtosecond pulsed laser SEE test device: (a) Schematic diagram; (b) physical diagram.

    图 7  验证器件结构参数及激光入射位置 (a) 器件1; (b) 器件2

    Figure 7.  Device structure parameters and laser incident positions: (a) Device 1; (b) device 2.

    图 8  器件发生SEB后的实物图 (a) 器件1; (b) 器件2

    Figure 8.  The physical pictures of the devices after SEB: (a) Device 1; (b) device 2.

    图 9  不同波长下器件发生SEB的$ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}}^{2} $与LET关系对比图 (a) 620 nm; (b) 720 nm

    Figure 9.  Corresponding diagram of the relationship between $ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}}^{2} $ and LET under different wavelengths causing SEB: (a) 620 nm; (b) 720 nm.

    表 1  不同波长的激光在不同厚度的Al0.2Ga0.8N中的吸收系数与光损

    Table 1.  Absorption coefficients and optical losses of different laser wavelengths in different thicknesses of Al0.2Ga0.8N.

    波长/nm600620650700720
    吸收系数/cm–1210190172155143
    30 nm厚光损0.06%0.06%0.05%0.05%0.04%
    50 nm厚光损0.1%0.1%0.09%0.08%0.07%
    70 nm厚光损0.14%0.13%0.12%0.11%0.1%
    DownLoad: CSV

    表 2  不同波长的激光在材料中的空气中反射率与折射率

    Table 2.  The reflectivity and refractive index of different laser wavelengths from air to the material.

    光学参数材料波长/nm
    600620650700720
    空气中
    反射率
    Si3N40.1180.1170.1170.1160.116
    Al0.2Ga0.8N0.140.140.140.140.14
    GaN0.1690.1680.1670.1650.165
    蓝宝石0.080.080.080.080.08
    折射率Si3N42.042.042.042.032.03
    Al0.2Ga0.8N2.182.182.182.172.17
    GaN2.312.312.312.312.31
    蓝宝石1.761.761.761.761.75
    DownLoad: CSV

    表 3  激光试验结果

    Table 3.  Laser test results.

    器件器件工作
    电压/V
    波长/nm诱发SEB的
    激光能量/nJ
    器件15206203.3
    7206
    器件2906203.8
    7204.5
    DownLoad: CSV

    表 4  器件有效能量$ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}} $

    Table 4.  Device effective energy $ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}} $.

    器件入射激光
    波长/nm
    入射激光
    能量/nJ
    有效能
    量$ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}} $/nJ
    器件16203.32.91
    72065.29
    器件26203.83.56
    7204.56.44
    DownLoad: CSV

    表 5  器件重离子SEB结果

    Table 5.  SEB results (Heavy ion) of the device.

    器件毁坏时最低
    工作电压/V
    LET (GaN)/
    (MeV·cm2·mg–1)
    器件152018
    器件29028.5
    DownLoad: CSV

    表 6  激光ELET与重离子LET对比

    Table 6.  Comparison of laser ELET and Heavy ion LET.

    器件毁坏时工作
    电压/V
    入射激光
    波长/nm
    有效能量
    $ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}} $/nJ
    激光ELET/
    (MeV·cm2·mg–1)
    重离子LET (GaN)/
    MeV·cm2/·mg–1)
    器件15206202.9118.9718
    7205.2918.47
    器件2906203.5628.3928.5
    7206.4427.37
    DownLoad: CSV
  • [1]

    Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T, Ohashi H 2003 IEEE Trans. Electron Devices. 50 2528Google Scholar

    [2]

    Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini A, Zanoni E 2008 IEEE Trans. Device Mater. Reliab. 8 332Google Scholar

    [3]

    Millán J, Godignon P, Perpiñà X, Tomás A P, Rebollo J 2014 IEEE Trans. Power Electron. 29 2155Google Scholar

    [4]

    Zerarka M, Crepel O 2018 Microelectron. Reliab. 88 984Google Scholar

    [5]

    Shikhar S, Ashish S, Subhashish B 2015 IEEE Applied Power Electronics Conference and Exposition Charlotte, NC, USA, March 15–19, 2015 p1048

    [6]

    陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 物理学报 11 116102Google Scholar

    Chen R, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 11 116102Google Scholar

    [7]

    Zhang F, Wang Y, Wu X, Cao F 2020 IEEE Access 8 12445Google Scholar

    [8]

    Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881Google Scholar

    [9]

    Cai S J, Tang Y S, Wei Y Y, Wong L, Chen Y L, Wang K L, Chen M, Schrimpf R D, Keay J C, Galloway K F 2000 IEEE Trans. Electron Devices. 47 304Google Scholar

    [10]

    Luo B, Johnson J W, Ren F 2001 Appl. Phys. Let. 79 2196Google Scholar

    [11]

    Kim H Y, Kim J, Liu L, Lo C F, Ren F, Pearton S J 2012 J. Vac. Sci. Technol. 30 012202Google Scholar

    [12]

    Zerarka M, Austin P, Toulon G, Morancho F, Arbess H, Tasselli J 2012 IEEE Trans. Electron Devices. 59 3482Google Scholar

    [13]

    Martinez M J, King M P, Baca A G, Allerman A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar

    [14]

    Luo X, Wang Y, Hao Y, Li X J, Liu C M, Fei X X, Yu C H, Cao F 2019 IEEE Trans. Electron Devices. 66 1118Google Scholar

    [15]

    Buchner S, Howard J, Poivey C, McMorrow D, Pease R 2004 IEEE Trans. Nucl. Sci. 51 3716Google Scholar

    [16]

    韩建伟, 上官士鹏, 马英起, 朱翔, 陈睿, 李赛 2017 深空探测学报 4 577Google Scholar

    Han J W, Shangguan S P, Ma Y Q, Zhu X, Chen R, Li S 2017 J. Deep Space Explor. 4 577Google Scholar

    [17]

    Buchner S, Miller F, Pouget V, McMorrow D 2013 IEEE Trans. Nucl. Sci. 60 1852Google Scholar

    [18]

    Ngom C, Pouget V, Zerarka M, Coccetti F, Crepel O, Touboul A, Matmat M 2021 Microelectron. Reliab. 126 114339

    [19]

    Khachatrian A, Roche N J, Buchner S, Koehler A D, Greenlee J D, Anderson T J, Warner J H, McMorrow D 2016 IEEE Trans. Nucl. Sci. 63 1995Google Scholar

    [20]

    Roche N J, Khachatrian A, King M, Buchner S, Halles J, Kaplar R, Armstrong A, Kizilyalli I C, Cunningham P D, Melinger J S, Warner J H, McMorrow D 2016 16 th European Conference on Radiation and Its Effects on Components and Systems(RADECS) Bremen, Germany, September 19–23, 2016

    [21]

    Khachatrian A, Roche N J, Buchner S, Koehler A D, Anderson T J, Cavrois V F, Muschitiello M, McMorrow D, Weaver B, Hobart K D 2015 IEEE Trans. Nucl. Sci. 62 2743Google Scholar

    [22]

    上官士鹏 2020 博士学位论文 (北京: 中国科学院大学)

    Shangguan S P 2020 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [23]

    Refractive index database, Polyanskiy M N https://refractiveindex.info/ [2021-12-5]

    [24]

    Mizuta E, Kuboyama S, Nakada Y, Takeyama A, Ohshima T, Iwata Y, Suzuki K 2018 IEEE Trans. Nucl. Sci. 65 1956Google Scholar

    [25]

    Sun C K, Liang J C, Wang J C, Kao F J 2000 Appl. Phys. Let. 76 439Google Scholar

    [26]

    Chen H, Huang X, Fu H, Lu Z, Zhang X, Montes J A, Zhao Y 2017 Appl. Phys. Lett. 110 181110Google Scholar

  • [1] Bai Ru-Xue, Guo Hong-Xia, Zhang Hong, Wang Di, Zhang Feng-Qi, Pan Xiao-Yu, Ma Wu-Ying, Hu Jia-Wen, Liu Yi-Wei, Yang Ye, Lyu Wei, Wang Zhong-Ming. High-energy proton radiation effect of Gallium nitride power device with enhanced Cascode structure. Acta Physica Sinica, 2023, 72(1): 012401. doi: 10.7498/aps.72.20221617
    [2] Chen Rui, Liang Ya-Nan, Han Jian-Wei, Wang Xuan, Yang Han, Chen Qian, Yuan Run-Jie, Ma Ying-Qi, Shangguan Shi-Peng. Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays. Acta Physica Sinica, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [3] Dou Zhi-Yuan, Zhang Bin, Liu Shuai-Lin, Hou Jing. High-power 1.6 μm noise-like square pulse generation in an all-fiber mode-locked laser. Acta Physica Sinica, 2020, 69(16): 164202. doi: 10.7498/aps.69.20200245
    [4] Zhang Ke-Jin, Liu Lei, Zeng Qing-Wei, Gao Tai-Chang, Hu Shuai, Chen Ming. Influence of different scattering medium on propagation characteristics to femtosecond laser pulses. Acta Physica Sinica, 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [5] Xiang Xiao, Wang Shao-Feng, Hou Fei-Yan, Quan Run-Ai, Zhai Yi-Wei, Wang Meng-Meng, Zhou Cong-Hua, Xu Guan-Jun, Dong Rui-Fang, Liu Tao, Zhang Shou-Gang. A broadband passive cavity for analyzing and filtering the noise of a femtosecond laser. Acta Physica Sinica, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [6] Xie Feng, Lin Wan-Tao, Mo Jia-Qi. Homotopic mapping solving method of transfers model with a class of generalized femtosecond pulse laser for nano metal. Acta Physica Sinica, 2014, 63(24): 240201. doi: 10.7498/aps.63.240201
    [7] Zhu Min, Li Xiao-Hong, Li Guo-Qiang, Chang Li-Yang, Xie Chang-Xin, Qiu Rong, Li Jia-Wen, Huang Wen-Hao. Photoluminescence of monocrystalline silicon irradiated by femtosecond pulsed laser. Acta Physica Sinica, 2014, 63(5): 057801. doi: 10.7498/aps.63.057801
    [8] Zhuo Qing-Qing, Liu Hong-Xia, Wang Zhi. Single event effect of 3D H-gate SOI NMOS devices in total dose ionizing. Acta Physica Sinica, 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [9] Han Xiang-Lin, Zhao Zhen-Jiang, Cheng Rong-Jun, Mo Jia-Qi. Solution of the transfer models of femtosecond pulse laser for nano metal film. Acta Physica Sinica, 2013, 62(11): 110202. doi: 10.7498/aps.62.110202
    [10] Zhong Dong-Zhou, She Wei-Long. Linear electro-optic effect of ultrashort laser pulses in LiNbO3 crystal and its dispersion compensation. Acta Physica Sinica, 2012, 61(6): 064214. doi: 10.7498/aps.61.064214
    [11] Ma Wei-Gang, Wang Hai-Dong, Zhang Xing, Wang Wei. Theoretical and experimental study of femtosecond pulse laser heating on thin metal film. Acta Physica Sinica, 2011, 60(6): 064401. doi: 10.7498/aps.60.064401
    [12] Ji Zhong-Gang, Wang Zhan-Xin, Liu Jian-Sheng, Li Ru-Xin. Influence of quadratic phase existing in the initial condition on the dynamics of femtosecond laser pulse filamentation. Acta Physica Sinica, 2010, 59(11): 7885-7891. doi: 10.7498/aps.59.7885
    [13] Zuo Yan-Lei, Zeng Xiao-Ming, Huang Xiao-Jun, Zhao Lei, Wang Xiao, Zhou Kai-Nan, Zhang Ying, Huang Zheng. Pulse-front-distortion in large-aperture short-pulse laser systems. Acta Physica Sinica, 2009, 58(12): 8264-8270. doi: 10.7498/aps.58.8264
    [14] Jian Ya-Qing, Yan Pei-Guang, Lü Ke-Cheng, Zhang Tie-Qun, Zhu Xiao-Nong. Experimental study and numerical analysis of femtosecond pulse propagation and supercontinuum generation in highly nonlinear photonic crystal fiber. Acta Physica Sinica, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [15] Ge Yu-Cheng, Li Yuan-Jing, Kang Ke-Jun. Direct measurement of the temporal structure of narrow bandwidth femtosecond XUV using ultra-short laser via differential photoelectron energy spectrum. Acta Physica Sinica, 2005, 54(6): 2669-2675. doi: 10.7498/aps.54.2669
    [16] Hu Ming-Lie, Wang Qing-Yue, Li Yan-Feng, Wang Zhuan, Chai Lu, Zhang Wei-Li. Mode-controlled four-wave-mixing in the birefringent microstructure fiber by femtosecond laser pulses. Acta Physica Sinica, 2005, 54(9): 4411-4415. doi: 10.7498/aps.54.4411
    [17] Gong Yu-Bin, Zhang Zhang, Wei Yan-Yu, Meng Fan-Bao, Fan Zhi-Kai, Wang Wen-Xiang. Simulation of pulse shortening phenomena in high power microwave tube using PIC method. Acta Physica Sinica, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
    [18] Hu Ming-Lie, Wang Qing-Yue, Li Yan-Feng, Wang Zhuan, Zhang Zhi-Gang, Chai Lu, Zhang Ruo-Bing. Experimental analysis of the dependence factor duringsupercontinuum generation in photonic crystal fiber*. Acta Physica Sinica, 2004, 53(12): 4243-4247. doi: 10.7498/aps.53.4243
    [19] WANG YI-SHAN, CHEN GUO-FU, YU LIAN-JUN, ZHAO SHANG-HONG, ZHAO WEI. GENERATION OF THE HIGH EFFICIENCY HIGH PEAK-POWER FEMTOSECOND BLUE OPTICAL PULSE. Acta Physica Sinica, 2000, 49(12): 2378-2382. doi: 10.7498/aps.49.2378
    [20] SHEN YU-ZHEN, WANG QING-YUE, XING QI-RONG, SHI JI-YING. SELF-PHASE MODULATION IN CHIRPED-PULSE AMPLIFICATION. Acta Physica Sinica, 1996, 45(2): 214-221. doi: 10.7498/aps.45.214
Metrics
  • Abstract views:  5589
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  13 December 2021
  • Accepted Date:  08 March 2022
  • Available Online:  28 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回