-
Metal halide perovskite (MHP) has been widely used in optoelectronic devices such as solar cells in recent years due to their high absorption coefficients, long-range charge carrier diffusion lengths, and adjustable band gap, which is expected to achieve commercial application. Methylammonium lead iodide (MAPbI3) has been fully investigated as a standard perovskite component, however, due to the low formation energy of polycrystalline films fabricated by wet chemical method, crystal defects (including interface and grain boundary defects) are generally inevitable, which is a principal factor leading to phase transition. Therefore, reducing the defect density of perovskite is a prominent approach to improve the stability of perovskite. Although defect passivation is one of the most commonly used methods to fabricate efficient perovskite solar cells (PSCs), the relatively weak secondary bond between molecular passivation group and perovskite crystal may bring difficulties to the application of practical devices, particularly when operating under harsh environments, such as high temperature, humidity, and ultraviolet light. Therefore, improving the intrinsic structure stability of the perovskite via changing its composition can be an effective way. Although perovskites containing chlorine precursors have been empolyed in solar cells device, how chloride ions affect the structural and electronic properties of these films was not understood yet. In this work, two-phase perovskite (MAPbI2Cl) was fabricated by one-step spin coating with methylamine chloride (MACl) and lead iodide (PbI2) as precursors. As a result, chloride (Cl) doping can superiorly induce perovskite crystallization and thus stabilize the MAPbI3 lattice. The Cl doped perovskite layer shows lower defect density, and compared with the original MAPbI3 film, the carrier lifetime of MAPbI2Cl is increased by 7 times. Simultaneously, both of PCE and operational stability have been largely improved with PCE increased from 11.41% to 13.68%. There is no obvious degradation in the maximum power point output for nearly 8000 seconds in ambient conditions.
-
Keywords:
- perovskite solar cell /
- chlorine doping /
- defect passivation /
- high stability
[1] 张宇辉 2005 北方经济 13 5
Zhang Y H 2005 Northern Eco. 13 5
[2] Huang Q J, Lin J P, Wei C H, Yao R H 2009 Mater. Develop. Appl. 6 93
[3] Shao J Z, Dong W, Deng Z H, Tao R H, Fang X D 2014 Funct. Mater. 45 24008
[4] Yoo J, Shin S, Seo J 2022 ACS Energy Lett. 7 2084Google Scholar
[5] Zhang W H, Peng X C, Feng X D 2014 ECTM 33 7
[6] 郑莹莹 2007 博士学位论文 (杭州: 浙江大学)
Zheng Y Y 2007 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)
[7] 周军帅 2020 博士学位论文 (北京: 北京化工大学)
Zhou J S 2020 Ph. D. Dissertation (Beijing: Beijing University of Chemical Technology) (in Chinese)
[8] 孙盟杰 2020 博士学位论文 (北京: 北京交通大学)
Sun M J 2020 Ph. D. Dissertation (Beijing: Beijing Jiao tong University) (in Chinese)
[9] 陈聪 2019 博士学位论文 (长春: 吉林大学)
Chen C 2019 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)
[10] 刘维 2020 硕士学位论文 (南京: 南京邮电大学)
Liu W 2020 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)
[11] 赵电龙, 李天姝, 徐巧玲, 王雪婷, 张立军 2019 中国光学 12 964Google Scholar
Zhao D L, Li T S, Xu Q L, Wang X T, Zhang L J 2019 Chin. Opt. 12 964Google Scholar
[12] Tong G, Lan X, Song Z, Li G, Li H, Yu L, Xu J, Jiang Y, Sheng Y, Shi Y, Chen K 2017 Mater. Today Energy 5 173Google Scholar
[13] Tong G, Son D Y, Ono L K, Liu Y, Hu Y, Zhang H, Jamshaid A, Qiu L, Liu Z, Qi Y B 2020 Adv. Energy Mater. 10 2003712Google Scholar
[14] Odysseas Kosmatos K, Theofylaktos L, Giannakaki E, Deligiannis D, Konstantakou M, Stergiopoulos T 2019 Energy Environ. Mater. 2 79Google Scholar
[15] Dunlap-Shohl W A, Zhou Y, Padture N P, Mitzi D B 2019 Chem. Rev. 119 3193Google Scholar
[16] Ono L K, Juarez-Perez E J, Qi Y B 2017 ACS Appl. Mater. Interfaces 9 30197Google Scholar
[17] Pool V L, Gold-Parker A, McGehee M D, Toney M F 2015 Chem. Mater. 27 7240Google Scholar
[18] Xu J, Boyd C, Yu Z J, et al. 2020 Science 367 1097Google Scholar
[19] 王艳香, 罗俊, 郭平春, 赵学国, 杨志胜, 朱华, 孙健 2015 无机材料学报 7 673Google Scholar
Wang Y X, Luo J, Guo P C, Zhao X G, Yang Z S, Zhu H, Sun J 2015 J. Inorg. Mater. 7 673Google Scholar
[20] 刘亚青 2019 博士学位论文 (长春: 吉林大学)
Liu Y Q 2019 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)
[21] Ng T W, Chan C Y, Lo M F, Guan Z Q Lee C S 2015 J. Mater. Chem. A 3 9081Google Scholar
[22] Liu Z, Ono L K, Qi Y B 2020 J. Energy Chem. 46 215Google Scholar
[23] Wang M, Li B, Siffalovic P, Chen L C, Cao G, Tian J 2018 J. Mater. Chem. A 6 15386Google Scholar
[24] Odysseas Kosmatos K, Theofylaktos L, Giannakaki E, Deligiannis D, Konstantakou M, Stergiopoulos T 2019 Energy Environ. Sci. 2 79Google Scholar
[25] Jamshaid A, Guo Z, Hieulle J, Stecker C, Ohmann R, Ono L, Qiu L B, Tong G Q, Yin W J, Qi Y B 2021 Energy Environ. Sci. 14 4541
[26] Wang K, Wu C, Hou Y, Yang D, Ye T, Yoon J, Sanghadasa M, Priya S 2020 Energy Environ. Sci. 13 3412Google Scholar
[27] Wu C, Wang K, Li J, Liang Z, Li J, Li W, Zhao L, Chi B, Wang S 2021 Matter 4 775Google Scholar
[28] Park B W, Kedem N, Kulbak M, Lee D Y, Yang W S, Jeon N J, Seo J, Kim G, Kim K J, Shin T J, Hodes G, Cahen D, Seok S I 2018 Nat. Commun. 9 8Google Scholar
[29] 邵月琴 2016 硕士学位论文 (南京: 南京理工大学)
Shao Y Q 2016 M. S. Thesis (Nanjing: Nanjing University of Science and Technology) (in Chinese)
[30] Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, DeMarco N, Zhao H, Sun P, Huang Y, Yang Y 2018 Nat. Commun. 9 1Google Scholar
[31] Saidaminov M I, Abdelhady A L, Burlakov V, Murali B, Peng W, Dursun D, Wang L, Goriely A, Wu T, Mohammed O F, Bakr O M 2015 Nat. Commun. 6 7586Google Scholar
[32] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar
[33] Peng J, Chen Y, Zheng K, Pullerits T, Liang Z 2017 Chem. Soc. Rev. 46 5714Google Scholar
[34] Zheng J, Hu L, Yun J S, Zhang M, Lau C F, Bing J, Deng X, Ma Q, Cho Y, Fu W, Chen C, Green M A, Huang S, Ho-Baillie A W 2018 ACS Appl. Energy Mater. 1 561
[35] Luo C, Zheng G, Gao F, Wang X J, Zhao Y, Gao X Y, Zhao Q 2022 Joule 6 240Google Scholar
[36] He T W, Li S, Jiang Y Z, Qin C, Cui M H, Qiao L, Xu H Y, Yang J, Long R, Wang H, Yuan M J 2020 Nat. Commun. 11 1Google Scholar
[37] Tang M C, Dang H X, Lee S, Barrit D, Munir R, Wang K, Li R P, Smilgies D M, Wolf S D, Kim D Y, Amassian A 2021 Solar RRL 5 2000718Google Scholar
-
图 1 (a) MAPbI3和MAPbI2Cl的XRD图谱; (b)两相钙钛矿MAPbI2Cl的结构示意图; (c)相应的紫外吸收光谱和带隙. MAPbI3和MAPbI2Cl钙钛矿薄膜的XPS谱图 (d) Pb 4f; (e) I 3d; (f) Cl 2p
Figure 1. (a) XRD patterns of MAPbI3 and MAPbI2Cl; (b) schematic diagram of the structure of the MAPbI2Cl; (c) UV-Vis absorption spectra of MAPbI3 and MAPbI2Cl (inset: calculated bandgap); (d) XPS spectra of Pb 4f core-level and (e) I 3d core-level of MAPbI3 and MAPbI2Cl ; (f) XPS spectra of Cl 2p core-level of MAPbI2Cl.
图 3 钙钛矿薄膜的(a)稳态PL光谱和(b)瞬态PL光谱; 基于FTO/钙钛矿/碳结构的MAPbI3和MAPbI2Cl钙钛矿器件 (c) SCLC曲线, (d) I-V特性曲线, (e)暗J-V特性曲线; (f)钙钛矿太阳能器件的器件结构图
Figure 3. (a) Steady-state PL spectra and (b) time-resolved PL spectra of MAPbI3 and MAPbI2Cl; (c) SCLC curves for the MAPbI3 and MAPbI2Cl; (d) I-V curves for the MAPbI3 and MAPbI2Cl; (e) the dark J-V characteristics of MAPbI3 and MAPbI2Cl; (f) perovskite device structure diagram of PSCs.
图 4 (a) AM 1.5 G 100 mW/cm2的模拟太阳光照射下反向扫描的J-V曲线; (b) 器件的效率分布图; (c)器件填充因子分布图; (d)器件的开路电压分布图; (e) MAPbI2Cl和MAPbI3 的IPCE光谱; (f)MAPbI2Cl最大功率点的稳态输出和电流密度
Figure 4. (a) J-V curve of PSCs under simulated AM 1.5 G sunlight at 100 mW/cm2; statistics of (b) PCE (c) FF and (d) VOC based on MAPbI3 and MAPbI2Cl; (e) IPCE and integrated JSC spectra of MAPbI3 and MAPbI2Cl; (f) power output and current density at the steady-state maximum power point of MAPbI2Cl PSC.
表 1 MAPbI3和MAPbI2Cl钙钛矿薄膜器件的瞬态PL性能参数
Table 1. Transient PL performance parameters of MAPbI3 and MAPbI2Cl perovskite thin film devices.
A1 τ1/ns A2 τ2/ns τave/ns MAPbI3 20.43 63.17 11.86 63.18 63.17 MAPbI2Cl 23.45 503.28 8.05 209.45 466.55 表 2 MAPbI3和MAPbI2Cl作为钙钛矿吸光层制备器件的性能参数
Table 2. Performance parameters of devices prepared by MAPbI3 and MAPbI2Cl as perovskite absorbing layers.
VOC/V JSC/(mA·cm-2) FF PCE/% MAPbI3 1.038 19.84 0.55 11.41 MAPbI2Cl 1.143 18.65 0.64 13.68 -
[1] 张宇辉 2005 北方经济 13 5
Zhang Y H 2005 Northern Eco. 13 5
[2] Huang Q J, Lin J P, Wei C H, Yao R H 2009 Mater. Develop. Appl. 6 93
[3] Shao J Z, Dong W, Deng Z H, Tao R H, Fang X D 2014 Funct. Mater. 45 24008
[4] Yoo J, Shin S, Seo J 2022 ACS Energy Lett. 7 2084Google Scholar
[5] Zhang W H, Peng X C, Feng X D 2014 ECTM 33 7
[6] 郑莹莹 2007 博士学位论文 (杭州: 浙江大学)
Zheng Y Y 2007 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)
[7] 周军帅 2020 博士学位论文 (北京: 北京化工大学)
Zhou J S 2020 Ph. D. Dissertation (Beijing: Beijing University of Chemical Technology) (in Chinese)
[8] 孙盟杰 2020 博士学位论文 (北京: 北京交通大学)
Sun M J 2020 Ph. D. Dissertation (Beijing: Beijing Jiao tong University) (in Chinese)
[9] 陈聪 2019 博士学位论文 (长春: 吉林大学)
Chen C 2019 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)
[10] 刘维 2020 硕士学位论文 (南京: 南京邮电大学)
Liu W 2020 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)
[11] 赵电龙, 李天姝, 徐巧玲, 王雪婷, 张立军 2019 中国光学 12 964Google Scholar
Zhao D L, Li T S, Xu Q L, Wang X T, Zhang L J 2019 Chin. Opt. 12 964Google Scholar
[12] Tong G, Lan X, Song Z, Li G, Li H, Yu L, Xu J, Jiang Y, Sheng Y, Shi Y, Chen K 2017 Mater. Today Energy 5 173Google Scholar
[13] Tong G, Son D Y, Ono L K, Liu Y, Hu Y, Zhang H, Jamshaid A, Qiu L, Liu Z, Qi Y B 2020 Adv. Energy Mater. 10 2003712Google Scholar
[14] Odysseas Kosmatos K, Theofylaktos L, Giannakaki E, Deligiannis D, Konstantakou M, Stergiopoulos T 2019 Energy Environ. Mater. 2 79Google Scholar
[15] Dunlap-Shohl W A, Zhou Y, Padture N P, Mitzi D B 2019 Chem. Rev. 119 3193Google Scholar
[16] Ono L K, Juarez-Perez E J, Qi Y B 2017 ACS Appl. Mater. Interfaces 9 30197Google Scholar
[17] Pool V L, Gold-Parker A, McGehee M D, Toney M F 2015 Chem. Mater. 27 7240Google Scholar
[18] Xu J, Boyd C, Yu Z J, et al. 2020 Science 367 1097Google Scholar
[19] 王艳香, 罗俊, 郭平春, 赵学国, 杨志胜, 朱华, 孙健 2015 无机材料学报 7 673Google Scholar
Wang Y X, Luo J, Guo P C, Zhao X G, Yang Z S, Zhu H, Sun J 2015 J. Inorg. Mater. 7 673Google Scholar
[20] 刘亚青 2019 博士学位论文 (长春: 吉林大学)
Liu Y Q 2019 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)
[21] Ng T W, Chan C Y, Lo M F, Guan Z Q Lee C S 2015 J. Mater. Chem. A 3 9081Google Scholar
[22] Liu Z, Ono L K, Qi Y B 2020 J. Energy Chem. 46 215Google Scholar
[23] Wang M, Li B, Siffalovic P, Chen L C, Cao G, Tian J 2018 J. Mater. Chem. A 6 15386Google Scholar
[24] Odysseas Kosmatos K, Theofylaktos L, Giannakaki E, Deligiannis D, Konstantakou M, Stergiopoulos T 2019 Energy Environ. Sci. 2 79Google Scholar
[25] Jamshaid A, Guo Z, Hieulle J, Stecker C, Ohmann R, Ono L, Qiu L B, Tong G Q, Yin W J, Qi Y B 2021 Energy Environ. Sci. 14 4541
[26] Wang K, Wu C, Hou Y, Yang D, Ye T, Yoon J, Sanghadasa M, Priya S 2020 Energy Environ. Sci. 13 3412Google Scholar
[27] Wu C, Wang K, Li J, Liang Z, Li J, Li W, Zhao L, Chi B, Wang S 2021 Matter 4 775Google Scholar
[28] Park B W, Kedem N, Kulbak M, Lee D Y, Yang W S, Jeon N J, Seo J, Kim G, Kim K J, Shin T J, Hodes G, Cahen D, Seok S I 2018 Nat. Commun. 9 8Google Scholar
[29] 邵月琴 2016 硕士学位论文 (南京: 南京理工大学)
Shao Y Q 2016 M. S. Thesis (Nanjing: Nanjing University of Science and Technology) (in Chinese)
[30] Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, DeMarco N, Zhao H, Sun P, Huang Y, Yang Y 2018 Nat. Commun. 9 1Google Scholar
[31] Saidaminov M I, Abdelhady A L, Burlakov V, Murali B, Peng W, Dursun D, Wang L, Goriely A, Wu T, Mohammed O F, Bakr O M 2015 Nat. Commun. 6 7586Google Scholar
[32] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar
[33] Peng J, Chen Y, Zheng K, Pullerits T, Liang Z 2017 Chem. Soc. Rev. 46 5714Google Scholar
[34] Zheng J, Hu L, Yun J S, Zhang M, Lau C F, Bing J, Deng X, Ma Q, Cho Y, Fu W, Chen C, Green M A, Huang S, Ho-Baillie A W 2018 ACS Appl. Energy Mater. 1 561
[35] Luo C, Zheng G, Gao F, Wang X J, Zhao Y, Gao X Y, Zhao Q 2022 Joule 6 240Google Scholar
[36] He T W, Li S, Jiang Y Z, Qin C, Cui M H, Qiao L, Xu H Y, Yang J, Long R, Wang H, Yuan M J 2020 Nat. Commun. 11 1Google Scholar
[37] Tang M C, Dang H X, Lee S, Barrit D, Munir R, Wang K, Li R P, Smilgies D M, Wolf S D, Kim D Y, Amassian A 2021 Solar RRL 5 2000718Google Scholar
Catalog
Metrics
- Abstract views: 4925
- PDF Downloads: 92
- Cited By: 0