-
Ferroelectric random access memory (FRAM) is a promising memory for space application. The performance of FRAM under irradiation environment should be investigated, especially under proton irradiation environment, which dominates the particles in the space environment. The experiments on single event effects are carried out for two types of FRAMs (FM22L16 and FM28 V100) based on the proton cyclotron of China institute of atomic energy. Both dynamic and static mode are tested for each chip under the irradiation of proton in an energy range from 30 MeV to 90 MeV. Single event upsets (SEUs) and single event functional interrupts (SEFIs) are observed only on FM22L16, where the SEFI is recorded as a significantly transient error with or without memory cell upsets. The SEFI can be subdivided into soft SEFI and hard SEFI according to whether those significantly transient errors disappear or not when the irradiation is paused. Single event effect performances of FM22L16 are accurately described, and the SEFI cross section in an energy range from 50 MeV to 90 MeV is obtained experimentally. The cross section of SEFI increases with proton energy increasing and reaches 10-3/cm2 at 90 MeV. To further study the mechanism of SEFI, the pulsed laser beam with a wavelength of 1064 nm is used to pinpoint the sensitive area of SEFI in the FRAM. Pulsed laser experiment is easy to carry out when single pulsed laser radiates on the device from the back side. Results show that a certain part in peripheral circuit is detected as a sensitive area to SEFI. The sensitive area could be a register or buffer which is vulnerable to irradiation. Only SEUs are observed when the pulsed laser radiates others area of peripheral circuit and memory cell. A hypothesis that a micro latch-up in the CMOS-based peripheral circuit leads to the SEFI is proposed to explain the test results, for the CMOS-based peripheral circuit is sensitive to irradiation. The further reason is the energy deposition in silicon substrate by protons with energies ranging from 30 MeV to 90 MeV through nuclear reaction, which triggers the silicon controlled rectifier structure in the FRAM peripheral circuit. According to the hypothesis, a transient current should be generated in the peripheral circuit when the micro latch-up happens. The transient current is observed on the output of device by using a high frequency oscilloscope which demonstrates the reasonability of the hypothesis.
-
Keywords:
- ferroelectric random access memory /
- middle energy proton /
- single event functional interrupt
[1] Dahl B A, Cruz-Colon J, Baumann R C, Rodriguez J A, Zhou C, Rodriguez-Latorre J, Khan S, San T, Trinh T 2015 IEEE Radiation Effects Data Workshop (REDW) Boston, MA, USA, July 13-17, 2015 p1
[2] Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356
[3] Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q 2018 Nanoscale 10 8677
[4] Yu Z L, Ma Q R, Zhao Y Q, Liu B, Cai M Q 2018 J. Phys. Chem. C 17 9275
[5] Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q, Cai M Q, Yu H L 2018 Org. Electron. 53 50
[6] Rusu A, Salvatore G, lonescu A M 2009 International Semiconductor Conference Sinaia, Romania, October 12-14, 2009 p517
[7] Zhang Z Z, Lei Z F, Yang Z L, Wang X H, Wang B, Liu J, En Y F, Chen H, Li B 2015 IEEE Radiation Effects Data Workshop (REDW) Boston, MA, USA, July 13-17, 2015 p1
[8] O'Bryan M V, LaBel K A, Buchner S P, Ladbury R L, Poivey C F, Oldham T R, Campola M J, Carts M A, Berg M D, Sanders A B, Mackey S R 2008 2008 IEEE Radiation Effects Data Workshop (REDW) Tucson, AZ, USA, July 14-18, 2008 p11
[9] Wei J N, Guo H X, Zhang F Q, Luo Y H, Ding L L, Pan X Y, Zhang Y, Liu Y H 2017 Chin. Phys. B 26 096102
[10] Xiao X S, Li N, Tong J 2012 IEEE Trans. Nucl. Sci. 59 211
[11] Xuan S X, Li N, Tong J 2013 IEEE Trans. Nucl. Sci. 60 3932
[12] Bosser A L, Gupta V, Javanainen A, Tsiligiannis G, LaLumondiere S D, Brewe D, Ferlet-Cavrois V, Puchner H, Kettunen H, Gil T, Wrobel F, Saigné F, Virtanen A, Dilillo L 2018 IEEE Trans. Nucl. Sci. 10 1109
[13] Tausch J, Sleeter D, Radaelli D, Puchner H 2007 2007 IEEE Radiation Effects Data Workshop (REDW) Honolulu, HI, USA, July 23-27, 2007 p185
[14] Label K A, Moran A K, Hawkins D K, Sanders A B 1996 IEEE Radiation Effects Data Workshop (REDW) Indian Wells, CA, USA, July 19-23, 1996 p19
-
[1] Dahl B A, Cruz-Colon J, Baumann R C, Rodriguez J A, Zhou C, Rodriguez-Latorre J, Khan S, San T, Trinh T 2015 IEEE Radiation Effects Data Workshop (REDW) Boston, MA, USA, July 13-17, 2015 p1
[2] Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356
[3] Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q 2018 Nanoscale 10 8677
[4] Yu Z L, Ma Q R, Zhao Y Q, Liu B, Cai M Q 2018 J. Phys. Chem. C 17 9275
[5] Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q, Cai M Q, Yu H L 2018 Org. Electron. 53 50
[6] Rusu A, Salvatore G, lonescu A M 2009 International Semiconductor Conference Sinaia, Romania, October 12-14, 2009 p517
[7] Zhang Z Z, Lei Z F, Yang Z L, Wang X H, Wang B, Liu J, En Y F, Chen H, Li B 2015 IEEE Radiation Effects Data Workshop (REDW) Boston, MA, USA, July 13-17, 2015 p1
[8] O'Bryan M V, LaBel K A, Buchner S P, Ladbury R L, Poivey C F, Oldham T R, Campola M J, Carts M A, Berg M D, Sanders A B, Mackey S R 2008 2008 IEEE Radiation Effects Data Workshop (REDW) Tucson, AZ, USA, July 14-18, 2008 p11
[9] Wei J N, Guo H X, Zhang F Q, Luo Y H, Ding L L, Pan X Y, Zhang Y, Liu Y H 2017 Chin. Phys. B 26 096102
[10] Xiao X S, Li N, Tong J 2012 IEEE Trans. Nucl. Sci. 59 211
[11] Xuan S X, Li N, Tong J 2013 IEEE Trans. Nucl. Sci. 60 3932
[12] Bosser A L, Gupta V, Javanainen A, Tsiligiannis G, LaLumondiere S D, Brewe D, Ferlet-Cavrois V, Puchner H, Kettunen H, Gil T, Wrobel F, Saigné F, Virtanen A, Dilillo L 2018 IEEE Trans. Nucl. Sci. 10 1109
[13] Tausch J, Sleeter D, Radaelli D, Puchner H 2007 2007 IEEE Radiation Effects Data Workshop (REDW) Honolulu, HI, USA, July 23-27, 2007 p185
[14] Label K A, Moran A K, Hawkins D K, Sanders A B 1996 IEEE Radiation Effects Data Workshop (REDW) Indian Wells, CA, USA, July 19-23, 1996 p19
Catalog
Metrics
- Abstract views: 6164
- PDF Downloads: 94
- Cited By: 0