Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of electron irradiation on perovskite films and devices for novel space solar cells

Luo Pan Li Xiang Sun Xue-Yin Tan Xiao-Hong Luo Jun Zhen Liang

Citation:

Effect of electron irradiation on perovskite films and devices for novel space solar cells

Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang
PDF
HTML
Get Citation
  • Perovskite solar cells (PSCs) are considered as one of the strong contenders for next-generation space solar cells due to their advantages of high efficiency, low cost, high specific power, and remarkable irradiation resistance compared with those of silicon-based and III-V compound solar cells. At present, one focuses on the irradiation effects of perovskite solar cells, but there are a few studies on the irradiation damage mechanism of the core perovskite film. To advance the spatial application of perovskite solar cells, this study conducts a comprehensive examination of the performance fluctuations exhibited by mixed-cation perovskite films and solar cells under electron irradiation. Initially, the Monte Carlo method is employed to simulate and predict the effect of electron irradiation on perovskite solar cells. Subsequently, in conjunction with the microstructure characterization and the comparison of optical/electrical performance of perovskite films before and after irradiation, the irradiation damage mechanism of film is elucidated and the electron irradiation reliability of perovskite solar cells is evaluated. The research demonstrates that mixed-cation perovskite film and solar cells exhibit outstanding resistance to electron irradiation. Even when exposed to 100 keV electron irradiation with a cumulative fluence of 5×1015 e·cm–2, the PSCs maintain an average power conversion efficiency of 17.29%, retaining approximately 85% of their initial efficiency. This study provides sound theoretical and experimental evidence for designing the irradiation-resistant reinforcement of new-generation space solar cells, contributing to the improvement of their operational performance and reliability in space applications.
      Corresponding author: Sun Xue-Yin, hit2001sun@hit.edu.cn
    [1]

    Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory (NREL) https://www.nrel.gov/pv/cell-efficiency.html [2023-07-10

    [2]

    Dai X, Deng Y, Van Brackle C H, Chen S, Rudd P N, Xiao X, Lin Y, Chen B, Huang J 2020 Adv. Energy Mater. 10 1903108Google Scholar

    [3]

    Kang S, Jeong J, Cho S, Yoon Y J, Park S, Lim S, Kim J Y, Ko H 2019 J. Mater. Chem. A 7 1107Google Scholar

    [4]

    Reese M O, Glynn S, Kempe M D, McGott D L, Dabney M S, Barnes T M, Booth S, Feldman D, Haegel N M 2018 Nat. Energy 3 1002Google Scholar

    [5]

    Lang F, Nickel N H, Bundesmann J, Seidel S, Denker A, Albrecht S, Brus V V, Rappich J, Rech B, Landi G, Neitzert H C 2016 Adv. Mater. 28 8726Google Scholar

    [6]

    Miyazawa Y, Ikegami M, Chen H W, Ohshima T, Imaizumi M, Hirose K, Miyasaka T 2018 iScience 2 148Google Scholar

    [7]

    Saliba M 2019 Adv. Energy Mater. 9 1803754Google Scholar

    [8]

    Jena A K, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar

    [9]

    Jian W, Jia R, Zhang H X, Bai F Q 2020 Inorg. Chem. Front. 7 1741Google Scholar

    [10]

    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grätzel M 2016 Energy Environ. Sci. 9 1989Google Scholar

    [11]

    Mahboubi Soufiani A, Yang Z, Young T, Miyata A, Surrente A, Pascoe A, Galkowski K, Abdi-Jalebi M, Brenes R, Urban J, Zhang N, Bulović V, Portugall O, Cheng Y B, Nicholas R J, Ho-Baillie A, Green M A, Plochocka P, Stranks S D 2017 Energy Environ. Sci. 10 1358Google Scholar

    [12]

    Wu X, Jiang Y, Chen C, Guo J, Kong X, Feng Y, Wu S, Gao X, Lu X, Wang Q, Zhou G, Chen Y, Liu J M, Kempa K, Gao J 2020 Adv. Funct. Mater. 30 1908613Google Scholar

    [13]

    张琴, 艾尔肯·阿不都瓦衣提, 尹华, 张炜楠, 邓芳, 龙涛, 李左翰 2022 微电子学 52 1055Google Scholar

    Zhang Q, Aierken A, Yin H, Zhang W N, Deng F, Long T, Li Z H 2022 Microelectronics 52 1055Google Scholar

    [14]

    Huang J S, Kelzenberg M D, Espinet-González P, Mann C, Walker D, Naqavi A, Vaidya N, Warmann E, Atwater H A 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) Washington DC, USA, June 25–30, 2017 p1248

    [15]

    Pérez-del-Rey D, Dreessen C, Igual-Muñoz A M, van den Hengel L, Gélvez-Rueda M C, Savenije T J, Grozema F C, Zimmermann C, Bolink H J 2020 Sol. RRL 4 2000447Google Scholar

    [16]

    Song Z, Li C, Chen C, McNatt J, Yoon W, Scheiman D, Jenkins P P, Ellingson R J, Heben M J, Yan Y 2020 J. Phys. Chem. C 124 1330Google Scholar

    [17]

    Murakami Y, Ishiwari F, Okamoto K, Kozawa T, Saeki A 2021 ACS Appl. Mater. Interfaces 13 24824Google Scholar

    [18]

    李培, 徐洁, 贺朝会, 刘佳欣 2023 物理学报 72 126101Google Scholar

    Li P, Xu J, He C H, Liu J X 2023 Acta Phys. Sin. 72 126101Google Scholar

    [19]

    Needs R J, Towler M D, Drummond N D, López Ríos P 2010 J. Phys. Condens. Matter 22 023201Google Scholar

    [20]

    Tan W, Bowring A R, Meng A C, McGehee M D, McIntyre P C 2018 ACS Appl. Mater. Interfaces 10 5485Google Scholar

    [21]

    Mote V D, Purushotham Y, Dole B N 2012 J. Theor. Appl. Phys. 6 6Google Scholar

    [22]

    Luo P, Sun X Y, Jiang H, Yang L, Li Y, Shao W Z, Zhen L, Xu C Y 2022 J. Energy Chem. 69 261Google Scholar

    [23]

    Tauc J 1968 Mater. Res. Bull. 3 37Google Scholar

    [24]

    Lampert M A 1956 Phys. Rev. 103 1648Google Scholar

    [25]

    Sajedi Alvar M, Blom P W M, Wetzelaer G J A H 2020 Nat. Commun. 11 4023Google Scholar

    [26]

    Bube R H 1962 J. Appl. Phys. 33 1733Google Scholar

    [27]

    Holmes-Siedle A, van Lint V A J 2003 Encyclopedia of Physical Science and Technology (3rd Ed.) (New York: Academic Press) pp523–559

    [28]

    王祖军, 王兴鸿, 晏石兴, 唐宁, 崔新宇, 张琦, 石梦奇, 黄港, 聂栩, 赖善坤 2022 半导体光电 43 490Google Scholar

    Wang Z J, Wang X H, Yan S X, Tang N, Cui X Y, Zhang Q, Shi M Q, Huang G, Nie X, Lai S K 2022 Semicond. Optoelectron. 43 490Google Scholar

  • 图 1  钙钛矿样品的电子辐照示意图及模拟结果 (a) 电子辐照示意图; (b) 轨道电子能谱模拟; (c) 电子入射轨迹模拟及电池厚度内模拟结果的放大图; (d) 入射电子能量分布

    Figure 1.  Schematic diagram and simulation results of electron irradiation on perovskite samples: (a) Schematic diagram of electron irradiation; (b) simulation of orbital electron energy spectrum; (c) simulation of electron incident trajectory and enlarged view of simulation results within cell thickness; (d) energy distribution of incident electrons.

    图 2  电子辐照前后CsFAMA薄膜的XRD图谱及表面形貌的SEM表征 (a) XRD图谱; (b) 晶格应变; (c) 原始薄膜和(d) 2×1014 e·cm–2, (e) 1×1015 e·cm–2, (f) 5×1015 e·cm–2辐照后薄膜的SEM照片及晶粒尺寸统计

    Figure 2.  XRD patterns and SEM characterization of surface morphology of CsFAMA films before and after electron irradiation: (a) XRD patterns; (b) lattice strain; (c) top-view SEM images and grain size statistics of pristine film and the films after irradiation with (d) 2×1014 e·cm–2, (e) 1×1015 e·cm–2, and (f) 5×1015 e·cm–2.

    图 3  电子辐照前后CsFAMA薄膜的光学/电学性能表征 (a) 吸收光谱及能带间隙; (b) 光致发光谱; (c) 载流子浓度及迁移率; (d) 暗态I-V曲线

    Figure 3.  Characterization of optical/electrical properties of CsFAMA films before and after electron irradiation: (a) Absorption spectra and energy band gap; (b) photoluminescence spectra; (c) carrier concentration and mobility; (d) dark state I-V curves.

    图 4  CsFAMA-PSCs在大气环境中存储200 h前后的光伏性能参数

    Figure 4.  Photovoltaic performance parameters of CsFAMA-PSCs before and after storage in the atmosphere for 200 h.

    图 5  电子辐照后CsFAMA-PSCs的PCE剩余因子、J-V曲线和EQE曲线 (a) 随时间变化的PCE剩余因子; (b) 辐照后64天时PSCs的J-V曲线和 (c) EQE曲线

    Figure 5.  PCE remaining factor, J-V curves and EQE curves of CsFAMA-PSCs after electron irradiation: (a) Time-dependent PCE remaining factor; (b) J-V curves and (c) EQE curves of PSCs at 64 days after irradiation.

    表 1  电子辐照后64天时CsFAMA-PSCs的光伏性能参数

    Table 1.  Photovoltaic performance parameters of CsFAMA-PSCs 64 days after electron irradiation.

    电子辐照剂量
    /(1014 e·cm–2)
    Jsc
    /(mA·cm–2)
    Voc
    /V
    FFPCE
    /%
    Control23.93±0.161.189±0.0150.692±0.02519.70±1.08
    222.63±0.671.192±0.0080.709±0.03019.12±0.94
    1022.15±0.161.187±0.0140.713±0.03218.76±1.17
    5022.53±0.471.151±0.0130.666±0.02817.29±1.06
    DownLoad: CSV
  • [1]

    Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory (NREL) https://www.nrel.gov/pv/cell-efficiency.html [2023-07-10

    [2]

    Dai X, Deng Y, Van Brackle C H, Chen S, Rudd P N, Xiao X, Lin Y, Chen B, Huang J 2020 Adv. Energy Mater. 10 1903108Google Scholar

    [3]

    Kang S, Jeong J, Cho S, Yoon Y J, Park S, Lim S, Kim J Y, Ko H 2019 J. Mater. Chem. A 7 1107Google Scholar

    [4]

    Reese M O, Glynn S, Kempe M D, McGott D L, Dabney M S, Barnes T M, Booth S, Feldman D, Haegel N M 2018 Nat. Energy 3 1002Google Scholar

    [5]

    Lang F, Nickel N H, Bundesmann J, Seidel S, Denker A, Albrecht S, Brus V V, Rappich J, Rech B, Landi G, Neitzert H C 2016 Adv. Mater. 28 8726Google Scholar

    [6]

    Miyazawa Y, Ikegami M, Chen H W, Ohshima T, Imaizumi M, Hirose K, Miyasaka T 2018 iScience 2 148Google Scholar

    [7]

    Saliba M 2019 Adv. Energy Mater. 9 1803754Google Scholar

    [8]

    Jena A K, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar

    [9]

    Jian W, Jia R, Zhang H X, Bai F Q 2020 Inorg. Chem. Front. 7 1741Google Scholar

    [10]

    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grätzel M 2016 Energy Environ. Sci. 9 1989Google Scholar

    [11]

    Mahboubi Soufiani A, Yang Z, Young T, Miyata A, Surrente A, Pascoe A, Galkowski K, Abdi-Jalebi M, Brenes R, Urban J, Zhang N, Bulović V, Portugall O, Cheng Y B, Nicholas R J, Ho-Baillie A, Green M A, Plochocka P, Stranks S D 2017 Energy Environ. Sci. 10 1358Google Scholar

    [12]

    Wu X, Jiang Y, Chen C, Guo J, Kong X, Feng Y, Wu S, Gao X, Lu X, Wang Q, Zhou G, Chen Y, Liu J M, Kempa K, Gao J 2020 Adv. Funct. Mater. 30 1908613Google Scholar

    [13]

    张琴, 艾尔肯·阿不都瓦衣提, 尹华, 张炜楠, 邓芳, 龙涛, 李左翰 2022 微电子学 52 1055Google Scholar

    Zhang Q, Aierken A, Yin H, Zhang W N, Deng F, Long T, Li Z H 2022 Microelectronics 52 1055Google Scholar

    [14]

    Huang J S, Kelzenberg M D, Espinet-González P, Mann C, Walker D, Naqavi A, Vaidya N, Warmann E, Atwater H A 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) Washington DC, USA, June 25–30, 2017 p1248

    [15]

    Pérez-del-Rey D, Dreessen C, Igual-Muñoz A M, van den Hengel L, Gélvez-Rueda M C, Savenije T J, Grozema F C, Zimmermann C, Bolink H J 2020 Sol. RRL 4 2000447Google Scholar

    [16]

    Song Z, Li C, Chen C, McNatt J, Yoon W, Scheiman D, Jenkins P P, Ellingson R J, Heben M J, Yan Y 2020 J. Phys. Chem. C 124 1330Google Scholar

    [17]

    Murakami Y, Ishiwari F, Okamoto K, Kozawa T, Saeki A 2021 ACS Appl. Mater. Interfaces 13 24824Google Scholar

    [18]

    李培, 徐洁, 贺朝会, 刘佳欣 2023 物理学报 72 126101Google Scholar

    Li P, Xu J, He C H, Liu J X 2023 Acta Phys. Sin. 72 126101Google Scholar

    [19]

    Needs R J, Towler M D, Drummond N D, López Ríos P 2010 J. Phys. Condens. Matter 22 023201Google Scholar

    [20]

    Tan W, Bowring A R, Meng A C, McGehee M D, McIntyre P C 2018 ACS Appl. Mater. Interfaces 10 5485Google Scholar

    [21]

    Mote V D, Purushotham Y, Dole B N 2012 J. Theor. Appl. Phys. 6 6Google Scholar

    [22]

    Luo P, Sun X Y, Jiang H, Yang L, Li Y, Shao W Z, Zhen L, Xu C Y 2022 J. Energy Chem. 69 261Google Scholar

    [23]

    Tauc J 1968 Mater. Res. Bull. 3 37Google Scholar

    [24]

    Lampert M A 1956 Phys. Rev. 103 1648Google Scholar

    [25]

    Sajedi Alvar M, Blom P W M, Wetzelaer G J A H 2020 Nat. Commun. 11 4023Google Scholar

    [26]

    Bube R H 1962 J. Appl. Phys. 33 1733Google Scholar

    [27]

    Holmes-Siedle A, van Lint V A J 2003 Encyclopedia of Physical Science and Technology (3rd Ed.) (New York: Academic Press) pp523–559

    [28]

    王祖军, 王兴鸿, 晏石兴, 唐宁, 崔新宇, 张琦, 石梦奇, 黄港, 聂栩, 赖善坤 2022 半导体光电 43 490Google Scholar

    Wang Z J, Wang X H, Yan S X, Tang N, Cui X Y, Zhang Q, Shi M Q, Huang G, Nie X, Lai S K 2022 Semicond. Optoelectron. 43 490Google Scholar

  • [1] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [2] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [5] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [6] Xue Bin-Tao, Zhang Li-Min, Liang Yong-Qi, Liu Ning, Wang Ding-Ping, Chen Liang, Wang Tie-Shan. Proton irradiation induced damage effects in CH3NH3PbI3-based perovskite solar cells. Acta Physica Sinica, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [7] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [8] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [9] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [11] Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang. Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells. Acta Physica Sinica, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [12] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [13] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [14] Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin. Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Acta Physica Sinica, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [15] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min. Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [16] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [18] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [19] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] Hu Jian-Min, Wu Yi-Yong, Qian Yong, Yang De-Zhuang, He Shi-Yu. Damage of electron irradiation to the GaInP/GaAs/Ge triple-junction solar cell. Acta Physica Sinica, 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
Metrics
  • Abstract views:  2863
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2023
  • Accepted Date:  16 October 2023
  • Available Online:  24 October 2023
  • Published Online:  05 February 2024

/

返回文章
返回