Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on characteristics of neutron-induced leakage current increase for SiC power devices

Peng Chao Lei Zhi-Feng Zhang Zhan-Gang He Yu-Juan Ma Teng Cai Zong-Qi Chen Yi-Qiang

Citation:

Study on characteristics of neutron-induced leakage current increase for SiC power devices

Peng Chao, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Ma Teng, Cai Zong-Qi, Chen Yi-Qiang
PDF
HTML
Get Citation
  • In this paper, the displacement damage degradation characteristics of silicon carbide (SiC) Schottky barrier diode (SBD) and metal oxide semiconductor field effect transistor (MOSFET) are studied under 14-MeV neutron irradiation. The experimental results show that the neutron irradiation with a total fluence of 1.18×1011 cm–2 will not cause notable degradation of the forward I-V characteristics of the diode, but will lead to a significant increase in the reverse leakage current. A defect with energy level position of $ E_{\rm{C}} - 1.034 $ eV is observed after irradiation by deep level transient spectroscopy (DLTS) testing, which is corresponding to the neutron-induced defect cluster in SiC. This deep level defect may cause the Fermi level of n-type doping drift region to move toward the mid-gap level. It ultimately results in the decrease of the Schottky barrier and the increase of the reverse leakage current. In addition, neutron-induced gate leakage increase is also observed for SiC MOSFET. The gate current corresponding to Vgs = 15 V after irradiation increases nearly 3.3 times that before irradiation. The donor-type defects introduced by neutron irradiation in the oxide layer result in the difference in the conductivity mechanism of gate oxygen between before and after irradiation. The defects have an auxiliary effect on carrier crossing the gate oxide barrier, which leads to the increase of gate leakage current. The defects introduced by neutron irradiation are neutral after capturing electrons. The trapped electrons can cross a lower potential well and enter the conduction band to participate in conduction when the gate is positively biased, thus causing the gate current to increase with the electric field increasing. After electrons captured by donor-type defects enter the conduction band, positively charged defects are left from the gate oxide, leading to the negative shift of the transfer characteristics of SiC MOSFET. The results of DLTS testing indicate that the neutron irradiation can not only cause the intrinsic defect state of SiC material to change near the channel of MOSFET, but also give rise to new silicon vacancy defects. However, these defects are not the main cause of device performance degradation due to their low density relative to the intrinsic defect’s.
      Corresponding author: Peng Chao, pengchaoceprei@qq.com ; Chen Yi-Qiang, yiqiang-chen@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075065, 62274043), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2021B1515120043), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2022B0701180002), and the Science and Technology Program of Guangzhou, China (Grant No. 202201010868).
    [1]

    Casady J B, Johnson R W 1996 Solid State Electron. 39 1409Google Scholar

    [2]

    Kimoto T, Cooper J A 2014 Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Singapore: John Wiley & Sons) p16

    [3]

    张林, 肖剑, 邱彦章, 程鸿亮 2011 物理学报 60 056106Google Scholar

    Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 056106Google Scholar

    [4]

    张鸿, 郭红霞, 潘霄宇, 雷志锋, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平 2021 物理学报 70 162401Google Scholar

    Zhang H, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Gu Z Q, Liu Y T, Ju A A, Ouyang X P 2021 Acta Phys. Sin. 70 162401Google Scholar

    [5]

    Yu C H, Wang Y, Bao M T, Li X J, Yang J Q, Tang Z H 2021 IEEE Trans. Electron Dev. 68 5034Google Scholar

    [6]

    Yu C H, Wang Y, Li X J, Liu C M, Luo X, Cao F 2018 IEEE Trans. Electron Dev. 65 5434Google Scholar

    [7]

    McPherson J A, Kowal P J, Pandey G K, Chow T P, Ji W, Woodworth A A 2019 IEEE Trans. Nucl. Sci. 66 474Google Scholar

    [8]

    Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar

    [9]

    彭超, 雷志锋, 张战刚, 何玉娟, 陈义强, 路国光, 黄云 2022 物理学报 71 176101Google Scholar

    Peng C, Lei Z F, Zhang Z G, He Y J, Chen Y Q, Lu G G, Huang Y 2022 Acta Phys. Sin. 71 176101Google Scholar

    [10]

    Steffens M, Höffgen S K, Poizat M 2017 17th European Conference on Radiation and its Effects on Components and Systems ( RADECS) Geneva, Switzerland, October 2–6, 2017 p1

    [11]

    Akturk A, McGarrity J M, Potbhare S, Goldsman N 2012 IEEE Trans. Nucl. Sci. 59 3258Google Scholar

    [12]

    Zhang C X, Zhang E X, Fleetwood D M, Schrimpf R D, Dhar S, Ryu S H, Shen X, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2925Google Scholar

    [13]

    Hazdra P, Záhlava V, Vobecký J 2014 Nucl. Instr. Meth. Phys. Res. B 327 124Google Scholar

    [14]

    Omotoso E, Meyer W E, Auret F D, Paradzah A T, Legodi M J 2016 Nucl. Instr. Meth. Phys. Res. B 371 312Google Scholar

    [15]

    Yang J, Li H, Dong S, Li X 2019 IEEE Trans Nucl. Sci. 66 2042Google Scholar

    [16]

    Chao D S, Shih H Y, Jiang J Y, et al 2019 Jap. J. Appl. Phys. 58 SBBD08Google Scholar

    [17]

    Agostinelli S, Allison J, Amako K, et al 2003 Nucl. Instr. Meth. Phys. Res. A 506 250Google Scholar

    [18]

    Allison J, Amako K, Apostolakis J, et al 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [19]

    巴利加 著 (韩郑生 等 译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第99—101页

    Baliga B J (translated by Han Z S, et al) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp99–101

    [20]

    Castaldini A, Cavallini A, Polenta L, Nava F, Canali C, Lanzieri C 2002 Appl. Surf. Sci. 187 248Google Scholar

    [21]

    Dalibor T, Pensl G, Matsunami H, Kimoto T, Choyke W J, Schoner A, Nordell N 1997 Phys. Stat. Sol. (a) 162 199Google Scholar

    [22]

    Alfieri G, Mihaila A, Nipoti R, Puzzanghera M, Sozzi G, Godignon P, Millán J 2017 Materials Science Forum 897 246Google Scholar

    [23]

    Alfieri G, Monakhov E V, Svensson B G, Hallén A 2005 J. Appl. Phys. 98 113524Google Scholar

    [24]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008 半导体器件物理 (西安: 西安交通大学出版社) 第173—176页

    Sze S M, Ng K K (translated by Geng L, Zhang R Z) 2008 Physics of Semiconductor Devices (Xi’an: Xi’an Jiaotong University Press) pp173–176

  • 图 1  试验用SiC结势垒肖特基二极管器件 (a)表面形貌的光学显微镜图; (b)截面示意图

    Figure 1.  SiC JBS diode used in our experiment: (a) Optical microscope diagram of surface morphology; (b) diagram of cross-section.

    图 2  试验用SiC MOSFET器件 (a)表面形貌的光学显微镜图; (b)截面示意图

    Figure 2.  SiC MOSFET used in our experiment: (a) Optical microscope diagram of surface morphology; (b) diagram of cross-section.

    图 3  额定电压为650 V的二极管辐照前后正向(a)和反向(b) I-V特性

    Figure 3.  Forward (a) and reverse (b) I-V characteristics of 650 V SiC diode before and after irradiation.

    图 5  额定电压为1700 V的二极管辐照前后正向(a)和反向(b)I-V特性

    Figure 5.  Forward (a) and reverse (b) I-V characteristics of 1700 V SiC diode before and after irradiation.

    图 4  额定电压为1200 V的二极管辐照前后正向(a)和反向(b) I-V特性

    Figure 4.  Forward (a) and reverse (b) I-V characteristics of 1200 V SiC diode before and after irradiation.

    图 6  (a)额定电压为1700 V的二极管辐照前后的深能级瞬态谱特性, 其中内嵌图为温度300—400 K之间曲线的放大图; (b)阿伦尼乌斯曲线

    Figure 6.  (a) DLTS spectra of 1700 V SiC diode before and after irradiation, the inset graph is the enlarged curve between 300–400 K; (b) Arrhenius plot.

    图 7  DLTS测试过程中SiC二极管的能带示意图(EV为价带能级) (a)辐照前; (b)辐照后.

    Figure 7.  Schematic diagram of the energy band of SiC diode during DLTS testing process: (a) Pre-irradiation; (b) after-irradiation.

    图 8  (a) SiC MOSFET器件辐照前后的转移特性和栅电流特性, 测试条件为源端电压Vs = 0 V, 漏端电压Vd = 0.1 V; (b)辐照后SiC MOSFET器件栅电流拟合, 测试条件Vd = Vs = 0 V

    Figure 8.  (a) Transfer and gate-current characteristics of SiC MOSFET before and after irradiation (test condition, Vs = 0 V, Vd = 0.1 V); (b) gate current fitting of SiC MOSFET after irradiation (test condition Vd = Vs = 0 V).

    图 9  (a)辐照前未加栅偏压下的SiC MOSFET器件能带图; (b)辐照后未加栅偏压下的SiC MOSFET器件能带图; (c)辐照后加正栅偏压下的SiC MOSFET器件能带图

    Figure 9.  (a) Energy band diagram of SiC MOSFET without gate bias before irradiation; (b) energy band diagram of SiC MOSFET without gate bias after irradiation; (c) energy band diagram of SiC MOSFET with positive gate bias after irradiation.

    图 10  (a)辐照前后SiC功率MOSFET器件的深能级瞬态谱; (b)阿伦尼乌斯曲线

    Figure 10.  (a) DLTS spectrums of SiC MOSFET before and after irradiation; (b) Arrhenius plot.

    表 1  根据I-V特性提取的二极管肖特基势垒高度

    Table 1.  Schottky barrier height of SiC diodes extracted by I-V characteristics.

    器件 650 V器件 1200 V器件 1700 V器件
    辐照前 辐照后 辐照前 辐照后 辐照前 辐照后
    肖特基势垒 ΦB0/eV 1.224 1.214 1.220 1.209 1.203 1.194
    理想因子 n 1.02 1.03 1.02 1.03 1.02 1.03
    DownLoad: CSV

    表 2  基于深能级瞬态谱提取的SiC二极管辐照前后的缺陷信息

    Table 2.  Trap information of SiC diode extracted by DLTS before and after irradiation.

    缺陷类型
    缺陷DT1 缺陷DT2
    能级ECET/eV 缺陷密度/cm–3 俘获截面/cm2 能级ECET/eV 缺陷密度/cm–3 俘获截面/cm2
    辐照前 0.071 8.60×1013 2.55×10–23 0.864 3.29×1012 2.19×10–15
    辐照后 0.052 8.09×1013 3.21×10–23 1.034 3.47×1012 8.34×10–13
    DownLoad: CSV

    表 3  基于深能级瞬态谱提取的SiC MOSFET辐照前后的缺陷信息

    Table 3.  Trap information of SiC MOSFET extracted by DLTS before and after irradiation.

    缺陷类型
    缺陷MT1 缺陷MT2
    能级ECET/eV 缺陷密度/cm–3 俘获截面/cm2 能级ECET/eV 缺陷密度/cm–3 俘获截面/cm2
    辐照前 1.112 1.42×1014 8.60×10–9
    辐照后 0.980 1.59×1014 2.82×10–10 0.376 1.34×1013 6.31×10–17
    DownLoad: CSV
  • [1]

    Casady J B, Johnson R W 1996 Solid State Electron. 39 1409Google Scholar

    [2]

    Kimoto T, Cooper J A 2014 Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Singapore: John Wiley & Sons) p16

    [3]

    张林, 肖剑, 邱彦章, 程鸿亮 2011 物理学报 60 056106Google Scholar

    Zhang L, Xiao J, Qiu Y Z, Cheng H L 2011 Acta Phys. Sin. 60 056106Google Scholar

    [4]

    张鸿, 郭红霞, 潘霄宇, 雷志锋, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平 2021 物理学报 70 162401Google Scholar

    Zhang H, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Gu Z Q, Liu Y T, Ju A A, Ouyang X P 2021 Acta Phys. Sin. 70 162401Google Scholar

    [5]

    Yu C H, Wang Y, Bao M T, Li X J, Yang J Q, Tang Z H 2021 IEEE Trans. Electron Dev. 68 5034Google Scholar

    [6]

    Yu C H, Wang Y, Li X J, Liu C M, Luo X, Cao F 2018 IEEE Trans. Electron Dev. 65 5434Google Scholar

    [7]

    McPherson J A, Kowal P J, Pandey G K, Chow T P, Ji W, Woodworth A A 2019 IEEE Trans. Nucl. Sci. 66 474Google Scholar

    [8]

    Ball D R, Hutson J M, Javanainen A, Lauenstein J M, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D 2020 IEEE Trans. Nucl. Sci. 67 22Google Scholar

    [9]

    彭超, 雷志锋, 张战刚, 何玉娟, 陈义强, 路国光, 黄云 2022 物理学报 71 176101Google Scholar

    Peng C, Lei Z F, Zhang Z G, He Y J, Chen Y Q, Lu G G, Huang Y 2022 Acta Phys. Sin. 71 176101Google Scholar

    [10]

    Steffens M, Höffgen S K, Poizat M 2017 17th European Conference on Radiation and its Effects on Components and Systems ( RADECS) Geneva, Switzerland, October 2–6, 2017 p1

    [11]

    Akturk A, McGarrity J M, Potbhare S, Goldsman N 2012 IEEE Trans. Nucl. Sci. 59 3258Google Scholar

    [12]

    Zhang C X, Zhang E X, Fleetwood D M, Schrimpf R D, Dhar S, Ryu S H, Shen X, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2925Google Scholar

    [13]

    Hazdra P, Záhlava V, Vobecký J 2014 Nucl. Instr. Meth. Phys. Res. B 327 124Google Scholar

    [14]

    Omotoso E, Meyer W E, Auret F D, Paradzah A T, Legodi M J 2016 Nucl. Instr. Meth. Phys. Res. B 371 312Google Scholar

    [15]

    Yang J, Li H, Dong S, Li X 2019 IEEE Trans Nucl. Sci. 66 2042Google Scholar

    [16]

    Chao D S, Shih H Y, Jiang J Y, et al 2019 Jap. J. Appl. Phys. 58 SBBD08Google Scholar

    [17]

    Agostinelli S, Allison J, Amako K, et al 2003 Nucl. Instr. Meth. Phys. Res. A 506 250Google Scholar

    [18]

    Allison J, Amako K, Apostolakis J, et al 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [19]

    巴利加 著 (韩郑生 等 译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第99—101页

    Baliga B J (translated by Han Z S, et al) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp99–101

    [20]

    Castaldini A, Cavallini A, Polenta L, Nava F, Canali C, Lanzieri C 2002 Appl. Surf. Sci. 187 248Google Scholar

    [21]

    Dalibor T, Pensl G, Matsunami H, Kimoto T, Choyke W J, Schoner A, Nordell N 1997 Phys. Stat. Sol. (a) 162 199Google Scholar

    [22]

    Alfieri G, Mihaila A, Nipoti R, Puzzanghera M, Sozzi G, Godignon P, Millán J 2017 Materials Science Forum 897 246Google Scholar

    [23]

    Alfieri G, Monakhov E V, Svensson B G, Hallén A 2005 J. Appl. Phys. 98 113524Google Scholar

    [24]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008 半导体器件物理 (西安: 西安交通大学出版社) 第173—176页

    Sze S M, Ng K K (translated by Geng L, Zhang R Z) 2008 Physics of Semiconductor Devices (Xi’an: Xi’an Jiaotong University Press) pp173–176

  • [1] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] Bai Yu-Rong, Li Pei, He Huan, Liu Fang, Li Wei, He Chao-Hui. Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit. Acta Physica Sinica, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [3] He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui. Simulation of displacement damage induced by protons incident on AlxGa1–xN materials. Acta Physica Sinica, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [4] Zhang Guo-Shuai, Yin Chao, Wang Zhao-Fan, Chen Ze, Mao Shi-Feng, Ye Min-You. Simulation of neutron irradiation-induced recrystallization of tungsten. Acta Physica Sinica, 2023, 72(16): 162801. doi: 10.7498/aps.72.20230531
    [5] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [6] Wei Wen-Jing, Gao Xu-Dong, Lü Liang-Liang, Xu Nan-Nan, Li Gong-Ping. Simulation study of neutron radiation damage to cadmium zinc telluride. Acta Physica Sinica, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [7] Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui. Simulation of displacement damage in indium phosphide induced by space heavy ions. Acta Physica Sinica, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [8] Xie Fei, Zang Hang, Liu Fang, He Huan, Liao Wen-Long, Huang Yu. Simulated research on displacement damage of gallium nitride radiated by different neutron sources. Acta Physica Sinica, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [9] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [10] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [11] Tang Du, He Chao-Hui, Zang Hang, Li Yong-Hong, Xiong Cen, Zhang Jin-Xin, Zhang Peng, Tan Peng-Kang. Multi-scale simulations of single particle displacement damage in silicon. Acta Physica Sinica, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [12] Zeng Jun-Zhe, Li Yu-Dong, Wen Lin, He Cheng-Fa, Guo Qi, Wang Bo, Maria, Wei Yin, Wang Hai-Jiao, Wu Da-You, Wang Fan, Zhou Hang. Effects of proton and neutron irradiation on dark signal of CCD. Acta Physica Sinica, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [13] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [14] Gu Wen-Ping, Zhang Lin, Li Qing-Hua, Qiu Yan-Zhang, Hao Yue, Quan Si, Liu Pan-Zhi. Effect of neutron irradiation on the electrical properties of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [15] Che Chi, Liu Qing-Feng, Ma Jing, Zhou Yan-Ping. Displacement damage effects on the characteristics of quantum dot lasers. Acta Physica Sinica, 2013, 62(9): 094219. doi: 10.7498/aps.62.094219
    [16] Ma Jing, Che Chi, Han Qi-Qi, Zhou Yan-Ping, Tan Li-Ying. Displacement damage effect on the characteristics of quantum well laser. Acta Physica Sinica, 2012, 61(21): 214211. doi: 10.7498/aps.61.214211
    [17] Lan Mu-Jie, Wu Yi-Yong, Hu Jian-Min, He Shi-Yu, Yue Long, Xiao Jing-Dong, Yang De-Zhuang, Zhang Zhong-Wei, Wang Xun-Chun, Qian Yong, Chen Ming-Bo. Radiation damage of space GaAs/Ge solar cells evaluated by displacement damage dose. Acta Physica Sinica, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [18] Zheng Xu, Li Bing, Wang Zhao, Zhang Dong-Ting, Feng Liang-Huan, Zhang Jing-Quan, Cai Ya-Ping, Zheng Jia-Gui, Wu Li-Li, Li Wei, Lei Zhi, Zeng Guang-Gen. Cu deep level center in CdTe solar cell. Acta Physica Sinica, 2010, 59(4): 2783-2788. doi: 10.7498/aps.59.2783
    [19] Li Bing, Liu Cai, Feng Liang-Huan, Zhang Jing-Quan, Zheng Jia-Gui, Cai Ya-Ping, Cai Wei, Wu Li-Li, Li Wei, Lei Zhi, Zeng Guang-Gen, Xia Geng-Pei. Deep level transient spectroscopy and photoluminescence studies of CdS/CdTe thin film solar cells. Acta Physica Sinica, 2009, 58(3): 1987-1991. doi: 10.7498/aps.58.1987
    [20] Li Yang-Xian, Liu He-Yan, Niu Peng-Juan, Liu Cai-Chi, Xu Yue-Sheng, Yang De-Ren, Que Duan-Lin. . Acta Physica Sinica, 2002, 51(10): 2407-2410. doi: 10.7498/aps.51.2407
Metrics
  • Abstract views:  4011
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2023
  • Accepted Date:  03 July 2023
  • Available Online:  13 July 2023
  • Published Online:  20 September 2023

/

返回文章
返回