Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of distribution of permanent magnetrings for Faraday rotation spectroscopy

Jia Feng-Ming Mei Jiao-Xu Wang Rui-Feng Cheng Gang Liu Kun Gao Xiao-Ming

Citation:

Optimization of distribution of permanent magnetrings for Faraday rotation spectroscopy

Jia Feng-Ming, Mei Jiao-Xu, Wang Rui-Feng, Cheng Gang, Liu Kun, Gao Xiao-Ming
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Faraday rotation spectroscopy (FRS) is generally used to detect the concentrations of various paramagnetic trace gases because of its high detection sensitivity, zero background noise and the ability to get rid of the interference of diamagnetic materials effectively. In most of FRS technologies, the used electromagnetic fields are produced by coils, thereby triggering off some problems such as high energy consumption and excessive heat generation. Thus the modeling and the simulation study of spatial magnetic field distribution based on the combined ring permanent magnets are carried out to establish an axially distributed homogeneous magnetic field and provide a permanent magnet-based homogeneous magnetic field along the optical axis for FRS measurement. In this simulation, the method of finite element mesh division is adopted based on basic electromagnetic relationship in Maxwell equations. By the simulation study of the magnetic field distribution of the actual Nd-Fe-B permanent magnet magnetic ring array, the physical model proves to be reliable. Basically, three methods of optimizing the permanent magnetic ring arrays. i.e. single ideal value optimization method, the multi-part single objective optimization method, and the gradient optimization method, are proposed. The single ideal value optimization method and the multiple ideal value optimization method are used to realize the optimization of magnets. However, by analyzing the two methods, it is clear that compared with the single ideal value optimization method, the multiple ideal value optimization method in which the whole region is divided into several small parts can achieve good uniformity of permanent magnet array. In this way, the third method, i.e. the gradient optimization method is used to realize the construction of a homogeneous magnetic field with a uniform central axis magnetic flux density distribution used for FRS. Finally, the standard magnetic field uniformity for measuring the quality of magnet field is suggested, and through the calculation and evaluation of the magnetic field uniformity, the optimization effects of different optimization methods are analyzed and compared with each other. And the final results about realizing a homogeneous magnetic field provide a reference for developing the FRS equipment based on permanent magnets.
      Corresponding author: Mei Jiao-Xu, jxmei@aiofm.ac.cn
    • Funds: Project supported by the Research Instruments and Equipment Development Project of the Chinese Academy of Sciences, China (Grant No. YJKYYQ20190054) and the National Natural Science Foundation of China (Grant Nos. 41730103, 41575030, 41475023).
    [1]

    Liu K, Lewicki R, Tittel F K 2016 Sensor. Actuat. B. Chem. 237 887Google Scholar

    [2]

    Boone C D, Dalby F W, Ozier I 2000 J. Chem. Phys. 113 8594Google Scholar

    [3]

    Hinz A, Pfeiffer J, Bohle W, Urban W 1982 Mol. Phys. 45 1131Google Scholar

    [4]

    Litfin G, Pollock C R, Curl R F, Tittel F K 1980 J. Chem. Phys. 72 6602Google Scholar

    [5]

    Gianella M, Pinto T, Wu X, Ritchie G 2017 J. Chem. Phys. 147 05420Google Scholar

    [6]

    Westberg J, Lathdavong L, Dion C M, Shao J, Kluczynski P, Lundqvist S, Axner O 2010 J. Quant. Spectrosc. Ra. 111 2415Google Scholar

    [7]

    Blake T A, Chackerian C, Podolske J R 1996 Appl. Opt. 35 973Google Scholar

    [8]

    Adams H, Reinert D, Kalkert P, Urban W 1984 Appl. Phys. B 34 179Google Scholar

    [9]

    Zhang E, Huang S, Ji Q X, Silvernagel M, Wang Y, Ward B, Sigman D, Wysocki G 2015 Sensors 15 25992Google Scholar

    [10]

    Fritsch T, Horstjann M, Halmer D, Sabana, Hering P, Mürtz M 2008 Appl. Phys. B 93 713Google Scholar

    [11]

    Kluczynski P, Lundqvist S, Westberg J, Axner O. 2011 Appl. Phys. B 103 451Google Scholar

    [12]

    Wang Y, Nikodem M, Zhang E, Cikach F, Barnes J, Comhair S, Dweik R A, Kao C, Wysocki G 2015 Sci. Rep. 5 9096Google Scholar

    [13]

    Lewicki R, Doty III J H, Curl R F, Tittel F K, Wysocki G 2009 P. Natl. Acad. Sci. USA 106 12587Google Scholar

    [14]

    Ganser H, Urban W, Brown J M 2003 Mol. Phys. 101 545Google Scholar

    [15]

    Sabana H, Fritsch T, Onana M B, Bouba O, Hering P, Mürtz M 2009 Appl. Phys. B 96 535Google Scholar

    [16]

    Smith J M, Bloch J C, Field R W, Steinfeld J I 1995 J. Opt. Soc. Am. B 12 964Google Scholar

    [17]

    Zaugg C A, Lewicki R, Day T, Curl R F, Tittle F K 2011 Conference on Quantum Sensing and Nanophotonic Devices VIII San Francisco CA, January 23–27, 2011

    [18]

    Brumfield B, Wysocki G 2012 Opt. Express 20 29727Google Scholar

    [19]

    So S G, Jeng E, Wysocki G 2011 Appl. Phys. B 102 279Google Scholar

    [20]

    Zhao W, Fang B, Lin X, Gai Y, Zhang W, Chen W, Chen Z, Zhang H, Chen W 2018 Anal. Chem. 90 3958Google Scholar

    [21]

    底楠, 赵建林, 王志兵 2009 中国激光 39 2290Google Scholar

    Di N, Zhao J L, Wang Z B 2009 Chin. J. Lasers 39 2290Google Scholar

    [22]

    Peng Q L, Mcmurry S M, Coey J M D 2004 J. Magn. Magn. Mater. 268 165Google Scholar

    [23]

    严密, 彭晓领 2006 磁学基础与磁性材料(上卷) (杭州: 浙江大学出版社) 第10—12页

    Yan M, Peng X L 2006 Fundamentals of Magnetism and Magnetic Materials (Vol. 1) (Hangzhou: Zhejiang University Press) pp10–12 (in Chinese)

    [24]

    Sabetghadam F, Sharafatmandjoor S, Norouzi F 2009 J. Comput. Phys. 228 55Google Scholar

  • 图 1  FRS原理示意图

    Figure 1.  Schematic diagram of FRS.

    图 2  实验测量结果

    Figure 2.  Measurement result of experiment.

    图 3  永磁体磁环阵列仿真效果图 (a) 磁感应强度分布特征箭头图; (b) 磁感线分布特征流线图

    Figure 3.  Modeling magnetic induction of array-ring permanent magnets: (a) Arrow distribution of magnetic induction intensity; (b) streamline diagram of magnetic induction.

    图 4  五个磁环的实验与仿真结果 (a) 实验与仿真结果对比图; (b) 磁环体内部(z1 = 78.20 mm)和间隔(z2 = 61.64 mm)处的径向磁感应强度分布图

    Figure 4.  Measurement and simulation results of five magnetic rings: (a) Comparison of experimental and simulation results; (b) radial magnetic induction intensity distribution inside the ring (z1 = 78.20 mm) of the group and gap (z2 = 61.64 mm).

    图 5  建模过程

    Figure 5.  Modeling process.

    图 6  有限元仿真区域网格剖分 (a) 变形区域的划分; (b) 间距优化网格剖分图

    Figure 6.  Deformation and meshing division of finite element simulation: (a) Division of deformation zone; (b) gradient optimization mesh division diagram.

    图 7  单目标值优化中心轴向磁感应强度分布

    Figure 7.  Single value optimization of central axial magnetic induction.

    图 8  磁环组分布情况

    Figure 8.  Distribution of magnetic ring arrangements.

    图 9  多段式单理想值优化中心轴向磁感应强度分布

    Figure 9.  Multi-part single objective optimization of central axial magnetic induction.

    图 10  梯度优化中心轴向磁通密度分布

    Figure 10.  Gradient optimization center axial magnetic flux density distribution.

    表 1  单理想值优化结果

    Table 1.  Results of single-objective optimization.

    ${d_{{Z_1}}}/{\text{mm}}$${d_{{Z_2}}}/{\text{mm}}$${d_{{Z_3}}}/{\text{mm}}$${d_{{Z_4}}}/{\text{mm}}$${d_{{Z_5}}}/{\text{mm}}$${d_{{Z_6}}}/{\text{mm}}$
    –1.80–5.10–4.87–6.950.857.35
    DownLoad: CSV

    表 2  单理想值优化磁环排列间隔

    Table 2.  Magnetic rings gaps of single-objective optimization.

    Gap1/2
    /mm
    Gap2
    /mm
    Gap3
    /mm
    Gap4
    /mm
    Gap5
    /mm
    Gap6
    /mm
    8.2016.7020.2217.9227.8026.50
    DownLoad: CSV

    表 3  多段式单理想值优化结果

    Table 3.  Results of multi-part single objective optimization.

    ${d_{{Z_1}}}/{\text{mm}}$${d_{{Z_2}}}/{\text{mm}}$${d_{{Z_3}}}/{\text{mm}}$${d_{{Z_4}}}/{\text{mm}}$${d_{{Z_5}}}/{\text{mm}}$${d_{{Z_6}}}/{\text{mm}}$
    –1.55–5.17–5.31–7.070.157.35
    DownLoad: CSV

    表 4  多段式单理想值优化磁环排列间隔

    Table 4.  Magnetic rings gaps of multi-part single objective optimization.

    Gap1/2/mmGap2/mmGap3/mmGap4/mmGap5/mmGap6/mm
    8.4516.3819.8618.2427.2227.20
    DownLoad: CSV

    表 5  梯度优化结果

    Table 5.  Results of gradient optimization.

    ${d_{{Z_1}}}/{\text{mm}}$${d_{{Z_2}}}/{\text{mm}}$${d_{{Z_3}}}/{\text{mm}}$${d_{{Z_4}}}/{\text{mm}}$${d_{{Z_5}}}/{\text{mm}}$${d_{{Z_6}}}/{\text{mm}}$
    –1.31–3.55–4.59–3.402.1814.04
    DownLoad: CSV

    表 6  梯度优化磁环排列间隔

    Table 6.  Magnetic rings gaps of gradient optimization.

    Gap1/2/
    /mm
    Gap2/
    mm
    Gap3/
    mm
    Gap4/
    mm
    Gap5/
    mm
    Gap6/
    mm
    8.4517.7618.9621.1925.5831.86
    DownLoad: CSV

    表 7  三种优化方案的磁场均匀度结果比较

    Table 7.  Comparison of magnetic field uniformity of three optimization method.

    优化方案单理想值优化多理想值优化梯度优化
    $ \zeta $(磁场均匀度)23.23612.7930.027
    DownLoad: CSV
  • [1]

    Liu K, Lewicki R, Tittel F K 2016 Sensor. Actuat. B. Chem. 237 887Google Scholar

    [2]

    Boone C D, Dalby F W, Ozier I 2000 J. Chem. Phys. 113 8594Google Scholar

    [3]

    Hinz A, Pfeiffer J, Bohle W, Urban W 1982 Mol. Phys. 45 1131Google Scholar

    [4]

    Litfin G, Pollock C R, Curl R F, Tittel F K 1980 J. Chem. Phys. 72 6602Google Scholar

    [5]

    Gianella M, Pinto T, Wu X, Ritchie G 2017 J. Chem. Phys. 147 05420Google Scholar

    [6]

    Westberg J, Lathdavong L, Dion C M, Shao J, Kluczynski P, Lundqvist S, Axner O 2010 J. Quant. Spectrosc. Ra. 111 2415Google Scholar

    [7]

    Blake T A, Chackerian C, Podolske J R 1996 Appl. Opt. 35 973Google Scholar

    [8]

    Adams H, Reinert D, Kalkert P, Urban W 1984 Appl. Phys. B 34 179Google Scholar

    [9]

    Zhang E, Huang S, Ji Q X, Silvernagel M, Wang Y, Ward B, Sigman D, Wysocki G 2015 Sensors 15 25992Google Scholar

    [10]

    Fritsch T, Horstjann M, Halmer D, Sabana, Hering P, Mürtz M 2008 Appl. Phys. B 93 713Google Scholar

    [11]

    Kluczynski P, Lundqvist S, Westberg J, Axner O. 2011 Appl. Phys. B 103 451Google Scholar

    [12]

    Wang Y, Nikodem M, Zhang E, Cikach F, Barnes J, Comhair S, Dweik R A, Kao C, Wysocki G 2015 Sci. Rep. 5 9096Google Scholar

    [13]

    Lewicki R, Doty III J H, Curl R F, Tittel F K, Wysocki G 2009 P. Natl. Acad. Sci. USA 106 12587Google Scholar

    [14]

    Ganser H, Urban W, Brown J M 2003 Mol. Phys. 101 545Google Scholar

    [15]

    Sabana H, Fritsch T, Onana M B, Bouba O, Hering P, Mürtz M 2009 Appl. Phys. B 96 535Google Scholar

    [16]

    Smith J M, Bloch J C, Field R W, Steinfeld J I 1995 J. Opt. Soc. Am. B 12 964Google Scholar

    [17]

    Zaugg C A, Lewicki R, Day T, Curl R F, Tittle F K 2011 Conference on Quantum Sensing and Nanophotonic Devices VIII San Francisco CA, January 23–27, 2011

    [18]

    Brumfield B, Wysocki G 2012 Opt. Express 20 29727Google Scholar

    [19]

    So S G, Jeng E, Wysocki G 2011 Appl. Phys. B 102 279Google Scholar

    [20]

    Zhao W, Fang B, Lin X, Gai Y, Zhang W, Chen W, Chen Z, Zhang H, Chen W 2018 Anal. Chem. 90 3958Google Scholar

    [21]

    底楠, 赵建林, 王志兵 2009 中国激光 39 2290Google Scholar

    Di N, Zhao J L, Wang Z B 2009 Chin. J. Lasers 39 2290Google Scholar

    [22]

    Peng Q L, Mcmurry S M, Coey J M D 2004 J. Magn. Magn. Mater. 268 165Google Scholar

    [23]

    严密, 彭晓领 2006 磁学基础与磁性材料(上卷) (杭州: 浙江大学出版社) 第10—12页

    Yan M, Peng X L 2006 Fundamentals of Magnetism and Magnetic Materials (Vol. 1) (Hangzhou: Zhejiang University Press) pp10–12 (in Chinese)

    [24]

    Sabetghadam F, Sharafatmandjoor S, Norouzi F 2009 J. Comput. Phys. 228 55Google Scholar

  • [1] Luo Yang, Chen Mao-Lin, Su Dong-Dong, Xu Nuo, Wang Zhong-Jing, Han Zhi-Cong, Zhao Hao. Simulation of magnetoplasmadynamic process with applied magnetic field. Acta Physica Sinica, 2022, 71(5): 055204. doi: 10.7498/aps.71.20211383
    [2] Dong Da-Xing, Liu You-Wen, Fu Yang-Yang, Fei Yue. Enhancement of Faraday rotation of black phosphorus by extraordinary optical transmission of the metal grating. Acta Physica Sinica, 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [3] Chen Jian-Ling, Wang Hui, Jia Huan-Yu, Ma Zi-Wei, Li Yong-Hong, Tan Jun. Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar. Acta Physica Sinica, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [4] Shi Wei, Zhou Qiang, Liu Bin. Performance analysis of spinning magnet as mechanical antenna. Acta Physica Sinica, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [5] Liu Zhong-Shen, Tegus O, Ou Zhi-Qiang, Fan Wen-Di, Song Zhi-Qiang, Ha Si Chao Lu, Wei Wei, Han Rui. Thermomagnetic power generation of Mn1.2Fe0.8P1-xSix compounds in strong field of permanent magnet. Acta Physica Sinica, 2015, 64(4): 047103. doi: 10.7498/aps.64.047103
    [6] Yu Hong-Yun. Effect of superconducting magnet remanence on the soft magnetic material measurements. Acta Physica Sinica, 2014, 63(4): 047502. doi: 10.7498/aps.63.047502
    [7] He Yong-Zhou. Inhomogeneity of external magnetic field for permanent magnet. Acta Physica Sinica, 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [8] Ma Jun, Yang Wan-Min, Wang Miao, Chen Sen-Lin, Feng Zhong-Ling. The effect of additional permanent magnet magnetizing methods on magnetic field distribution and the levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [9] Ma Jun, Yang Wan-Min, Li Jia-Wei, Wang Miao, Chen Sen-Lin. The effects of magnetization methods with additional permanent magnet on the magnetic field distribution and levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [10] Dong Li-Juan, Du Gui-Qiang, Yang Cheng-Quan, Shi Yun-Long. Magneto-optical Faraday rotation effect enhancement of a thick metal Ag. Acta Physica Sinica, 2012, 61(16): 164210. doi: 10.7498/aps.61.164210
    [11] Hu Hai-Tao, Xiao Li-Zhi, Wu Xi-Ling. Numerical method of designing nuclear magnetic resonance logging device sensor. Acta Physica Sinica, 2012, 61(14): 149302. doi: 10.7498/aps.61.149302
    [12] Ma Jun, Yang Wan-Min, Li Guo-Zheng, Cheng Xiao-Fang, Guo Xiao-Dan. Effects of additional permanent magnet on the levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [13] Yan Wei, Lu Wen, Shi Jian-Kang, Ren Jian-Qi, Wang Rui. Eliminating the influence of Faraday rotation on passive microwave remote sensing from space. Acta Physica Sinica, 2011, 60(9): 099401. doi: 10.7498/aps.60.099401
    [14] Teng Li-Hua, Wang Xia. Effect of carrier recombination on time-resolved Faraday rotation spectroscopy in GaAs quantum wells. Acta Physica Sinica, 2011, 60(5): 057202. doi: 10.7498/aps.60.057202
    [15] Gu Yong-Jian, Chen Xiao-Dong, Lin Xiu-Min, Xiao Shao-Jun. Implementation of photon Bell-state and GHZ-state analyzers through the Faraday rotation. Acta Physica Sinica, 2010, 59(8): 5251-5255. doi: 10.7498/aps.59.5251
    [16] Feng Wen-Tian, Ma Xin-Wen, Liu Hui-Ping, Chen Lan-Fang, Li Bin, Cao Shi-Ping. Test and analysis of uniform magnetic fields for imaging of electrons produced in ion-atom collisions. Acta Physica Sinica, 2007, 56(7): 3637-3641. doi: 10.7498/aps.56.3637
    [17] Jia Xiao-Ling, Zhang Yun-Dong, Wang Qi, Ma Zhu-Guang. . Acta Physica Sinica, 2002, 51(11): 2489-2494. doi: 10.7498/aps.51.2489
    [18] LIU GONG-QIANG, ZHU LIAN-GEN, WEI BANG-DA, ZHANG NING-GAO. THE DYNAMIC FARADAY EFFECT AND IT′S-MECHANISM OF LOSSES. Acta Physica Sinica, 1997, 46(3): 604-611. doi: 10.7498/aps.46.604
    [19] PENG JIN-SHENG, HUANG XIANG-YOU, LIU WU. SPECTRUM DISTRIBUTION OF RESONANCE FLUORESCENCE FOR ATOMS IN STRONG MAGNETIC FIELD. Acta Physica Sinica, 1989, 38(9): 1545-1550. doi: 10.7498/aps.38.1545
    [20] WANG HUAN-YUAN, JIA WEI-YI, SHEN JING-XING. MAGNETO-OPTICAL FARADAY ROTATION IN Bi4Ge3O12 CRYSTAL. Acta Physica Sinica, 1985, 34(1): 126-128. doi: 10.7498/aps.34.126
Metrics
  • Abstract views:  5968
  • PDF Downloads:  92
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2021
  • Accepted Date:  23 November 2021
  • Available Online:  26 January 2022
  • Published Online:  20 April 2022

/

返回文章
返回