Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Geant4 simulation of neutron displacement damage effect in InP

Li Wei Bai Yu-Rong Guo Hao-Xuan He Chao-Hui Li Yong-Hong

Citation:

Geant4 simulation of neutron displacement damage effect in InP

Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong
PDF
HTML
Get Citation
  • As the second-generation compound semiconductor material, indium phosphide (InP) has strong irradiation resistance and high photoelectric conversion efficiency. It has advantages in the field of photonics and radio frequency. In atmospheric space, high-energy cosmic rays enter into the earth’s atmosphere and interact with nitrogen (N), oxygen (O) and other elements to produce secondary cosmic rays. The irradiation particles in the atmosphere are mainly neutrons because the penetration of charged particles is weak. The InP semiconductor devices are affected by atmospheric neutron irradiation of various energy from all directions, which results in the internal defects in InP crystals, the degradation of device performance and the reduction of device lifetime. In this paper, Monte Carlo simulation software Geant4 is used to simulate the neutron irradiation effect, and the initial state distribution of displacement damage caused by neutrons with different energy is obtained, including the distribution of non-ionized energy loss (NIEL) with depth, the relationship between NIEL and the energy of incident neutrons, and the type, number and energy of primary knock-on atoms (PKA). The results show that 1) the NIEL is uniformly distributed when material thickness is on the order of μm and for the material thickness on the order of cm and more, the NIEL decreases as the depth increases and can be reduced to zero when the target material is thick enough; 2) by analyzing the NIEL produced by 1–20 MeV neutrons incident on 3-μm InP and their distribution with depth, it is found that the NIEL first increases and then decreases with incident neutron energy increasing. This trend is caused mainly by PKA produced through the inelastic scattering reaction; 3) by analyzing the type and the energy of PKA produced by 1–20 MeV neutrons incident on 3 μm InP, it is found that the PKA of In/P accounts for a large proportion, which causes displacement damage mainly, and the higher the neutron energy, the richer the variety of PKA is and the greater the maximum kinetic energy of PKA, but the PKAs mainly distribute in the low energy part. The present research has theoretical and guiding value for the long-term application of InP-based 5G devices in atmospheric neutron irradiation environment.
      Corresponding author: He Chao-Hui, hechaohui@mail.xjtu.edu.cn
    • Funds: Project supported by the Basic Strength Program of China (Grant No. 2019-JCJQ-ZD-267)
    [1]

    O'Neill P M 2010 IEEE Trans. Nucl. Sci. 57 3148

    [2]

    陈启明, 郭刚, 祁琳, 张付强 2018 科技创新导报 15 127Google Scholar

    Chen Q M, Guo G, Qi L, Zhang F Q 2018 Sci. Technol. Innov. Her. 15 127Google Scholar

    [3]

    Jay A, Raine M, Richard N, Mousseau N, Goiffon V, Hémeryck A, Magnan P 2017 IEEE Trans. Nucl. Sci. 64 141Google Scholar

    [4]

    Atmospheric Radiation Effects Whitepaper, Vranish K http://www.kva-engineering.com/pdf/SEU_whitepaper_FAA_Con.pdf [2021-9-8]

    [5]

    Inguimbert C, Gigante R 2006 IEEE Trans. Nucl. Sci. 53 1967Google Scholar

    [6]

    Messenger S R 1999 IEEE Trans. Nucl. Sci. 46 1595Google Scholar

    [7]

    Autran J, Munteanu D 2020 IEEE Trans. Nucl. Sci. 67 1428Google Scholar

    [8]

    Ruzin A, Casse G, Glaser M, Zanet A, Lemeilleur F, Watts S 1999 IEEE Trans. Nucl. Sci. 46 1310Google Scholar

    [9]

    Messenger S R, Burke E A, Lorentzen J, Walters R J, Warner J H, Summers G P, Murray S L, Murray C S, Crowley C J, Elkouh N A 2005 Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference FL, USA, Jan 3–7, 2005 p559

    [10]

    Tonigan A M, Arutt C N, Parma E J, Griffin P J, Fleetwood D M, Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 495Google Scholar

    [11]

    Jiang W, Yue C, Cui M Y, et al. 2020 Chin. Phys. Lett. 37 119601Google Scholar

    [12]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250Google Scholar

    [13]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [14]

    郭达禧, 贺朝会, 臧航, 席建琦, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom. Energ. Sci. Technol. 47 1222Google Scholar

    [15]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 126

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 126

    [16]

    朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102Google Scholar

    Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102Google Scholar

    [17]

    唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊胜, 黄小龙, 王传珊 2008 物理学报 57 1266Google Scholar

    Tang X X, Luo W H, Wang C Z, He F X, Zha Y Z, Fan S, Huang X L, Wang C S 2008 Acta Phys. Sin. 57 1266Google Scholar

    [18]

    吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 物理学报 60 098110Google Scholar

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110Google Scholar

    [19]

    张利英, 倪伟俊, 敬罕涛, 王相綦 2018 现代应用物理 9 10

    Zhang L Y, Ni W J, Jing H T, Wang X Q 2018 Mod. Appl. Phys. 9 10

    [20]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008Google Scholar

    [21]

    Akkerman A, Barak J 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 260 529Google Scholar

    [22]

    Shatalov A, Subramanian S, Klein A 2001 IEEE Trans. Nucl. Sci. 48 2262Google Scholar

    [23]

    Walters R J, Messenger S R, Cotal H L, Xapsos M A, Summers G P 1997 J. Appl. Phys. 82 2164Google Scholar

    [24]

    杨福家, 王炎森, 陆福全 1993 原子核物理 (上海: 复旦大学出版社) 第195页

    Yang F J, Wang Y S, Lu F Q 1993 Nuclear Physics (Shanghai: Fudan University Press) p195 (in Chinese)

  • 图 1  InP的中子弹性散射截面

    Figure 1.  Neutron elastic scattering cross section of InP.

    图 2  Geant4模拟的InP结构图

    Figure 2.  Structure of InP simulated by Geant4.

    图 3  各能量中子在3 μm薄靶内的NIEL深度分布

    Figure 3.  NIEL depth distribution of neutrons at different energies in the 3 μm thin target.

    图 4  (a)各能量中子在3 cm厚靶内的NIEL深度分布; (b) 1 MeV中子在3 cm厚靶内的NIEL深度分布

    Figure 4.  (a) NIEL depth distribution of neutrons at different energies in the 3 cm thick target; (b) NIEL depth distribution of 1 MeV neutrons in the 3 cm thick target.

    图 5  1 MeV中子在100 cm厚靶内的NIEL深度分布

    Figure 5.  NIEL depth distribution of 1 MeV neutrons in the 100 cm thick target.

    图 6  NIEL与中子能量的关系 (a) 3 cm厚靶; (b) 3 μm薄靶

    Figure 6.  The relationship between NIEL and neutron energy: (a) 3 cm thick target; (b) 3 μm thin target.

    图 7  1—20 MeV中子入射3 μm InP产生的不同种类PKA数目

    Figure 7.  The number of different PKA produced by 1–20 MeV neutrons incident on 3 μm InP.

    图 8  1—20 MeV中子入射3 μm InP的PKA能谱

    Figure 8.  The energy spectrum of PKA produced by 1–20 MeV neutrons incident on 3 μm InP.

    表 1  1—20 MeV中子入射3 μm的InP薄靶所得PKA的种类、数目与动能信息

    Table 1.  The type, number, and energy information of PKA obtained from 3 μm InP thin target irradiated by 1—20 MeV neutrons.

    入射中子能量/MeV反冲核(PKA)种类最小动能/eV最大动能/keV元素占比/%
    1.00113—116In1.1135.0170.51
    31—32P2.48122.3729.49
    2.54113—116In1.4189.0362.08
    31—32P14.74310.6936.57
    1H, 31Si1.57263.361.36
    5.00113, 115, 116In2.33173.0559.21
    31—32P6.10612.4137.57
    1H, 31Si, 4He, 28Al, 2.214283.903.22
    8.00113, 115In1.57281.8264.42
    31P17.12980.5428.80
    1H, 31Si, 4He, 28Al, 113, 115Cd1.007282.106.78
    10.00113, 115In1.29350.5366.42
    31P1.001225.7025.58
    1H, 31Si, 4He, 28Al, 115Cd, 112Ag1.009287.108.00
    12.00113, 115In1.11417.2163.21
    31P1.001473.4927.51
    1H, 31Si, 4He, 28Al, 113, 115Cd, 112Ag1.0014315.009.29
    14.00113, 115In1.04492.3460.26
    31P1.001705.7729.71
    1—2H, 31Si, 4He, 28Al, 112—115Cd, 110, 112Ag1.0016463.0010.03
    16.00113, 115In1.12556.4757.82
    31P1.001967.1531.98
    1—2H, 31Si, 4He, 28Al, 113—115Cd, 110, 112Ag1.0017593.0010.20
    18.00113, 115In1.45631.0754.70
    31P1.002215.8234.42
    1—3H, 31Si, 4He, 28Al, 111—115Cd, 110, 112Ag1.0021054.0010.88
    19.90113, 115In2.04703.4350.34
    31P1.002453.4337.58
    1—3H, 31Si, 4He, 28Al, 111—115Cd, 110, 112Ag1.0022391.0012.08
    DownLoad: CSV
  • [1]

    O'Neill P M 2010 IEEE Trans. Nucl. Sci. 57 3148

    [2]

    陈启明, 郭刚, 祁琳, 张付强 2018 科技创新导报 15 127Google Scholar

    Chen Q M, Guo G, Qi L, Zhang F Q 2018 Sci. Technol. Innov. Her. 15 127Google Scholar

    [3]

    Jay A, Raine M, Richard N, Mousseau N, Goiffon V, Hémeryck A, Magnan P 2017 IEEE Trans. Nucl. Sci. 64 141Google Scholar

    [4]

    Atmospheric Radiation Effects Whitepaper, Vranish K http://www.kva-engineering.com/pdf/SEU_whitepaper_FAA_Con.pdf [2021-9-8]

    [5]

    Inguimbert C, Gigante R 2006 IEEE Trans. Nucl. Sci. 53 1967Google Scholar

    [6]

    Messenger S R 1999 IEEE Trans. Nucl. Sci. 46 1595Google Scholar

    [7]

    Autran J, Munteanu D 2020 IEEE Trans. Nucl. Sci. 67 1428Google Scholar

    [8]

    Ruzin A, Casse G, Glaser M, Zanet A, Lemeilleur F, Watts S 1999 IEEE Trans. Nucl. Sci. 46 1310Google Scholar

    [9]

    Messenger S R, Burke E A, Lorentzen J, Walters R J, Warner J H, Summers G P, Murray S L, Murray C S, Crowley C J, Elkouh N A 2005 Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference FL, USA, Jan 3–7, 2005 p559

    [10]

    Tonigan A M, Arutt C N, Parma E J, Griffin P J, Fleetwood D M, Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 495Google Scholar

    [11]

    Jiang W, Yue C, Cui M Y, et al. 2020 Chin. Phys. Lett. 37 119601Google Scholar

    [12]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250Google Scholar

    [13]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [14]

    郭达禧, 贺朝会, 臧航, 席建琦, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom. Energ. Sci. Technol. 47 1222Google Scholar

    [15]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 126

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 126

    [16]

    朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102Google Scholar

    Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102Google Scholar

    [17]

    唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊胜, 黄小龙, 王传珊 2008 物理学报 57 1266Google Scholar

    Tang X X, Luo W H, Wang C Z, He F X, Zha Y Z, Fan S, Huang X L, Wang C S 2008 Acta Phys. Sin. 57 1266Google Scholar

    [18]

    吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 物理学报 60 098110Google Scholar

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110Google Scholar

    [19]

    张利英, 倪伟俊, 敬罕涛, 王相綦 2018 现代应用物理 9 10

    Zhang L Y, Ni W J, Jing H T, Wang X Q 2018 Mod. Appl. Phys. 9 10

    [20]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008Google Scholar

    [21]

    Akkerman A, Barak J 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 260 529Google Scholar

    [22]

    Shatalov A, Subramanian S, Klein A 2001 IEEE Trans. Nucl. Sci. 48 2262Google Scholar

    [23]

    Walters R J, Messenger S R, Cotal H L, Xapsos M A, Summers G P 1997 J. Appl. Phys. 82 2164Google Scholar

    [24]

    杨福家, 王炎森, 陆福全 1993 原子核物理 (上海: 复旦大学出版社) 第195页

    Yang F J, Wang Y S, Lu F Q 1993 Nuclear Physics (Shanghai: Fudan University Press) p195 (in Chinese)

  • [1] Yan Li-Bin, Bai Yu-Rong, Li Pei, Liu Wen-Bo, He Huan, He Chao-Hui, Zhao Xiao-Hong. First-principles calculations of point defect migration mechanisms in InP. Acta Physica Sinica, 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] Xiao Shi-Liang, Wang Zhao-Hui, Wu Hong-Yi, Chen Xiong-Jun, Sun Qi, Tan Bo-Yu, Wang Hao, Qi Fu-Gang. Spectral analysis techniques in measuring neutron-induced gamma production cross-section. Acta Physica Sinica, 2024, 73(7): 072901. doi: 10.7498/aps.73.20231980
    [3] He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui. Simulation of displacement damage induced by protons incident on AlxGa1–xN materials. Acta Physica Sinica, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [4] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [5] Bai Yu-Rong, Li Pei, He Huan, Liu Fang, Li Wei, He Chao-Hui. Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit. Acta Physica Sinica, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [6] Zhang Zhan-Gang, Yang Shao-Hua, Lin Qian, Lei Zhi-Feng, Peng Chao, He Yu-Juan. Experimental study on real-time measurement of single-event effects of 14 nm FinFET and 28 nm planar CMOS SRAMs based on Qinghai-Tibet Plateau. Acta Physica Sinica, 2023, 72(14): 146101. doi: 10.7498/aps.72.20230161
    [7] Peng Chao, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Ma Teng, Cai Zong-Qi, Chen Yi-Qiang. Study on characteristics of neutron-induced leakage current increase for SiC power devices. Acta Physica Sinica, 2023, 72(18): 186102. doi: 10.7498/aps.72.20230976
    [8] Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui. Simulation of displacement damage in indium phosphide induced by space heavy ions. Acta Physica Sinica, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [9] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [10] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [11] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [12] Tang Du, He Chao-Hui, Zang Hang, Li Yong-Hong, Xiong Cen, Zhang Jin-Xin, Zhang Peng, Tan Peng-Kang. Multi-scale simulations of single particle displacement damage in silicon. Acta Physica Sinica, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [13] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [14] Che Chi, Liu Qing-Feng, Ma Jing, Zhou Yan-Ping. Displacement damage effects on the characteristics of quantum dot lasers. Acta Physica Sinica, 2013, 62(9): 094219. doi: 10.7498/aps.62.094219
    [15] Ma Jing, Che Chi, Han Qi-Qi, Zhou Yan-Ping, Tan Li-Ying. Displacement damage effect on the characteristics of quantum well laser. Acta Physica Sinica, 2012, 61(21): 214211. doi: 10.7498/aps.61.214211
    [16] Li Xiao-Ling, Lin Shi-Yao, Hu Li-Qun, Xu Ping, Duan Yan-Min, Mao Song-Tao, Zhang Ji-Zhong, Wang Xiang-Qi, Zhong Guo-Qiang. Study of neutron radiation behavior for RF heating on HT-7. Acta Physica Sinica, 2011, 60(1): 012901. doi: 10.7498/aps.60.012901
    [17] Wang Bo, Zhao You-Wen, Dong Zhi-Yuan, Deng Ai-Hong, Miao Shan-Shan, Yang Jun. Electron irradiation induced defects in high temperature annealed InP single crystal. Acta Physica Sinica, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [18] Yang Jun, Zhao You-Wen, Dong Zhi-Yuan, Deng Ai-Hong, Miao Shan-Shan, Wang Bo. Influence of deep level defects on electrical compensation in semi-insulating InP materials. Acta Physica Sinica, 2007, 56(2): 1167-1171. doi: 10.7498/aps.56.1167
    [19] He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Li Guo-Zheng, Wang Yan-Ping. Mechanism of radiation effects in floating gate ROMs. Acta Physica Sinica, 2003, 52(9): 2235-2238. doi: 10.7498/aps.52.2235
    [20] DING RUI-QIN, WANG HAO, W.F.LAU, W.Y.CHEUNG, S.P.WONG, WANG NING-JUAN, YU YING-MIN. THE MICROSTRUCTURE AND OPTICAL PROPERTIES OF THE NANOCOMPOSITE FILMS OF InP/SiO2. Acta Physica Sinica, 2001, 50(8): 1574-1579. doi: 10.7498/aps.50.1574
Metrics
  • Abstract views:  5899
  • PDF Downloads:  199
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2021
  • Accepted Date:  07 December 2021
  • Available Online:  26 January 2022
  • Published Online:  20 April 2022

/

返回文章
返回