Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Efficient and stable carbon-based CsPbBr3 solar cells added with PEABr additive

Zhong Ting-Ting Zhang Chen Shindume Lomboleni Hamukwaya Xu Wang-Shu Tang Kun-Peng Xu Xiang Sun Wen-Tian Hao Hui-Ying Dong Jing-Jing Liu Hao Xing Jie

Citation:

Efficient and stable carbon-based CsPbBr3 solar cells added with PEABr additive

Zhong Ting-Ting, Zhang Chen, Shindume Lomboleni Hamukwaya, Xu Wang-Shu, Tang Kun-Peng, Xu Xiang, Sun Wen-Tian, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie
PDF
HTML
Get Citation
  • In recent years, organic-inorganic hybrid perovskite solar cells have become a research hotspot in the photovoltaic field because of their excellent power conversion efficiency. However, this hybrid perovskite material's intrinsic instability and the harsh preparation environment limit its further commercial application. All-inorganic CsPbBr3 perovskite materials have attracted much attention because of their good stability, low cost and can be prepared in an atmospheric environment, showing great application potential. The controllable preparation and growth kinetics of CsPbBr3 materials need to be further studied, and the conversion efficiency of photovoltaic devices is still low. Considering the instability caused by traditional organic hole transport materials and their high preparation cost, this work focuses on the systematical studies of CsPbBr3 all-inorganic perovskite cells without a hole transport layer. Growth kinetics material of CsPbBr3 is controlled by adding 2-phenylethylamine bromide to precursor solution. The main research contents and results are described as follows.Based on multi-step spin-coating preparation of CsPbBr3 perovskite films, the perovskite cell preparation method is studied, and the critical process parameters including the spin-coating PbBr2, amount and number of spin-coating of CsBr, substrate preheating temperature, and the annealing temperature, are optimized. The optimization tests show that the optimal spin-coating of CsBr is obtained by being optimized five times and the spin-coating PbBr2 is conducted in the atmospheric environment. The optimal preheating temperature of the substrate is 80 ℃, and the optimal annealing temperature is 100 ℃. The perovskite films prepared under this condition are compact, each with a continuous high phase purity and good crystallization performance.The PbBr2 in DMF is first adopted and the 2-phenylethylamine bromide (PEABr) solution is added to regulate the CsPbBr3 crystalline quality of the film. The effects of PEABr on the perovskite crystallization process and device performance are systematically investigated. The results show that the introduction of PEABr can effectively optimize the CsPbBr3. The crystalline properties of the two-dimensional perovskite materials can improve the grain boundaries and improve their transport properties. The prepared perovskite solar cell with PEABr shows the highest power conversion efficiency of 8.25%, and it can maintain the efficiency of more than 90% when being stored for 1500 h under the condition of no encapsulation. Finally, stable, efficient and low-cost all-inorganic CsPbBr3 solar cells without a hole layer are obtained.
      Corresponding author: Hao Hui-Ying, huiyinghaoL@cugb.edu.cn ; Dong Jing-Jing, jjdong@cugb.edu.cn
    • Funds: Project supported by the Open Fund Project of Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences (Grant No. KLSMS-1901) and the National Natural Science Foundation of China (Grant No. 21875223)
    [1]

    Liao C S, Yu Z L, He P B, Liu B, Zeng R, Wan Q, Cai M Q 2021 J. Colloid Interface Sci. 597 233Google Scholar

    [2]

    Li Q H, Ding Y F, He P B, Zeng R, Wan Q, Cai M Q 2021 J. Phys. Chem. Lett. 12 3809Google Scholar

    [3]

    Liao C S, Yu Z L, He P B, Zhao Y Q, Liu B, Cai M Q 2020 J. Power Sources 478 229078Google Scholar

    [4]

    Yu Z L, Zhao Y Q, Wan Q, Liu B, Yang J L, Cai M Q 2020 J. Phys. Chem. C 124 23052Google Scholar

    [5]

    Yu Z L, Zhao Y Q, He P B, Liu B, Yang J L, Cai M Q 2020 J. Phys. Condens. Matter 32 065002Google Scholar

    [6]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [7]

    Jeong J, Kim M, Seo J, et al. 2021 Nature 592 381Google Scholar

    [8]

    Shi L, Hao H, Dong J, Zhong T, Zhang C, Hao J, Xing J, Liu H 2019 Nanomaterials (Basel) 9 915Google Scholar

    [9]

    Zhong T, Shi L, Hao H, Dong J, Tang K, Xu X, Hamukwaya S L, Liu H, Xing J 2021 ACS Sustainable Chem. Eng. 9 13010Google Scholar

    [10]

    Park B W, Seok S I 2019 Adv. Mater. 31 e1805337Google Scholar

    [11]

    Zhao Z, Gu F, Rao H, Ye S, Liu Z, Bian Z, Huang C 2019 Adv. Energy Mater. 9 1802671Google Scholar

    [12]

    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar

    [13]

    Ding X, Cai M, Liu X, Ding Y, Liu X, Wu Y, Hayat T, Alsaedi A, Dai S 2019 ACS Appl. Mater. Interfaces 11 37720Google Scholar

    [14]

    Qiu Z, Li N, Huang Z, Chen Q, Zhou H 2020 Small Methods 4 1900877Google Scholar

    [15]

    Duan J, Wang Y, Yang X, Tang Q 2020 Angew. Chem. Int. Ed. 59 4391Google Scholar

    [16]

    Yuan H, Zhao Y, Duan J, Wang Y, Yang X, Tang Q 2018 J. Mater. Chem. A 6 24324Google Scholar

    [17]

    Wang H, Liu H, Li W, Zhu L, Chen H 2020 Nano Energy 77 105160Google Scholar

    [18]

    Guo Z N, Chen S, Wang Z Z, Yang Z Y, Liu F, Xu Y H, Wang J H, Yi Y, Zhang H, Liao L, Chu P K, Yu X F 2017 Adv. Mater. 29 1703811Google Scholar

    [19]

    Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Sci. Rep. 3 3132Google Scholar

    [20]

    Zhao F, Guo Y, Wang X, Tao J, Li Z, Zheng D, Jiang J, Hu Z, Chu J 2020 J. Alloys Compd. 842 155984Google Scholar

    [21]

    Cao X, Zhang G, Cai Y, Jiang L, Chen Y, He X, Zeng Q, Jia Y, Xing G, Wei J 2020 Appl. Surf. Sci. 529 147119Google Scholar

    [22]

    Gao B, Meng J 2020 Solar Energy 211 1223Google Scholar

    [23]

    Xu C, Zhang Z, Hu Y, Sheng Y, Jiang P, Han H, Zhang J 2018 J. Energy Chem. 27 764Google Scholar

    [24]

    Cao X, Zhang G, Jiang L, Cai Y, Wang Y, He X, Zeng Q, Chen J, Jia Y, Wei J 2021 Green Chem. 23 2104Google Scholar

    [25]

    Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. Int. Ed. 57 3787Google Scholar

    [26]

    Ding J, Duan J, Guo C, Tang Q 2018 J. Mater. Chem. A 6 21999Google Scholar

    [27]

    Li M H, Yeh H H, Chiang Y H, et al. 2018 Adv. Mater. 30 e1801401Google Scholar

    [28]

    Chen B, Rudd P N, Yang S, Yuan Y, Huang J 2019 Chem. Soc. Rev. 48 3842Google Scholar

  • 图 1  多步旋涂法制备FTO/TiO2/CsPbBr3/carbon结构电池流程图

    Figure 1.  Schematic illustration of FTO/TiO2/CsPbBr3/carbon structure cells prepared by multi-step spin-coating method.

    图 2  旋涂不同CsBr次数所制备的CsPbBr3薄膜的XRD图谱

    Figure 2.  XRD patterns of CsPbBr3 films prepared by spin-coating different times of CsBr.

    图 3  旋涂不同CsBr次数所制备的CsPbBr3薄膜的SEM图 (a) 4层; (b) 5层; (c) 6层; (d) 7层

    Figure 3.  SEM images of CsPbBr3 films prepared by spin-coating different times of CsBr: (a) 4 layers; (b) 5 layers; (c) 6 layers; (d) 7 layers.

    图 4  旋涂不同CsBr次数所制备太阳能电池的J-V曲线

    Figure 4.  J-V curves of solar cells prepared by spin-coating different times of CsBr.

    图 5  在衬底不同预热温度下制备的钙钛矿薄膜SEM图 (a) 不预热; (b) 70 ℃; (c) 80 ℃; (d) 90 ℃

    Figure 5.  SEM images of perovskite films prepared at different preheating temperatures of the substrate: (a) Without preheating; (b) 70 °C; (c) 80 °C; (d) 90 °C.

    图 6  在衬底不同预热温度下制备的钙钛矿电池的J-V曲线

    Figure 6.  J-V curves of solar cells prepared at different preheating temperatures of the substrate.

    图 7  PbBr2层不同退火温度所制备的CsPbBr3薄膜的XRD图谱

    Figure 7.  XRD patterns of CsPbBr3 films prepared by PbBr2 layer at different annealing temperatures.

    图 8  PbBr2层不同退火温度所制备的CsPbBr3薄膜的AFM图 (a) 90 ℃; (b) 100 ℃; (c) 110 ℃

    Figure 8.  AFM diagram of CsPbBr3 films prepared by PbBr2 layer at different annealing temperatures: (a) 90 ℃; (b) 100 ℃; (c) 110 ℃

    图 9  PbBr2层不同退火温度所制备的CsPbBr3太阳能电池的J-V曲线

    Figure 9.  J-V curves of solar cells prepared by PbBr2 layer at different annealing temperatures.

    图 10  PEABr不同添加量所制备的CsPbBr3薄膜的XRD图谱

    Figure 10.  XRD patterns of CsPbBr3 films prepared with different amounts of PEABr.

    图 11  不同PEABr添加量在不同倍率下的SEM图 (a)—(c) 不添加; (d)—(f) 50 µL; (g)—(i) 100 µL; (j)—(l) 150 µL

    Figure 11.  SEM images of different amounts of PEABr at different magnifications: (a)–(c) Without addition; (d)–(f) 50 µL; (g)–(i) 100 µL; (j)–(l) 150 µL.

    图 12  PEABr不同添加量所制备的CsPbBr3的PL谱

    Figure 12.  Photoluminescence spectrum of CsPbBr3 prepared with different amounts of PEABr.

    图 13  PEABr不同添加量所制备电池的 (a) J-V曲线; (b) 空气中稳定性

    Figure 13.  Images of solar cells prepared with different amounts of PEABr: (a) J-V curves; (b) stability in air.

    表 1  旋涂不同CsBr次数所制备太阳能电池的具体参数

    Table 1.  Parameters of solar cells prepared by spin-coating different times of CsBr.

    旋涂次数VOC
    /V
    JSC
    /(mA·cm–2)
    PCE
    /%
    FF
    /%
    40.855.02.3755
    51.065.83.5858
    61.105.63.4155
    70.995.43.1659
    DownLoad: CSV

    表 2  在衬底不同预热温度下制备的钙钛矿电池的具体参数

    Table 2.  Parameters of solar cells prepared at different preheating temperatures of the substrate.

    衬底温度VOC
    /V
    JSC
    /(mA·cm–2)
    PCE
    /%
    FF
    /%
    不预热1.135.63.656
    70 ℃1.155.94.160
    80 ℃1.156.24.765
    90 ℃1.135.84.061
    DownLoad: CSV

    表 3  PbBr2层不同退火温度所制备的太阳能电池的具体参数

    Table 3.  Parameters of solar cells prepared by PbBr2 layer at different annealing temperatures.

    退火温度/℃VOC
    /V
    JSC
    /(mA·cm–2)
    PCE
    /%
    FF
    /%
    901.176.94.7458
    1001.207.35.2560
    1101.196.54.8262
    DownLoad: CSV

    表 4  PEABr不同添加量所制备的CsPbBr3电池的具体参数

    Table 4.  Parameters of solar cells prepared with different amounts of PEABr.

    引入量
    /(mg·mL–1)
    VOC
    /V
    JSC
    /(mA·cm–2)
    PCE
    /%
    FF
    /%
    w/o1.207.305.2560
    51.288.407.1666
    101.318.518.2573
    151.308.167.3769
    DownLoad: CSV
  • [1]

    Liao C S, Yu Z L, He P B, Liu B, Zeng R, Wan Q, Cai M Q 2021 J. Colloid Interface Sci. 597 233Google Scholar

    [2]

    Li Q H, Ding Y F, He P B, Zeng R, Wan Q, Cai M Q 2021 J. Phys. Chem. Lett. 12 3809Google Scholar

    [3]

    Liao C S, Yu Z L, He P B, Zhao Y Q, Liu B, Cai M Q 2020 J. Power Sources 478 229078Google Scholar

    [4]

    Yu Z L, Zhao Y Q, Wan Q, Liu B, Yang J L, Cai M Q 2020 J. Phys. Chem. C 124 23052Google Scholar

    [5]

    Yu Z L, Zhao Y Q, He P B, Liu B, Yang J L, Cai M Q 2020 J. Phys. Condens. Matter 32 065002Google Scholar

    [6]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [7]

    Jeong J, Kim M, Seo J, et al. 2021 Nature 592 381Google Scholar

    [8]

    Shi L, Hao H, Dong J, Zhong T, Zhang C, Hao J, Xing J, Liu H 2019 Nanomaterials (Basel) 9 915Google Scholar

    [9]

    Zhong T, Shi L, Hao H, Dong J, Tang K, Xu X, Hamukwaya S L, Liu H, Xing J 2021 ACS Sustainable Chem. Eng. 9 13010Google Scholar

    [10]

    Park B W, Seok S I 2019 Adv. Mater. 31 e1805337Google Scholar

    [11]

    Zhao Z, Gu F, Rao H, Ye S, Liu Z, Bian Z, Huang C 2019 Adv. Energy Mater. 9 1802671Google Scholar

    [12]

    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar

    [13]

    Ding X, Cai M, Liu X, Ding Y, Liu X, Wu Y, Hayat T, Alsaedi A, Dai S 2019 ACS Appl. Mater. Interfaces 11 37720Google Scholar

    [14]

    Qiu Z, Li N, Huang Z, Chen Q, Zhou H 2020 Small Methods 4 1900877Google Scholar

    [15]

    Duan J, Wang Y, Yang X, Tang Q 2020 Angew. Chem. Int. Ed. 59 4391Google Scholar

    [16]

    Yuan H, Zhao Y, Duan J, Wang Y, Yang X, Tang Q 2018 J. Mater. Chem. A 6 24324Google Scholar

    [17]

    Wang H, Liu H, Li W, Zhu L, Chen H 2020 Nano Energy 77 105160Google Scholar

    [18]

    Guo Z N, Chen S, Wang Z Z, Yang Z Y, Liu F, Xu Y H, Wang J H, Yi Y, Zhang H, Liao L, Chu P K, Yu X F 2017 Adv. Mater. 29 1703811Google Scholar

    [19]

    Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Sci. Rep. 3 3132Google Scholar

    [20]

    Zhao F, Guo Y, Wang X, Tao J, Li Z, Zheng D, Jiang J, Hu Z, Chu J 2020 J. Alloys Compd. 842 155984Google Scholar

    [21]

    Cao X, Zhang G, Cai Y, Jiang L, Chen Y, He X, Zeng Q, Jia Y, Xing G, Wei J 2020 Appl. Surf. Sci. 529 147119Google Scholar

    [22]

    Gao B, Meng J 2020 Solar Energy 211 1223Google Scholar

    [23]

    Xu C, Zhang Z, Hu Y, Sheng Y, Jiang P, Han H, Zhang J 2018 J. Energy Chem. 27 764Google Scholar

    [24]

    Cao X, Zhang G, Jiang L, Cai Y, Wang Y, He X, Zeng Q, Chen J, Jia Y, Wei J 2021 Green Chem. 23 2104Google Scholar

    [25]

    Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. Int. Ed. 57 3787Google Scholar

    [26]

    Ding J, Duan J, Guo C, Tang Q 2018 J. Mater. Chem. A 6 21999Google Scholar

    [27]

    Li M H, Yeh H H, Chiang Y H, et al. 2018 Adv. Mater. 30 e1801401Google Scholar

    [28]

    Chen B, Rudd P N, Yang S, Yuan Y, Huang J 2019 Chem. Soc. Rev. 48 3842Google Scholar

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [3] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [4] Cheng Xue-Ming, Cui Wen-Yu, Zhu Lu-Ping, Wang Xia, Liu Zong-Ming, Cao Bing-Qiang. Vertical MSM-type CsPbBr3 thin film photodetectors with fast response speed and low dark current. Acta Physica Sinica, 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [5] Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun. Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field. Acta Physica Sinica, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [6] Wang Fei, Yang Zhen-Qing, Xia Yu-Hong, Liu Chang, Lin Chun-Dan. Nonadiabatic molecular dynamics study on effect of Ge/Sn alloy on hot carrier relaxation of CsPbBr3 perovskite. Acta Physica Sinica, 2024, 73(2): 028801. doi: 10.7498/aps.73.20231061
    [7] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [8] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [9] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [10] Xue Bin-Tao, Zhang Li-Min, Liang Yong-Qi, Liu Ning, Wang Ding-Ping, Chen Liang, Wang Tie-Shan. Proton irradiation induced damage effects in CH3NH3PbI3-based perovskite solar cells. Acta Physica Sinica, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [11] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [12] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [13] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [14] Ma Shu-Peng, Lin Fei-Yu, Luo Yuan, Zhu Liu, Guo Xue-Yi, Yang Ying. Formation mechanism of CsPbBr3 in multi-step spin-coating process. Acta Physica Sinica, 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [15] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [16] Adopting PEABr additive to obtain efficient and stable carbon-based CsPbBr3 solar cells. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211344
    [17] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [18] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [19] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
Metrics
  • Abstract views:  8106
  • PDF Downloads:  210
  • Cited By: 0
Publishing process
  • Received Date:  22 July 2021
  • Accepted Date:  28 September 2021
  • Available Online:  11 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回