Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects

Yang Wei-Tao Wu Yi-Chen Xu Rui-Ming Shi Guang Ning Ti Wang Bin Liu Huan Guo Zhong-Jie Yu Song-Lin Wu Long-Sheng

Citation:

Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects

Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng
cstr: 32037.14.aps.73.20241246
PDF
HTML
Get Citation
  • A large-format, high-resolution Hg1–xCdxTe infrared focal plane array (IRFPA) image sensor can be used in aerospace remote sensing and high-precision satellite imaging. The next generation of meteorological satellites in China will all adopt this type of image sensor. However, space high-energy protons can cause displacement damage effects in Hg1–xCdxTe IRFPA detectors and induce total ionizing dose (TID) effects in the pixel unit metal-oxide-semiconductor (MOS) transistors. This study focuses on a 55nm manufacturing process Hg1–xCdxTe IRFPA sensor widely used in image sensors by using a 2 pixel×2 pixel basic pixel unit model for large-format arrays and constructing a Geant4 simulation model. Simulations are conducted for different proton irradiation fluences, including 1010, 1011, 1012 and 1013 cm–2. The results show the displacement damage under various fluences, including non-ionizing energy loss and displacement atom distribution. It is found that at a proton cumulative fluence of 1013 cm–2, in addition to considering the displacement damage effect in the Hg1–xCdxTe IRFPA sensor, attention must also be paid to the TID effects on the MOS transistors in the pixel units. Additionally, this study provides a preliminary assessment of the damage conditions in the space environment based on simulation results. This study provides crucial data for supporting the space applications of future large-format Hg1–xCdxTe IRFPA image sensors.
      Corresponding author: Yang Wei-Tao, yangweitao01@xidian.edu.cn ; Wu Long-Sheng, lswu@xidian.edu.cn
    • Funds: Project supported by the Natural Science Basic Research Plan in the Shaanxi Province of China (Grant No. 2023-JC-QN-0015) and the Fundamental Research Funds for the Central Universities, China (Grant No. XJSJ23049).
    [1]

    乔辉, 王妮丽, 杨晓阳, 郭强, 蒯文林, 徐国庆, 张冬冬, 李向阳 2023 上海航天(中英文) 40 99

    Qiao H, Wang N L, Yang X Y, Guo Q, Kuai W L, Xu G Q, Zhang D D, Lli X Y 2023 Aerospace Shanghai (Chinese & English) 40 99

    [2]

    蔡毅 2022 红外与激光工程 51 20210988

    Cai Y 2022 Infrared Laser Eng. 51 20210988

    [3]

    Marion B R 2009 Proc. of SPIE 7298 72982SGoogle Scholar

    [4]

    乔辉, 王妮丽, 贾嘉, 兰添翼, 许金通, 杨晓阳, 张燕, 李向阳 2023 激光与红外 53 1534Google Scholar

    Qiao H, Wang N L, Jia J, Lan T Y, Xu J T, Yang X Y, Zhang Y, Li X Y 2023 Laser & Infrared 53 1534Google Scholar

    [5]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [6]

    周立庆, 宁提, 张敏, 陈彦冠, 谢珩, 付志凯 2019 激光与红外 49 915

    Zhou L Q, Ning T, Zhang M, Chen Y G, Xie H, Fu Z K 2019 Laser & Infrared 49 915

    [7]

    折伟林, 邢晓帅, 邢伟荣, 刘江高, 郝斐, 杨海燕, 王丹, 侯晓敏, 李振兴, 王成刚 2024 激光与红外 54 483Google Scholar

    Zhe W L, Xing X S, Xing W R, Liu J G, Hao F, Yang H Y, Wang D, Hou X M, Li Z X, Wang C G 2024 Laser & Infrared 54 483Google Scholar

    [8]

    王忆锋, 田萦 2011 红外 32 1Google Scholar

    Wang Y F, Tian Y 2011 Infrared 32 1Google Scholar

    [9]

    江天, 程湘爱, 郑鑫, 许中杰, 江厚满, 陆启生 2012 物理学报 61 137302Google Scholar

    Jiang T, Cheng X A, Zheng X, Xu Z J, Jiang H M, Lu Q S 2012 Acta Phys. Sin. 61 137302Google Scholar

    [10]

    乔辉, 廖毅, 胡伟达, 邓屹, 袁永刚, 张勤耀, 李向阳, 龚海梅 2008 物理学报 57 7088Google Scholar

    Qiao H, Liao Y, Hu W D, Deng Y, Yuan Y G, Zhang Q Y, Li X Y, Gong H M 2008 Acta Phys. Sin. 57 7088Google Scholar

    [11]

    Sun X, Abshire J B, Lauenstein J M, et al. 2021 IEEE Trans. Nucl. Sci. 68 27Google Scholar

    [12]

    Dinand S, Goiffon V, Lambert D, Rizzolo S, Baier N, Borniol E D, Saint-Pé O, Durnez C, Gravrand O 2023 IEEE Trans. Nucl. Sci. 70 1234

    [13]

    唐宁, 王祖军, 晏石兴, 李传洲, 蒋镕羽 2024 光学学报 44 0928003Google Scholar

    Tang N, Wang Z J, Yan S X, Li C Z, Jiang R Y 2024 Acta Opt. Sin. 44 0928003Google Scholar

    [14]

    王祖军, 赖善坤, 杨勰, 贾同轩, 黄港, 聂栩 2022 半导体光电 43 839

    Wang Z J, Lai S K, Yang X, Jia T X, Huang G, Nie X 2022 Semicond. Optoelectron. 43 839

    [15]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [16]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [17]

    魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平 2022 物理学报 71 226102Google Scholar

    Wei W J, Gao X D, Lü L L, Xu N N, Li G P 2022 Acta Phys. Sin. 71 226102Google Scholar

    [18]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [19]

    何欢, 白雨蓉, 田赏, 刘方, 臧航 柳文波, 李培, 贺朝会 2024 物理学报 73 052402Google Scholar

    He H, Bai Y R, Tian S, Liu F, Zang H, Liu W B, Li P, He C H 2024 Acta Phys. Sin. 73 052402Google Scholar

    [20]

    赵俊, 王晓璇, 李雄军, 张应旭, 秦强, 宋林伟, 袁绶章, 孔金丞, 姬荣斌 2023 中国科学: 技术科学 53 1419Google Scholar

    Zhao J, Wang X X, Li X J, Zhang Y X, Qin Q, Song L W, Yuan S Z, Kong J C, Ji R B 2023 Sci. Sin. -Technol. 53 1419Google Scholar

    [21]

    Xu R M, Guo Z J, Liu S Y, Yu N M 2024 Chin. J. Electron. 33 415Google Scholar

    [22]

    张林, 马林东, 杜林, 李艳波, 徐先峰, 黄鑫蓉 2023 物理学报 72 138501Google Scholar

    Zhang L, Ma L D, Du L, Li Y B, Xu X F, Huang X R 2023 Acta Phys. Sin. 72 138501Google Scholar

    [23]

    Tylka A J, Adams J H, Boberg P R, et al. 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar

    [24]

    Akkerman A, Barak J 2007 Nucl. Instrum. Methods Phys. Res. , Sect. B 260 529Google Scholar

    [25]

    Robinson M, Torrens I 1974 Phys. Rev. B 9 5008Google Scholar

    [26]

    Konobeyev A Y, Fischer U, Korovin Y A, Simakov S P 2017 Nucl. Energy Technol. 3 169Google Scholar

  • 图 1  碲镉汞红外焦平面CMOS图像传感器结构示意图[20]

    Figure 1.  Schematic diagram of Hg1–xCdxTe infrared focal plane CMOS image sensor structure[20].

    图 2  单像素5T电路结构和2 pixel×2 pixel像素单元版图布局[21]

    Figure 2.  Structure of a single pixel 5T circuit and a 2 pixel×2 pixel layout[21].

    图 3  碲镉汞红外焦平面阵列质子入射仿真模型简图

    Figure 3.  Simulation schematic of proton striking Hg1–xCdxTe infrared focal plane.

    图 4  仿真中所用质子能谱[23]

    Figure 4.  The proton spectrum used in the simulation[23].

    图 5  不同模拟注量下的PKA总数

    Figure 5.  Total PKA number under different fluences in simulation.

    图 6  不同模拟注量下的PKA分布信息 (a) 1010 cm–2; (b) 1011 cm–2; (c) 1012 cm–2; (d) 1013 cm–2

    Figure 6.  PKA distribution at different simulation fluences: (a) 1010 cm–2; (b) 1011 cm–2; (c) 1012 cm–2; (d) 1013 cm–2.

    图 7  不同注量质子仿真获得的NIEL信息 (a) 1010 cm–2; (b) 1011 cm–2; (c) 1012 cm–2; (d) 1013 cm–2

    Figure 7.  NIEL under different proton fluences: (a) 1010 cm–2; (b) 1011 cm–2; (c) 1012 cm–2; (d) 1013 cm–2.

    图 8  注量为1013 cm–2的质子入射碲镉汞阵列产生的不同NIEL

    Figure 8.  NIEL from different interactions at 1013 cm–2.

    图 9  模拟质子注量为1013 cm–2Nd在每个分段区间的分布信息

    Figure 9.  Distribution of Nd in each interval at 1013 cm–2 proton fluence.

    图 10  模拟质子注量为1013 cm–2时整个碲镉汞阵列探测器中的Nd情况

    Figure 10.  Nd in the entire Hg1–xCdxTe array detector at 1013 cm–2 simulated proton fluences.

    图 11  模拟质子注量为1013 cm–2的DPA分布信息

    Figure 11.  DPA in the Hg1–xCdxTe array detector at 1013 cm–2 simulated proton fluences.

    图 12  模拟质子注量为1013 cm–2时整个碲镉汞阵列探测器中的DPA

    Figure 12.  The entire DPA in Hg1–xCdxTe array under 1013 cm–2 proton fluences.

    表 1  不同模拟注量下的PKA种类数目

    Table 1.  The PKA of different fluences in simulation.

    仿真情况入射质子注量/cm–2PKA种类数目
    A101027
    B101136
    C101261
    D1013159
    DownLoad: CSV

    表 2  模拟注量为1013 cm–2的质子入射碲镉汞焦平面阵列产生的PKA

    Table 2.  The PKA detail under the proton fluences of 1013 cm–2 in simulation.

    元素 反冲核及占比 比重
    Te 占比>1% Te130(16.44%), Te128(15.70%), Te126(9.56%), Te125(3.63%), Te124(2.47%), Te122(1.36%) 49.71%
    占比<1% Te123, Te120, Te127, Te121, Te129, Te119, Te118
    Hg 占比>1% Hg202(7.87%), Hg200(6.20%), Hg199(4.55%), Hg201(3.50%), Hg198(2.72%), Hg204(1.28%) 26.69%
    占比<1% Hg196, Hg197, Hg194, Hg192, Hg193, Hg191, Hg195, Hg190, Hg189
    Cd 占比>1% Cd114(6.42%), Cd112(5.73%), Cd111(3.08%), Cd110(3.04%), Cd113(2.86%), Cd116(1.67%) 23.59%
    占比<1% Cd106, Cd108, Cd109, Cd104, Cd107, Cd105, Cd115, Cd124
    其他 He4, I126, I124, I123, I125, I128, In112, I127, I129, In111, Sb121, I122,
    I130, In113, Sb117, Sb119, Sb123, In108, Sb120, Sb122, Ag109, Au193, etc
    0.01%
    DownLoad: CSV

    表 3  不同仿真情况下的像素单元MOS管累积电离总剂量情况

    Table 3.  Total ionizing dose in the MOS of pixel under different simulation fluences.

    仿真情况模拟注量/cm–2像素单元MOS管
    电离总剂量/rad
    A10100
    B10110
    C10120
    D10135301.95
    DownLoad: CSV
  • [1]

    乔辉, 王妮丽, 杨晓阳, 郭强, 蒯文林, 徐国庆, 张冬冬, 李向阳 2023 上海航天(中英文) 40 99

    Qiao H, Wang N L, Yang X Y, Guo Q, Kuai W L, Xu G Q, Zhang D D, Lli X Y 2023 Aerospace Shanghai (Chinese & English) 40 99

    [2]

    蔡毅 2022 红外与激光工程 51 20210988

    Cai Y 2022 Infrared Laser Eng. 51 20210988

    [3]

    Marion B R 2009 Proc. of SPIE 7298 72982SGoogle Scholar

    [4]

    乔辉, 王妮丽, 贾嘉, 兰添翼, 许金通, 杨晓阳, 张燕, 李向阳 2023 激光与红外 53 1534Google Scholar

    Qiao H, Wang N L, Jia J, Lan T Y, Xu J T, Yang X Y, Zhang Y, Li X Y 2023 Laser & Infrared 53 1534Google Scholar

    [5]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [6]

    周立庆, 宁提, 张敏, 陈彦冠, 谢珩, 付志凯 2019 激光与红外 49 915

    Zhou L Q, Ning T, Zhang M, Chen Y G, Xie H, Fu Z K 2019 Laser & Infrared 49 915

    [7]

    折伟林, 邢晓帅, 邢伟荣, 刘江高, 郝斐, 杨海燕, 王丹, 侯晓敏, 李振兴, 王成刚 2024 激光与红外 54 483Google Scholar

    Zhe W L, Xing X S, Xing W R, Liu J G, Hao F, Yang H Y, Wang D, Hou X M, Li Z X, Wang C G 2024 Laser & Infrared 54 483Google Scholar

    [8]

    王忆锋, 田萦 2011 红外 32 1Google Scholar

    Wang Y F, Tian Y 2011 Infrared 32 1Google Scholar

    [9]

    江天, 程湘爱, 郑鑫, 许中杰, 江厚满, 陆启生 2012 物理学报 61 137302Google Scholar

    Jiang T, Cheng X A, Zheng X, Xu Z J, Jiang H M, Lu Q S 2012 Acta Phys. Sin. 61 137302Google Scholar

    [10]

    乔辉, 廖毅, 胡伟达, 邓屹, 袁永刚, 张勤耀, 李向阳, 龚海梅 2008 物理学报 57 7088Google Scholar

    Qiao H, Liao Y, Hu W D, Deng Y, Yuan Y G, Zhang Q Y, Li X Y, Gong H M 2008 Acta Phys. Sin. 57 7088Google Scholar

    [11]

    Sun X, Abshire J B, Lauenstein J M, et al. 2021 IEEE Trans. Nucl. Sci. 68 27Google Scholar

    [12]

    Dinand S, Goiffon V, Lambert D, Rizzolo S, Baier N, Borniol E D, Saint-Pé O, Durnez C, Gravrand O 2023 IEEE Trans. Nucl. Sci. 70 1234

    [13]

    唐宁, 王祖军, 晏石兴, 李传洲, 蒋镕羽 2024 光学学报 44 0928003Google Scholar

    Tang N, Wang Z J, Yan S X, Li C Z, Jiang R Y 2024 Acta Opt. Sin. 44 0928003Google Scholar

    [14]

    王祖军, 赖善坤, 杨勰, 贾同轩, 黄港, 聂栩 2022 半导体光电 43 839

    Wang Z J, Lai S K, Yang X, Jia T X, Huang G, Nie X 2022 Semicond. Optoelectron. 43 839

    [15]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [16]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [17]

    魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平 2022 物理学报 71 226102Google Scholar

    Wei W J, Gao X D, Lü L L, Xu N N, Li G P 2022 Acta Phys. Sin. 71 226102Google Scholar

    [18]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [19]

    何欢, 白雨蓉, 田赏, 刘方, 臧航 柳文波, 李培, 贺朝会 2024 物理学报 73 052402Google Scholar

    He H, Bai Y R, Tian S, Liu F, Zang H, Liu W B, Li P, He C H 2024 Acta Phys. Sin. 73 052402Google Scholar

    [20]

    赵俊, 王晓璇, 李雄军, 张应旭, 秦强, 宋林伟, 袁绶章, 孔金丞, 姬荣斌 2023 中国科学: 技术科学 53 1419Google Scholar

    Zhao J, Wang X X, Li X J, Zhang Y X, Qin Q, Song L W, Yuan S Z, Kong J C, Ji R B 2023 Sci. Sin. -Technol. 53 1419Google Scholar

    [21]

    Xu R M, Guo Z J, Liu S Y, Yu N M 2024 Chin. J. Electron. 33 415Google Scholar

    [22]

    张林, 马林东, 杜林, 李艳波, 徐先峰, 黄鑫蓉 2023 物理学报 72 138501Google Scholar

    Zhang L, Ma L D, Du L, Li Y B, Xu X F, Huang X R 2023 Acta Phys. Sin. 72 138501Google Scholar

    [23]

    Tylka A J, Adams J H, Boberg P R, et al. 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar

    [24]

    Akkerman A, Barak J 2007 Nucl. Instrum. Methods Phys. Res. , Sect. B 260 529Google Scholar

    [25]

    Robinson M, Torrens I 1974 Phys. Rev. B 9 5008Google Scholar

    [26]

    Konobeyev A Y, Fischer U, Korovin Y A, Simakov S P 2017 Nucl. Energy Technol. 3 169Google Scholar

  • [1] He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui. Simulation of displacement damage induced by protons incident on AlxGa1–xN materials. Acta Physica Sinica, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [2] Bai Yu-Rong, Li Pei, He Huan, Liu Fang, Li Wei, He Chao-Hui. Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit. Acta Physica Sinica, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [3] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [4] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [5] Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui. Simulation of displacement damage in indium phosphide induced by space heavy ions. Acta Physica Sinica, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [6] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [7] Xie Fei, Zang Hang, Liu Fang, He Huan, Liao Wen-Long, Huang Yu. Simulated research on displacement damage of gallium nitride radiated by different neutron sources. Acta Physica Sinica, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [8] Cao Yang, Xi Kai, Xu Yan-Nan, Li Mei, Li Bo, Bi Jin-Shun, Liu Ming. Total ionizing dose effects of γ and X-rays on 55 nm silicon-oxide-nitride-oxide-silicon single flash memory cell. Acta Physica Sinica, 2019, 68(3): 038501. doi: 10.7498/aps.68.20181661
    [9] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [10] Yao Zhi-Ming, Duan Bao-Jun, Song Gu-Zhou, Yan Wei-Peng, Ma Ji-Ming, Han Chang-Cai, Song Yan. A method of evaluating the relative light yield of ST401 irradiated by pulsed neutron. Acta Physica Sinica, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [11] Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo. Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion. Acta Physica Sinica, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [12] Tang Du, He Chao-Hui, Zang Hang, Li Yong-Hong, Xiong Cen, Zhang Jin-Xin, Zhang Peng, Tan Peng-Kang. Multi-scale simulations of single particle displacement damage in silicon. Acta Physica Sinica, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [13] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [14] Zhu Jin-Hui, Wei Yuan, Xie Hong-Gang, Niu Sheng-Li, Huang Liu-Xing. Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon. Acta Physica Sinica, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [15] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [16] Qiao Hui, Liao Yi, Hu Wei-Da, Deng Yi, Yuan Yong-Gang, Zhang Qin-Yao, Li Xiang-Yang, Gong Hai-Mei. Real-time study of γ irradiation on Hg1-xCdxTe focal plane photodiodes. Acta Physica Sinica, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [17] Yue Fang-Yu, Shao Jun, Wei Yan-Feng, Lü Xiang, Huang Wei, Yang Jian-Rong, Chu Jun-Hao. Temperature-dependent absorption spectra investigation of shallow levels in HgCdTe grown by liquid phase epitaxy. Acta Physica Sinica, 2007, 56(5): 2878-2881. doi: 10.7498/aps.56.2878
    [18] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [19] Sun Li-Zhong, Chen Xiao-Shuang, Zhou Xiao-Hao, Sun Yan-Lin, Quan Zhi-Jue, Lu Wei. First-principles calculations on the mercury vacancy in Hg050.5 Cd050.5Te. Acta Physica Sinica, 2005, 54(4): 1756-1761. doi: 10.7498/aps.54.1756
    [20] Huang Yang-Cheng, Liu Da-Fu, Liang Jin-Sui, Gong Hai-Mei. Low frequency noise study on short wavelength HgCdTe photodiodes. Acta Physica Sinica, 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
Metrics
  • Abstract views:  479
  • PDF Downloads:  29
  • Cited By: 0
Publishing process
  • Received Date:  05 September 2024
  • Accepted Date:  10 October 2024
  • Available Online:  30 October 2024
  • Published Online:  05 December 2024

/

返回文章
返回