-
Perovskite solar cells (PSCs) are considered as one of the strong contenders for next-generation space solar cells due to their advantages of high efficiency, low cost, high specific power, and remarkable irradiation resistance compared with those of silicon-based and III-V compound solar cells. At present, one focuses on the irradiation effects of perovskite solar cells, but there are a few studies on the irradiation damage mechanism of the core perovskite film. To advance the spatial application of perovskite solar cells, this study conducts a comprehensive examination of the performance fluctuations exhibited by mixed-cation perovskite films and solar cells under electron irradiation. Initially, the Monte Carlo method is employed to simulate and predict the effect of electron irradiation on perovskite solar cells. Subsequently, in conjunction with the microstructure characterization and the comparison of optical/electrical performance of perovskite films before and after irradiation, the irradiation damage mechanism of film is elucidated and the electron irradiation reliability of perovskite solar cells is evaluated. The research demonstrates that mixed-cation perovskite film and solar cells exhibit outstanding resistance to electron irradiation. Even when exposed to 100 keV electron irradiation with a cumulative fluence of 5×1015 e·cm–2, the PSCs maintain an average power conversion efficiency of 17.29%, retaining approximately 85% of their initial efficiency. This study provides sound theoretical and experimental evidence for designing the irradiation-resistant reinforcement of new-generation space solar cells, contributing to the improvement of their operational performance and reliability in space applications.
-
Keywords:
- perovskite film /
- perovskite solar cells /
- electron irradiation /
- damage mechanism
[1] Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory (NREL) https://www.nrel.gov/pv/cell-efficiency.html [2023-07-10
[2] Dai X, Deng Y, Van Brackle C H, Chen S, Rudd P N, Xiao X, Lin Y, Chen B, Huang J 2020 Adv. Energy Mater. 10 1903108Google Scholar
[3] Kang S, Jeong J, Cho S, Yoon Y J, Park S, Lim S, Kim J Y, Ko H 2019 J. Mater. Chem. A 7 1107Google Scholar
[4] Reese M O, Glynn S, Kempe M D, McGott D L, Dabney M S, Barnes T M, Booth S, Feldman D, Haegel N M 2018 Nat. Energy 3 1002Google Scholar
[5] Lang F, Nickel N H, Bundesmann J, Seidel S, Denker A, Albrecht S, Brus V V, Rappich J, Rech B, Landi G, Neitzert H C 2016 Adv. Mater. 28 8726Google Scholar
[6] Miyazawa Y, Ikegami M, Chen H W, Ohshima T, Imaizumi M, Hirose K, Miyasaka T 2018 iScience 2 148Google Scholar
[7] Saliba M 2019 Adv. Energy Mater. 9 1803754Google Scholar
[8] Jena A K, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar
[9] Jian W, Jia R, Zhang H X, Bai F Q 2020 Inorg. Chem. Front. 7 1741Google Scholar
[10] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grätzel M 2016 Energy Environ. Sci. 9 1989Google Scholar
[11] Mahboubi Soufiani A, Yang Z, Young T, Miyata A, Surrente A, Pascoe A, Galkowski K, Abdi-Jalebi M, Brenes R, Urban J, Zhang N, Bulović V, Portugall O, Cheng Y B, Nicholas R J, Ho-Baillie A, Green M A, Plochocka P, Stranks S D 2017 Energy Environ. Sci. 10 1358Google Scholar
[12] Wu X, Jiang Y, Chen C, Guo J, Kong X, Feng Y, Wu S, Gao X, Lu X, Wang Q, Zhou G, Chen Y, Liu J M, Kempa K, Gao J 2020 Adv. Funct. Mater. 30 1908613Google Scholar
[13] 张琴, 艾尔肯·阿不都瓦衣提, 尹华, 张炜楠, 邓芳, 龙涛, 李左翰 2022 微电子学 52 1055Google Scholar
Zhang Q, Aierken A, Yin H, Zhang W N, Deng F, Long T, Li Z H 2022 Microelectronics 52 1055Google Scholar
[14] Huang J S, Kelzenberg M D, Espinet-González P, Mann C, Walker D, Naqavi A, Vaidya N, Warmann E, Atwater H A 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) Washington DC, USA, June 25–30, 2017 p1248
[15] Pérez-del-Rey D, Dreessen C, Igual-Muñoz A M, van den Hengel L, Gélvez-Rueda M C, Savenije T J, Grozema F C, Zimmermann C, Bolink H J 2020 Sol. RRL 4 2000447Google Scholar
[16] Song Z, Li C, Chen C, McNatt J, Yoon W, Scheiman D, Jenkins P P, Ellingson R J, Heben M J, Yan Y 2020 J. Phys. Chem. C 124 1330Google Scholar
[17] Murakami Y, Ishiwari F, Okamoto K, Kozawa T, Saeki A 2021 ACS Appl. Mater. Interfaces 13 24824Google Scholar
[18] 李培, 徐洁, 贺朝会, 刘佳欣 2023 物理学报 72 126101Google Scholar
Li P, Xu J, He C H, Liu J X 2023 Acta Phys. Sin. 72 126101Google Scholar
[19] Needs R J, Towler M D, Drummond N D, López Ríos P 2010 J. Phys. Condens. Matter 22 023201Google Scholar
[20] Tan W, Bowring A R, Meng A C, McGehee M D, McIntyre P C 2018 ACS Appl. Mater. Interfaces 10 5485Google Scholar
[21] Mote V D, Purushotham Y, Dole B N 2012 J. Theor. Appl. Phys. 6 6Google Scholar
[22] Luo P, Sun X Y, Jiang H, Yang L, Li Y, Shao W Z, Zhen L, Xu C Y 2022 J. Energy Chem. 69 261Google Scholar
[23] Tauc J 1968 Mater. Res. Bull. 3 37Google Scholar
[24] Lampert M A 1956 Phys. Rev. 103 1648Google Scholar
[25] Sajedi Alvar M, Blom P W M, Wetzelaer G J A H 2020 Nat. Commun. 11 4023Google Scholar
[26] Bube R H 1962 J. Appl. Phys. 33 1733Google Scholar
[27] Holmes-Siedle A, van Lint V A J 2003 Encyclopedia of Physical Science and Technology (3rd Ed.) (New York: Academic Press) pp523–559
[28] 王祖军, 王兴鸿, 晏石兴, 唐宁, 崔新宇, 张琦, 石梦奇, 黄港, 聂栩, 赖善坤 2022 半导体光电 43 490Google Scholar
Wang Z J, Wang X H, Yan S X, Tang N, Cui X Y, Zhang Q, Shi M Q, Huang G, Nie X, Lai S K 2022 Semicond. Optoelectron. 43 490Google Scholar
-
图 1 钙钛矿样品的电子辐照示意图及模拟结果 (a) 电子辐照示意图; (b) 轨道电子能谱模拟; (c) 电子入射轨迹模拟及电池厚度内模拟结果的放大图; (d) 入射电子能量分布
Figure 1. Schematic diagram and simulation results of electron irradiation on perovskite samples: (a) Schematic diagram of electron irradiation; (b) simulation of orbital electron energy spectrum; (c) simulation of electron incident trajectory and enlarged view of simulation results within cell thickness; (d) energy distribution of incident electrons.
图 2 电子辐照前后CsFAMA薄膜的XRD图谱及表面形貌的SEM表征 (a) XRD图谱; (b) 晶格应变; (c) 原始薄膜和(d) 2×1014 e·cm–2, (e) 1×1015 e·cm–2, (f) 5×1015 e·cm–2辐照后薄膜的SEM照片及晶粒尺寸统计
Figure 2. XRD patterns and SEM characterization of surface morphology of CsFAMA films before and after electron irradiation: (a) XRD patterns; (b) lattice strain; (c) top-view SEM images and grain size statistics of pristine film and the films after irradiation with (d) 2×1014 e·cm–2, (e) 1×1015 e·cm–2, and (f) 5×1015 e·cm–2.
图 3 电子辐照前后CsFAMA薄膜的光学/电学性能表征 (a) 吸收光谱及能带间隙; (b) 光致发光谱; (c) 载流子浓度及迁移率; (d) 暗态I-V曲线
Figure 3. Characterization of optical/electrical properties of CsFAMA films before and after electron irradiation: (a) Absorption spectra and energy band gap; (b) photoluminescence spectra; (c) carrier concentration and mobility; (d) dark state I-V curves.
图 5 电子辐照后CsFAMA-PSCs的PCE剩余因子、J-V曲线和EQE曲线 (a) 随时间变化的PCE剩余因子; (b) 辐照后64天时PSCs的J-V曲线和 (c) EQE曲线
Figure 5. PCE remaining factor, J-V curves and EQE curves of CsFAMA-PSCs after electron irradiation: (a) Time-dependent PCE remaining factor; (b) J-V curves and (c) EQE curves of PSCs at 64 days after irradiation.
表 1 电子辐照后64天时CsFAMA-PSCs的光伏性能参数
Table 1. Photovoltaic performance parameters of CsFAMA-PSCs 64 days after electron irradiation.
电子辐照剂量
/(1014 e·cm–2)Jsc
/(mA·cm–2)Voc
/VFF PCE
/%Control 23.93±0.16 1.189±0.015 0.692±0.025 19.70±1.08 2 22.63±0.67 1.192±0.008 0.709±0.030 19.12±0.94 10 22.15±0.16 1.187±0.014 0.713±0.032 18.76±1.17 50 22.53±0.47 1.151±0.013 0.666±0.028 17.29±1.06 -
[1] Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory (NREL) https://www.nrel.gov/pv/cell-efficiency.html [2023-07-10
[2] Dai X, Deng Y, Van Brackle C H, Chen S, Rudd P N, Xiao X, Lin Y, Chen B, Huang J 2020 Adv. Energy Mater. 10 1903108Google Scholar
[3] Kang S, Jeong J, Cho S, Yoon Y J, Park S, Lim S, Kim J Y, Ko H 2019 J. Mater. Chem. A 7 1107Google Scholar
[4] Reese M O, Glynn S, Kempe M D, McGott D L, Dabney M S, Barnes T M, Booth S, Feldman D, Haegel N M 2018 Nat. Energy 3 1002Google Scholar
[5] Lang F, Nickel N H, Bundesmann J, Seidel S, Denker A, Albrecht S, Brus V V, Rappich J, Rech B, Landi G, Neitzert H C 2016 Adv. Mater. 28 8726Google Scholar
[6] Miyazawa Y, Ikegami M, Chen H W, Ohshima T, Imaizumi M, Hirose K, Miyasaka T 2018 iScience 2 148Google Scholar
[7] Saliba M 2019 Adv. Energy Mater. 9 1803754Google Scholar
[8] Jena A K, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar
[9] Jian W, Jia R, Zhang H X, Bai F Q 2020 Inorg. Chem. Front. 7 1741Google Scholar
[10] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grätzel M 2016 Energy Environ. Sci. 9 1989Google Scholar
[11] Mahboubi Soufiani A, Yang Z, Young T, Miyata A, Surrente A, Pascoe A, Galkowski K, Abdi-Jalebi M, Brenes R, Urban J, Zhang N, Bulović V, Portugall O, Cheng Y B, Nicholas R J, Ho-Baillie A, Green M A, Plochocka P, Stranks S D 2017 Energy Environ. Sci. 10 1358Google Scholar
[12] Wu X, Jiang Y, Chen C, Guo J, Kong X, Feng Y, Wu S, Gao X, Lu X, Wang Q, Zhou G, Chen Y, Liu J M, Kempa K, Gao J 2020 Adv. Funct. Mater. 30 1908613Google Scholar
[13] 张琴, 艾尔肯·阿不都瓦衣提, 尹华, 张炜楠, 邓芳, 龙涛, 李左翰 2022 微电子学 52 1055Google Scholar
Zhang Q, Aierken A, Yin H, Zhang W N, Deng F, Long T, Li Z H 2022 Microelectronics 52 1055Google Scholar
[14] Huang J S, Kelzenberg M D, Espinet-González P, Mann C, Walker D, Naqavi A, Vaidya N, Warmann E, Atwater H A 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) Washington DC, USA, June 25–30, 2017 p1248
[15] Pérez-del-Rey D, Dreessen C, Igual-Muñoz A M, van den Hengel L, Gélvez-Rueda M C, Savenije T J, Grozema F C, Zimmermann C, Bolink H J 2020 Sol. RRL 4 2000447Google Scholar
[16] Song Z, Li C, Chen C, McNatt J, Yoon W, Scheiman D, Jenkins P P, Ellingson R J, Heben M J, Yan Y 2020 J. Phys. Chem. C 124 1330Google Scholar
[17] Murakami Y, Ishiwari F, Okamoto K, Kozawa T, Saeki A 2021 ACS Appl. Mater. Interfaces 13 24824Google Scholar
[18] 李培, 徐洁, 贺朝会, 刘佳欣 2023 物理学报 72 126101Google Scholar
Li P, Xu J, He C H, Liu J X 2023 Acta Phys. Sin. 72 126101Google Scholar
[19] Needs R J, Towler M D, Drummond N D, López Ríos P 2010 J. Phys. Condens. Matter 22 023201Google Scholar
[20] Tan W, Bowring A R, Meng A C, McGehee M D, McIntyre P C 2018 ACS Appl. Mater. Interfaces 10 5485Google Scholar
[21] Mote V D, Purushotham Y, Dole B N 2012 J. Theor. Appl. Phys. 6 6Google Scholar
[22] Luo P, Sun X Y, Jiang H, Yang L, Li Y, Shao W Z, Zhen L, Xu C Y 2022 J. Energy Chem. 69 261Google Scholar
[23] Tauc J 1968 Mater. Res. Bull. 3 37Google Scholar
[24] Lampert M A 1956 Phys. Rev. 103 1648Google Scholar
[25] Sajedi Alvar M, Blom P W M, Wetzelaer G J A H 2020 Nat. Commun. 11 4023Google Scholar
[26] Bube R H 1962 J. Appl. Phys. 33 1733Google Scholar
[27] Holmes-Siedle A, van Lint V A J 2003 Encyclopedia of Physical Science and Technology (3rd Ed.) (New York: Academic Press) pp523–559
[28] 王祖军, 王兴鸿, 晏石兴, 唐宁, 崔新宇, 张琦, 石梦奇, 黄港, 聂栩, 赖善坤 2022 半导体光电 43 490Google Scholar
Wang Z J, Wang X H, Yan S X, Tang N, Cui X Y, Zhang Q, Shi M Q, Huang G, Nie X, Lai S K 2022 Semicond. Optoelectron. 43 490Google Scholar
Catalog
Metrics
- Abstract views: 3137
- PDF Downloads: 103
- Cited By: 0