Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy harvesting and thermoelectric conversion characteristics based on thermal metamaterials

Li Yi-Ming Wang Xin Li Hao Du Xian Sun Peng

Citation:

Energy harvesting and thermoelectric conversion characteristics based on thermal metamaterials

Li Yi-Ming, Wang Xin, Li Hao, Du Xian, Sun Peng
PDF
HTML
Get Citation
  • Considering the limitations of thermoelectric generators, the integration of thermoelectric generator with two-dimensional fan-shaped thermal metamaterial energy harvesting device is proposed to improve the thermal-to-electrical energy conversion efficiency of thermoelectric generator (TEG) by regulating the thermal field. Based on the COMSOL Multiphysics software simulation, the influences of different materials on the performances of energy harvesting devices in thermal field regulation are investigated. The performances of the selected materials are simulated , indicating that the energy harvesting device can effectively regulate heat flow, the temperature gradient in the center of it is increased by eight times compared with the natural material under the same simulation conditions. The generated electrical energy of thermoelectric generators of different sizes is studied, then three-dimensional modeling and processing of the energy harvesting device are completed by carefully considering the processing accuracy and testing difficulty. The experimental test system is set up to observe the temperature distribution of the energy harvesting device equipped with an infrared thermal imager, The test results demonstrate that the energy harvesting device can effectively regulate the thermal field. In comparison with the natural material, the working efficiency of the thermoelectric generators can be increased by 3.2 times under the same experimental condition, which has specific practical significance for promoting the rapid development of thermoelectric power generation technology.
      Corresponding author: Wang Xin, wangxin219@imu.edu.cn
    • Funds: Project supported by the Regional Training Program of Innovation and Entrepreneurship for Undergraduates, China (Grant No. 202110126036).
    [1]

    史尧光 2018 博士学位论文 (杭州: 浙江大学)

    Shi Y G 2018 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    Xing T, Song Q, Qiu P, Zhang Q, Gu M, Xia X, Liao J, Shi X, Chen L 2021 Energy Environ. 14 995Google Scholar

    [4]

    Zhang Y, Feng B, Hayashi H, Chang C P, Sheu Y M, Tanaka I, Ikuhara Y, Ohta H 2018 Nat. Commun. 9 2224Google Scholar

    [5]

    Zhao Y, Yu P, Zhang G, Sun M, Chi D, Hippalgaonkar K, Thong J T L, Wu J 2020 Adv. Funct. Mater. 30 2004896Google Scholar

    [6]

    Xing T, Zhu C X, Song Q F, Huang H, Xiao J, Ren D D, Shi M J, Qiu P F, Shi X, Xu F F, Chen L D 2021 Adv. Mater. 33 2008773Google Scholar

    [7]

    Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J, Pei Y 2018 Joule 2 976Google Scholar

    [8]

    Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z 2013 Proc. Natl. Acad. 110 13261Google Scholar

    [9]

    Hong M, Chen Z G, Yang Y, Zou Y C, Dargusch M S, Wang H, Zou J 2018 Adv. Mater. 30 1705942Google Scholar

    [10]

    Zhai R, Hu L, Wu H, Xu Z, Zhu T J, Zhao X B 2017 ACS Appl. Mater. Interfaces 9 28577Google Scholar

    [11]

    Liu W D, Yu Y, Dargusch M, Liu Q, Chen Z G 2021 Renew. Sust. Energy Rev. 141 110800Google Scholar

    [12]

    Wang D Z, Liu W D, Li M, Yin L C, Gao H, Sun Q, Wu H, Wang Y F, Shi X L, Yang X N, Liu Q F, Chen Z G 2022 Chem. Engineer. J. 441 136131Google Scholar

    [13]

    Yin L C, Liu W D, Li M, Sun Q, Gao H, Wang D Z, Wu H, Wang Y F, Shi X L, Liu Q F, Chen Z G 2021 Adv. Energy Mater. 11 2102913Google Scholar

    [14]

    Zhang Q H, Zhou Z X, Maxwell D, Agne M T, Pei Y Z, Wang L J, Tang Y S, Liao J C, Li J, Bai S Q, Jiang W, Chen L D, Gerald J S 2017 Nano Energy 41 501Google Scholar

    [15]

    Zhu H T, He R, Mao J, Zhu Q, Li C H, Sun J F, Ren W Y, Wang Y M, Liu Z H, Tang Z J, Sotnikov A, Wang Z M, Broido D, Singh D J, Chen G, Nielsch K, Ren Z F 2018 Nat. Commun. 9 2497Google Scholar

    [16]

    Zhang Q H, Liao J C, Yunshan T, Ming G, Ming C, Qiu P, Bai S, Shi X, Uher C, Chen L D 2017 Energy Environ. Sci. 10 956Google Scholar

    [17]

    Jood P, Ohta M, Yamamoto A, Kanatzidis M G 2018 Joule 2 1339Google Scholar

    [18]

    Chu J, Huang J, Liu R H, Liao J C, Xia X G, Zhang Q H, Wang C, Gu M, Bai S Q, Shi X, Chen L D 2020 Nat. Commun. 11 2723Google Scholar

    [19]

    Kumar M, Rani S, Singh Y, Gour K S, Singh V N 2020 J. Nanosci. Nanotechnol. 20 3636Google Scholar

    [20]

    Shi W C, Stedman T, Woods L M 2019 J. Phys. Energy 1 025002Google Scholar

    [21]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907Google Scholar

    [22]

    Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504Google Scholar

    [23]

    Sheng S, Asegun H, Jonathan T, Zheng R, Chenet G 2010 Nat. Nanotechnol. 5 251Google Scholar

    [24]

    Sebastien G, Claude A, Denis V 2012 Opt. Express 20 8207Google Scholar

    [25]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901Google Scholar

    [26]

    Ma Y G, Lan L, Jiang W, Sun F, He S 2013 NPG Asia Mater. 5 1

    [27]

    Lan C W, Li B, Zhou J 2015 Opt. Express 23 24475Google Scholar

    [28]

    García-Meca C, Barceló C 2016 J. Optics. 18 044026Google Scholar

    [29]

    Shen X Y, Li Y, Jiang C R, Ni Y S, Huang J P 2016 Appl. Phys. Lett. 109 031907Google Scholar

    [30]

    Stedman T, Woods L M 2017 Sci. Rep. 7 6988Google Scholar

    [31]

    Xu L J, Zhao X T, Zhang Y P, Huang J P 2020 Eur. Phys. J. B. 93 101Google Scholar

    [32]

    Hou Q W, Zhao X P, Meng T, Liu C L 2016 Appl. Phys. Lett. 109 103506Google Scholar

    [33]

    Shen X Y, Li Y, Jiang C R, Huang J P 2016 Phys. Rev. Lett. 117 055501Google Scholar

    [34]

    Wang J, Shang J, Huang J P 2019 Phys. Rev. Appl. 11 024053Google Scholar

    [35]

    Yang T Z, Bai X, Gao D L, Wu L Z, Li B W, Thong J T L, Qiu C W 2015 Adv. Mater. 27 7752Google Scholar

    [36]

    Liu W M, Lan C W, Ji M W, Yao J T 2017 Global Challenges 1 1700017Google Scholar

    [37]

    Han T C, Bai X, Liu D, Gao D L, Li B W, Thong J T L, Qiu C W 2015 Sci. Rep. 5 10242Google Scholar

    [38]

    刘文美 2017 硕士学位论文 (北京: 清华大学)

    Liu W M 2017 M. S. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [39]

    张胜, 徐艳松, 孙姗姗, 臧文慧, 孙军, 谷晓昱 2016 中国塑料 30 7Google Scholar

    Zhang S, Xu Y S, Sun S S, Zang W H, Sun J, Gu X Y 2016 China Plastics 30 7Google Scholar

    [40]

    陈彩珠, 潘汉军 2016 工程塑料应用 44 146Google Scholar

    Chen C Z, Pan H J 2016 Engineer. Plastic Appl. 44 146Google Scholar

    [41]

    刘金城 2021 铸造 70 1372Google Scholar

    Liu J C 2021 Foundry 70 1372Google Scholar

    [42]

    Sanad M F, Shalan A E, Abdellatif S O, Shalan A E, Serea E S A, Adly M S, Ahsan M A 2020 Topics Curr. Chem. 378 1Google Scholar

  • 图 1  二维扇形能量收集结构示意图

    Figure 1.  Schematic of the fan-shaped energy harvesting structure.

    图 2  铝合金与树脂交替排布实现热流调控

    Figure 2.  Control of the heat flow by alternately arranging the AlSi10Mg and resin.

    图 3  采用不锈钢基底与铝合金基底的能量收集结构温度梯度图

    Figure 3.  Temperature gradients of energy harvesting structures respectively using stainless steel or AlSi10Mg substrate.

    图 4  单一不锈钢结构与能量收集结构的温度分布与热流分布图 (a) 单一不锈钢结构; (b) 能量收集结构

    Figure 4.  Temperature and heat flow distribution of single stainless steel structure and energy harvesting structure: (a) Stainless steel structure; (b) energy harvesting structure.

    图 5  温差发电器件放置于单一不锈钢或能量收集结构的电势量 (a) 单一不锈钢结构; (b) 能量收集结构

    Figure 5.  The power generation of thermoelectric generators placed in a single stainless steel or energy harvesting structure: (a) Stainless steel structure; (b) energy harvesting structure.

    图 6  放置温差发电器前后能量收集结构温度与热流分布图 (a) 放置温差发电器; (b)未放置温差发电器

    Figure 6.  Temperature and heat flow distribution of the energy harvesting structure before and after placing the thermoelectric generator: (a) With thermoelectric generator; (b) without thermoelectric generator.

    图 7  消费类温差发电器结构示意图

    Figure 7.  Schematic of common thermoelectric genetators.

    图 8  能量收集结构三维模型图 (a) 不锈钢基底; (b) 树脂扇形区域; (c) 铝合金扇形区域

    Figure 8.  3D model diagram of the energy harvesting structure: (a) Stainless steel substrate; (b) resin sectors; (c) AlSi10Mg sectors.

    图 9  集成温差发电器的能量收集结构装配模型图

    Figure 9.  Model diagram of the energy harvesting structure with the thermoelectric generator.

    图 10  能量收集结构实验测试系统

    Figure 10.  Experimental test system for energy harvesting structure.

    图 11  单一不锈钢结构实验测试系统

    Figure 11.  Experimental test system for single stainless steel structure.

    图 12  红外热成像仪测试结果图 (a) 能量收集结构; (b) 单一不锈钢结构

    Figure 12.  Test results by the infrared thermal imager: (a) Energy harvesting structure; (b) stainless steel structure.

    表 1  Be2Te3材料的基本参数

    Table 1.  Basic parameters of Be2Te3 material.

    参数名称取值范围单位
    恒压热容154J/(kg·K)
    密度7700kg/m3
    塞贝克系数2.1×10–4—2.3×10–4V/K
    导热系数1.3—1.6W/(m·K)
    电导率0.5×105—0.7×105S/m
    相对介电常数1量纲一
    DownLoad: CSV

    表 2  不同厚度温差发电器热电仿真结果

    Table 2.  Thermoelectric simulation results of thermoelectric generators with different thicknesses.

    热电器件
    厚度/mm
    上下两端
    温差/K
    温度梯度/
    (K·mm–1)
    产生电势/mV
    841.55.2–7.57
    640.46.7–7.34
    439.79.9–7.12
    DownLoad: CSV

    表 3  能量收集结构中温差发电片发电量

    Table 3.  Power generation of the thermoelectric generator placed in the energy harvesting structure.

    测试序号最大发电量/mW结束时发电量/mW
    19.918.57
    28.977.99
    39.638.31
    平均值9.508.29
    DownLoad: CSV

    表 4  单一不锈钢结构中温差发电片发电量

    Table 4.  Power generation of the thermoelectric generator placed in the single stainless steel structure.

    测试序号最大发电量/mW结束时发电量/mW
    15.072.45
    25.332.88
    35.262.23
    平均值5.222.52
    DownLoad: CSV
  • [1]

    史尧光 2018 博士学位论文 (杭州: 浙江大学)

    Shi Y G 2018 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    Xing T, Song Q, Qiu P, Zhang Q, Gu M, Xia X, Liao J, Shi X, Chen L 2021 Energy Environ. 14 995Google Scholar

    [4]

    Zhang Y, Feng B, Hayashi H, Chang C P, Sheu Y M, Tanaka I, Ikuhara Y, Ohta H 2018 Nat. Commun. 9 2224Google Scholar

    [5]

    Zhao Y, Yu P, Zhang G, Sun M, Chi D, Hippalgaonkar K, Thong J T L, Wu J 2020 Adv. Funct. Mater. 30 2004896Google Scholar

    [6]

    Xing T, Zhu C X, Song Q F, Huang H, Xiao J, Ren D D, Shi M J, Qiu P F, Shi X, Xu F F, Chen L D 2021 Adv. Mater. 33 2008773Google Scholar

    [7]

    Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J, Pei Y 2018 Joule 2 976Google Scholar

    [8]

    Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z 2013 Proc. Natl. Acad. 110 13261Google Scholar

    [9]

    Hong M, Chen Z G, Yang Y, Zou Y C, Dargusch M S, Wang H, Zou J 2018 Adv. Mater. 30 1705942Google Scholar

    [10]

    Zhai R, Hu L, Wu H, Xu Z, Zhu T J, Zhao X B 2017 ACS Appl. Mater. Interfaces 9 28577Google Scholar

    [11]

    Liu W D, Yu Y, Dargusch M, Liu Q, Chen Z G 2021 Renew. Sust. Energy Rev. 141 110800Google Scholar

    [12]

    Wang D Z, Liu W D, Li M, Yin L C, Gao H, Sun Q, Wu H, Wang Y F, Shi X L, Yang X N, Liu Q F, Chen Z G 2022 Chem. Engineer. J. 441 136131Google Scholar

    [13]

    Yin L C, Liu W D, Li M, Sun Q, Gao H, Wang D Z, Wu H, Wang Y F, Shi X L, Liu Q F, Chen Z G 2021 Adv. Energy Mater. 11 2102913Google Scholar

    [14]

    Zhang Q H, Zhou Z X, Maxwell D, Agne M T, Pei Y Z, Wang L J, Tang Y S, Liao J C, Li J, Bai S Q, Jiang W, Chen L D, Gerald J S 2017 Nano Energy 41 501Google Scholar

    [15]

    Zhu H T, He R, Mao J, Zhu Q, Li C H, Sun J F, Ren W Y, Wang Y M, Liu Z H, Tang Z J, Sotnikov A, Wang Z M, Broido D, Singh D J, Chen G, Nielsch K, Ren Z F 2018 Nat. Commun. 9 2497Google Scholar

    [16]

    Zhang Q H, Liao J C, Yunshan T, Ming G, Ming C, Qiu P, Bai S, Shi X, Uher C, Chen L D 2017 Energy Environ. Sci. 10 956Google Scholar

    [17]

    Jood P, Ohta M, Yamamoto A, Kanatzidis M G 2018 Joule 2 1339Google Scholar

    [18]

    Chu J, Huang J, Liu R H, Liao J C, Xia X G, Zhang Q H, Wang C, Gu M, Bai S Q, Shi X, Chen L D 2020 Nat. Commun. 11 2723Google Scholar

    [19]

    Kumar M, Rani S, Singh Y, Gour K S, Singh V N 2020 J. Nanosci. Nanotechnol. 20 3636Google Scholar

    [20]

    Shi W C, Stedman T, Woods L M 2019 J. Phys. Energy 1 025002Google Scholar

    [21]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907Google Scholar

    [22]

    Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504Google Scholar

    [23]

    Sheng S, Asegun H, Jonathan T, Zheng R, Chenet G 2010 Nat. Nanotechnol. 5 251Google Scholar

    [24]

    Sebastien G, Claude A, Denis V 2012 Opt. Express 20 8207Google Scholar

    [25]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901Google Scholar

    [26]

    Ma Y G, Lan L, Jiang W, Sun F, He S 2013 NPG Asia Mater. 5 1

    [27]

    Lan C W, Li B, Zhou J 2015 Opt. Express 23 24475Google Scholar

    [28]

    García-Meca C, Barceló C 2016 J. Optics. 18 044026Google Scholar

    [29]

    Shen X Y, Li Y, Jiang C R, Ni Y S, Huang J P 2016 Appl. Phys. Lett. 109 031907Google Scholar

    [30]

    Stedman T, Woods L M 2017 Sci. Rep. 7 6988Google Scholar

    [31]

    Xu L J, Zhao X T, Zhang Y P, Huang J P 2020 Eur. Phys. J. B. 93 101Google Scholar

    [32]

    Hou Q W, Zhao X P, Meng T, Liu C L 2016 Appl. Phys. Lett. 109 103506Google Scholar

    [33]

    Shen X Y, Li Y, Jiang C R, Huang J P 2016 Phys. Rev. Lett. 117 055501Google Scholar

    [34]

    Wang J, Shang J, Huang J P 2019 Phys. Rev. Appl. 11 024053Google Scholar

    [35]

    Yang T Z, Bai X, Gao D L, Wu L Z, Li B W, Thong J T L, Qiu C W 2015 Adv. Mater. 27 7752Google Scholar

    [36]

    Liu W M, Lan C W, Ji M W, Yao J T 2017 Global Challenges 1 1700017Google Scholar

    [37]

    Han T C, Bai X, Liu D, Gao D L, Li B W, Thong J T L, Qiu C W 2015 Sci. Rep. 5 10242Google Scholar

    [38]

    刘文美 2017 硕士学位论文 (北京: 清华大学)

    Liu W M 2017 M. S. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [39]

    张胜, 徐艳松, 孙姗姗, 臧文慧, 孙军, 谷晓昱 2016 中国塑料 30 7Google Scholar

    Zhang S, Xu Y S, Sun S S, Zang W H, Sun J, Gu X Y 2016 China Plastics 30 7Google Scholar

    [40]

    陈彩珠, 潘汉军 2016 工程塑料应用 44 146Google Scholar

    Chen C Z, Pan H J 2016 Engineer. Plastic Appl. 44 146Google Scholar

    [41]

    刘金城 2021 铸造 70 1372Google Scholar

    Liu J C 2021 Foundry 70 1372Google Scholar

    [42]

    Sanad M F, Shalan A E, Abdellatif S O, Shalan A E, Serea E S A, Adly M S, Ahsan M A 2020 Topics Curr. Chem. 378 1Google Scholar

  • [1] Zhao Shi-Jie, Ma Hao-Nan, Liu Xia. Research progress in the regulation of physical properties of two-dimensional materials based on thermal scanning probe lithography. Acta Physica Sinica, 2025, 74(3): . doi: 10.7498/aps.74.20241590
    [2] Xiong Jia-Cheng, Huang Zhe-Qun, Zhang Heng, Wang Qi-Xiang, Cui Ke-Hang. Spectral regulation in thermophotovoltaic devices. Acta Physica Sinica, 2024, 73(14): 144402. doi: 10.7498/aps.73.20240629
    [3] Wang Yang-Tao, Jing Wei-Xuan, Han Feng, Meng Qing-Zhi, Lin Qi-Jing, Zhao Li-Bo, Jiang Zhuang-De. Study on influence of ring hole array metamaterial on performance of pyroelectric terahertz detectors. Acta Physica Sinica, 2023, 72(4): 048701. doi: 10.7498/aps.72.20221174
    [4] Feng Yan-Hui, Feng Dai-Li, Chu Fu-Qiang, Qiu Lin, Sun Fang-Yuan, Lin Lin, Zhang Xin-Xin. Thermal design frontiers of nano-assembled phase change materials for heat storage. Acta Physica Sinica, 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [5] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [6] Zhang Jing-Yan, Dou Peng-Wei, Zhao Yun-Chi, Zhang Shi-Lei, Liu Jia-Qiang, Qi Jie, Lü Hao-Chang, Liu Ruo-Yang, Yu Guang-Hua, Jiang Yong, Shen Bao-Gen, Wang Shou-Guo. Multi-field manipulation in Hall balance. Acta Physica Sinica, 2021, 70(4): 048501. doi: 10.7498/aps.70.20201799
    [7] Xiang Yang, Zheng Jun, Li Chun-Lei, Wang Xiao-Ming, Yuan Rui-Yang. Circularly-polarized light controlled thermal spin transport in stanene nanoribbon. Acta Physica Sinica, 2021, 70(14): 147301. doi: 10.7498/aps.70.20210197
    [8] Lin Yue-Chai, Liu Fang, Huang Yi-Dong. Cherenkov radiation based on metamaterials. Acta Physica Sinica, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [9] Wu Feng, Guo Zhi-Wei, Wu Jia-Ju, Jiang Hai-Tao, Du Gui-Qiang. Band gap engineering and applications in compound periodic structure containing hyperbolic metamaterials. Acta Physica Sinica, 2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
    [10] Wu Ye-Sheng, Liu Qi, Cao Jie, Li Kai, Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Jiang Shi-Yu. Design and output performance of vibration energy harvesting triboelectric nanogenerator. Acta Physica Sinica, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [11] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [12] Xu Qiang-Qiang, Ji Xu, Li Ming, Liu Jia-Xing, Li Hai-Li. Performances of thermoelectric module under solar Fresnel concentration. Acta Physica Sinica, 2016, 65(23): 237201. doi: 10.7498/aps.65.237201
    [13] Shen Xiang-Ying, Huang Ji-Ping. Transformation thermotics: thermal metamaterials and their applications. Acta Physica Sinica, 2016, 65(17): 178103. doi: 10.7498/aps.65.178103
    [14] Wang Fei, Peng Lan, Zhang Quan-Zhuang, Liu Jia. Effect of horizontal temperature difference on Marangoni-thermocapillary convection in a shallow annular pool. Acta Physica Sinica, 2015, 64(14): 140202. doi: 10.7498/aps.64.140202
    [15] Wang Chang-Hong, Lin Tao, Zeng Zhi-Huan. Analysis and simulation of semiconductor thermoelectric power generation process. Acta Physica Sinica, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [16] Liu Lei, Zhang Suo-Liang, Ma Ya-Kun, Wu Guo-Hao, Zheng Shu-Kai, Wang Yong-Qing. Modelling and structure optimization of flat-panel thermal concentrated solar thermoelectric device. Acta Physica Sinica, 2013, 62(3): 038802. doi: 10.7498/aps.62.038802
    [17] He Guang-Yuan, Guo Jing, Jiao Zhong-Xing, Wang Biao. Control of the thermal lensing effect in solid-state laser. Acta Physica Sinica, 2012, 61(9): 094217. doi: 10.7498/aps.61.094217
    [18] Bi Li-Ge, O. Tegus, Yi Riletu, Shi Hai-Rong. Thermomagnetic power generation performance of first-order phase transition material Mn1.2Fe0.8P0.4Si0.6. Acta Physica Sinica, 2012, 61(7): 077103. doi: 10.7498/aps.61.077103
    [19] Chen Bin, Peng Xiang-He, Fan Jing-Hong, Sun Shi-Tao, Luo Ji. A thermo-elastoplastic constitutive equation including phase transformation and its applications. Acta Physica Sinica, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [20] 较差脈流发电器. Acta Physica Sinica, 1935, 1(3): 68-78. doi: 10.7498/aps.1.68
Metrics
  • Abstract views:  5388
  • PDF Downloads:  106
  • Cited By: 0
Publishing process
  • Received Date:  29 May 2022
  • Accepted Date:  27 June 2022
  • Available Online:  10 October 2022
  • Published Online:  20 October 2022

/

返回文章
返回