Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of TaC microparticles on structure and properties of micro-arc oxidation coating on Ti-6Al-4V alloy

Ding Zhi-Song Gao Wei Wei Jing-Peng Jin Yao-Hua Zhao Chen Yang Wei

Citation:

Effects of TaC microparticles on structure and properties of micro-arc oxidation coating on Ti-6Al-4V alloy

Ding Zhi-Song, Gao Wei, Wei Jing-Peng, Jin Yao-Hua, Zhao Chen, Yang Wei
PDF
HTML
Get Citation
  • In order to improve the corrosion resistance and wear properties of the micro arc oxidatin (MAO) coatings on Ti-6Al-4V alloy in the marine environment, TaC-doped MAO coatings are prepared by adding different concentrations of TaC microparticles with a particle size of about 1 μm into the silicate-based electrolyte. The morphology, elemental distribution and composition of the coatings are characterized and analyzed by SEM, EDS and XPS. The thickness, roughness, hardness, wear resistance and corrosion resistance for each of the three MAO coatings are evaluated and their corresponding values of these coatings are compared with each other. The results show that by adding TaC microparticles into the base electrolyte, TaC and Ta2O5 are present in the MAO coatings on titanium alloy. Compared with the MAO coating without TaC, the surface morphology of the coating with TaC is dense and the hardness is increased by about 83.2%. The friction coefficient of the coating in the simulated seawater decreases from 0.2 to 0.148, changing from serious abrasive wear to slight adhesive wear. The corrosion current density of this coating decreases by two orders of magnitude. Furthermore, by constructing the wear and corrosion failure model of the MAO coatings in the simulated seawater, the internal mechanism of doping TaC microparticles into the MAO coating to improve its corrosion resistance and wear resistance is revealed.
      Corresponding author: Gao Wei, gaowei@xatu.edu.cn ; Yang Wei, yangwei_smx@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52071252) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2018JQ2075)
    [1]

    Hu J L, Li H X, Wang X Y, Yang L, Chen M, Wang R X, Qin G W, Chen D F, Zhang E L 2020 Mater. Sci. Eng., C 115 110921Google Scholar

    [2]

    Li G Q, Wang Y P, Zhang S F, Zhao R F, Zhang R F, Li X Y, Chen C M 2019 Surf. Coat. Technol. 378 124951Google Scholar

    [3]

    He D H, Du J, Liu P, Liu X K, Chen X H, Li W, Zhang K, Ma F C 2019 Surf. Coat. Technol. 365 242Google Scholar

    [4]

    Yang W, Xu D P, Guo Q Q, Chen T, Chen J 2018 Surf. Coat. Technol. 349 522Google Scholar

    [5]

    Lin J Z, Chen W D, Tang Q Q, Cao L Y, Su S H 2021 Surf. Interfaces 22 100805Google Scholar

    [6]

    Chen C A, Jian S Y, Lu C H, Lee C Y, Aktug S L, Ger M D 2020 J. Mater. Res. Technol. 9 13902Google Scholar

    [7]

    Wang X, Yan H G, Hang R Q, Shi H X, Wang L F, Mao J C, Liu X P, Yao X H 2021 J. Mater. Res. Technol. 11 2354Google Scholar

    [8]

    武上焜, 杨巍, 高羽, 苏霖深, 刘晓鹏, 陈建 2019 表面技术 48 142

    Wu S K, Yang W, Gao Y, Su L S, Liu X P, Chen J 2019 Surf. Technol. 48 142

    [9]

    Fazel M, Salimijazi H R, Golozar M A, Garsivaz jazi M R 2015 Appl. Surf. Sci. 324 751Google Scholar

    [10]

    Shen Y Z, Tao H J, Lin Y B, Zeng X F, Wang T, Tao J, Pan L 2017 Rare Met. Mater. Eng. 46 0023Google Scholar

    [11]

    Costa A I, Sousa L, Alves A C, Topta F 2020 Corros. Sci. 166 108467Google Scholar

    [12]

    Chen L, Jin X Y, Qu Y, Wei K J, Zhang Y F, Liao B, Xue W B 2018 Surf. Coat. Technol. 347 29Google Scholar

    [13]

    Wang Y M, Lei T Q, Jia D C, Zhou Y, Ouyang J H 2007 Key Eng. Mater. 336 1734

    [14]

    王亚明, 蒋百灵, 雷廷权, 郭立新 2003 摩擦学学报 23 371Google Scholar

    Wang Y M, Jiang B L, Lei T Q, Guo L X 2003 Tribology 23 371Google Scholar

    [15]

    Mohammadi M, Chorbani M 2011 J. Coat. Technol. Res. 8 527Google Scholar

    [16]

    Zheng Z R, Zhao M C, Tan L L, Zhao Y C, Xie B, Yin D F, Yang K, Andrej A 2020 Surf. Coat. Technol. 386 125456Google Scholar

    [17]

    Chen Q Z, Jiang Z Q, Tang S G, Dong W B, Tong Q, Li W Z 2017 Appl. Surf. Sci. 423 939Google Scholar

    [18]

    Lu X P, Blawert C, Kainer K U, Zhang T, Wang F H, Mikhail L 2018 Surf. Coat. Technol. 352 1Google Scholar

    [19]

    Aliofkhaxraei M, Sabour Rouhaghdam A, Shahrabi T 2010 Surf. Coat. Technol. 205 S41Google Scholar

    [20]

    赵坚, 宋仁国, 李红霞, 陈小明, 李杰, 卢果 2010 材料热处理学报 31 125

    Zhao J, Song R G, Li H X, Chen X M, Li J 2010 Trans Mater. Heat Treat. 31 125

    [21]

    杜楠, 王帅星, 赵晴, 朱文辉 2013 稀有金属材料与工程 42 621Google Scholar

    Du N, Wang S X, Zhao Q, Zhu W H 2013 Rare Met. Mater. Eng. 42 621Google Scholar

    [22]

    Mu M, Liang J, Zhou X J, Xiao Q 2012 Surf. Coat. Technol. 214 124

    [23]

    王佳营, 俞礽安, 李志丹 2020 中国矿业报 2 14

    Wang J Y, Yu N A, Li Z D 2020 Chin. Min. News 2 14

    [24]

    张欣雨, 毛小南, 王可, 陈茜 2021 材料导报 35 01162

    Zhang X Y, Mao X N, Wang K, Chen Q 2021 Mater. Rep. 35 01162

    [25]

    Mohammad F, Morteza S, Hamid R S 2020 Biotribology 23 100131Google Scholar

    [26]

    Wang J L, Yang W, Xu D P, Yao X F 2017 Acta Metal. Sin. 30 110 9

    [27]

    Yuan X H, Tan F, Xu H T, Zhang S J, Qu F Z, Liu J 2016 J. Prosthodont. Res. 61 297

    [28]

    M. Vargas, H. A. Castillo, E. Restrepo-Parra, W. De La Cruz 2013 Appl. Surf. Sci. 279 7Google Scholar

    [29]

    曹飞, 吕凯, 张雅萍, 陈伟东, 刘小鱼 2020 热加工工艺 49 84

    Cao F, Lv K, Zhang Y P, Chen W D, Liu X Y 2020 Hot Working Technol. 49 84

    [30]

    沈雁, 谢荣, 王红 2019 船舶工程 41 101

    Shen Y, Xie R, Wang H F 2019 Ship Eng. 41 101

    [31]

    任冰, 万熠, 王桂森, 王滕, 曹恩源 2018 表面技术 47 160

    Ren B, Wan Y, Wang G S, Wang T, Cao E Y 2018 Surf. Technol. 47 160

    [32]

    李文冠, 张瑞志, 罗方伟, 向勇 2020 涂料工业 50 81Google Scholar

    Li W G, Zhang R Z, Luo F W, Xiang Y 2020 Paint Coat. Ind. 50 81Google Scholar

  • 图 1  微弧氧化流程图

    Figure 1.  Preparation process of MAO coating with TaC microparticles addition.

    图 2  在含不同浓度TaC微粒的电解液中制备的微弧氧化层的表面形貌 (a) 0 g/L; (b) 2 g/L; (c) 5 g/L; (d) 图(c)的局部放大图

    Figure 2.  Surface morphologies of MAO coating with different TaC microparticles addition: (a) Without TaC; (b) 2 g/L; (c) 5 g/L; (d) partial enlarged view of Figure (c).

    图 3  在含不同浓度TaC微粒的电解液中制备的微弧氧化层的截面形貌 (a) 0 g/L TaC微粒; (b) 2 g/L TaC微粒; (c) 5 g/L TaC微粒

    Figure 3.  Cross-sectional morphologies of MAO coatings with different content of TaC microparticles in electrolyte: (a) 0 g/L; (b) 2 g/L; (c) 5 g/L.

    图 4  添加不同含量TaC微粒制备微弧氧化层表面XPS全谱及Ti, Si, O和Ta的高分辨图谱 (a) XPS全谱; (b) Ti 2p高分辨率光谱; (c) Si 2p高分辨率光谱; (d) O 1s高分辨率光谱; (e) Ta 4f高分辨率光谱

    Figure 4.  XPS survey spectra and high-resolution spectra of MAO coating with TaC addition: (a) XPS full spectra; (b) typical Ti 2p; (c) typical Si 2p; (d) typical O 1s; (e) typical Ta 4f.

    图 5  添加0, 2和5 g/L TaC微粒制备微弧氧化层在模拟海水中的摩擦曲线

    Figure 5.  Friction curves of ceramic coatings prepared by adding 0, 2, 5 g/L TaC miaroparticles in simulated seawater.

    图 6  添加不同含量TaC微粒微弧氧化层的磨痕形貌 (a) 0 g/L; (b) 2 g/L; (c) 5 g/L

    Figure 6.  Wear scar morphologies of ceramic coatings with different contents of TaC microparticles: (a) 0 g/L; (b) 2 g/L; (c) 5 g/L.

    图 7  添加不同含量TaC微粒制备微弧氧化层的极化曲线

    Figure 7.  Polarization curve of ceramic coatings with different contents of TaC particles.

    图 8  添加TaC微粒前后制备微弧氧化层的磨损示意图 (a), (b)未添加; (c), (d)添加

    Figure 8.  Wear schematic diagram of ceramic coating: (a), (b) Without TaC; (c), (d) with TaC.

    图 9  添加TaC微粒前后制备微弧氧化层的电化学腐蚀示意图 (a)未添加; (b)添加

    Figure 9.  Schematic diagram of electrochemical corrosion of ceramic coating: (a) Without TaC; (b) with TaC.

    表 1  钛合金不同组织力学性能对比表[24]

    Table 1.  Comparison of mechanical properties of different microstructures of titanium alloys[24].

    组织
    类型
    室温拉伸 热稳定
    强度塑性强度塑性
    等轴最好
    双态较好较好
    网篮高于等轴
    魏氏较差最差最差
    DownLoad: CSV

    表 2  模拟海水成分表

    Table 2.  Composition of simulated sea water.

    Compo-sitionNaClMgCl2Na2SO4CaCl2KClNaHCO3KBrHBO3SrCl2NaF
    Content/(g·L–1)24.5311.114.091.160.6850.2010.1010.0270.0280.003
    DownLoad: CSV

    表 3  添加5 g/L TaC微粒制得微弧氧化层不同区域的EDS结果

    Table 3.  EDS of different regions of MAO coatings prepared by adding 5 g/L TaC microparticless

    Test pointAtom content/%
    OAlSiTiTa
    a30.42.232.731.92.8
    b51.01.623.223.50.8
    c52.41.424.321.10.8
    d43.61.925.428.01.2
    DownLoad: CSV

    表 4  不同含量TaC微粒微弧氧化层的EDS结果

    Table 4.  EDS results of MAO coatings with different contents of TaC microparticles.

    TaC/(g·L–1)Atom content/%
    OAlSiTiTa
    068.21.817.812.1
    269.21.220.98.10.5
    567.31.420.010.50.9
    DownLoad: CSV

    表 5  添加不同含量TaC微粒制备微弧氧化层厚度、显微硬度、粗糙度

    Table 5.  Thickness, microhardness, and roughness of ceramic coatings with different content of TaC microparticles.

    Content of
    TaC/(g·L–1)
    Thickness/μmHV0.5Roughness/μm
    09.03526.952.135
    29.06965.502.314
    59.99941.872.716
    DownLoad: CSV

    表 6  不同原子含量TaC微粒的微弧氧化层磨痕EDS结果

    Table 6.  EDS results of wear scar of ceramic coatings with different contents of TaC microparticles.

    TaC/(g·L–1) Atom content/%
    OAlSiTiTaFe
    046.65.55.042.8
    269.91.416.210.00.22.3
    569.91.315.510.00.33.0
    DownLoad: CSV

    表 7  图6得知的腐蚀电位和腐蚀电流密度

    Table 7.  Corrosion potential and corrosion current density from Figur 6.

    TaC/(g·L–1)Ecorr /VIcorr /(A·cm–2)
    0–0.221.05 × 10–6
    20.103.42 × 10–8
    50.122.67 × 10–8
    DownLoad: CSV
  • [1]

    Hu J L, Li H X, Wang X Y, Yang L, Chen M, Wang R X, Qin G W, Chen D F, Zhang E L 2020 Mater. Sci. Eng., C 115 110921Google Scholar

    [2]

    Li G Q, Wang Y P, Zhang S F, Zhao R F, Zhang R F, Li X Y, Chen C M 2019 Surf. Coat. Technol. 378 124951Google Scholar

    [3]

    He D H, Du J, Liu P, Liu X K, Chen X H, Li W, Zhang K, Ma F C 2019 Surf. Coat. Technol. 365 242Google Scholar

    [4]

    Yang W, Xu D P, Guo Q Q, Chen T, Chen J 2018 Surf. Coat. Technol. 349 522Google Scholar

    [5]

    Lin J Z, Chen W D, Tang Q Q, Cao L Y, Su S H 2021 Surf. Interfaces 22 100805Google Scholar

    [6]

    Chen C A, Jian S Y, Lu C H, Lee C Y, Aktug S L, Ger M D 2020 J. Mater. Res. Technol. 9 13902Google Scholar

    [7]

    Wang X, Yan H G, Hang R Q, Shi H X, Wang L F, Mao J C, Liu X P, Yao X H 2021 J. Mater. Res. Technol. 11 2354Google Scholar

    [8]

    武上焜, 杨巍, 高羽, 苏霖深, 刘晓鹏, 陈建 2019 表面技术 48 142

    Wu S K, Yang W, Gao Y, Su L S, Liu X P, Chen J 2019 Surf. Technol. 48 142

    [9]

    Fazel M, Salimijazi H R, Golozar M A, Garsivaz jazi M R 2015 Appl. Surf. Sci. 324 751Google Scholar

    [10]

    Shen Y Z, Tao H J, Lin Y B, Zeng X F, Wang T, Tao J, Pan L 2017 Rare Met. Mater. Eng. 46 0023Google Scholar

    [11]

    Costa A I, Sousa L, Alves A C, Topta F 2020 Corros. Sci. 166 108467Google Scholar

    [12]

    Chen L, Jin X Y, Qu Y, Wei K J, Zhang Y F, Liao B, Xue W B 2018 Surf. Coat. Technol. 347 29Google Scholar

    [13]

    Wang Y M, Lei T Q, Jia D C, Zhou Y, Ouyang J H 2007 Key Eng. Mater. 336 1734

    [14]

    王亚明, 蒋百灵, 雷廷权, 郭立新 2003 摩擦学学报 23 371Google Scholar

    Wang Y M, Jiang B L, Lei T Q, Guo L X 2003 Tribology 23 371Google Scholar

    [15]

    Mohammadi M, Chorbani M 2011 J. Coat. Technol. Res. 8 527Google Scholar

    [16]

    Zheng Z R, Zhao M C, Tan L L, Zhao Y C, Xie B, Yin D F, Yang K, Andrej A 2020 Surf. Coat. Technol. 386 125456Google Scholar

    [17]

    Chen Q Z, Jiang Z Q, Tang S G, Dong W B, Tong Q, Li W Z 2017 Appl. Surf. Sci. 423 939Google Scholar

    [18]

    Lu X P, Blawert C, Kainer K U, Zhang T, Wang F H, Mikhail L 2018 Surf. Coat. Technol. 352 1Google Scholar

    [19]

    Aliofkhaxraei M, Sabour Rouhaghdam A, Shahrabi T 2010 Surf. Coat. Technol. 205 S41Google Scholar

    [20]

    赵坚, 宋仁国, 李红霞, 陈小明, 李杰, 卢果 2010 材料热处理学报 31 125

    Zhao J, Song R G, Li H X, Chen X M, Li J 2010 Trans Mater. Heat Treat. 31 125

    [21]

    杜楠, 王帅星, 赵晴, 朱文辉 2013 稀有金属材料与工程 42 621Google Scholar

    Du N, Wang S X, Zhao Q, Zhu W H 2013 Rare Met. Mater. Eng. 42 621Google Scholar

    [22]

    Mu M, Liang J, Zhou X J, Xiao Q 2012 Surf. Coat. Technol. 214 124

    [23]

    王佳营, 俞礽安, 李志丹 2020 中国矿业报 2 14

    Wang J Y, Yu N A, Li Z D 2020 Chin. Min. News 2 14

    [24]

    张欣雨, 毛小南, 王可, 陈茜 2021 材料导报 35 01162

    Zhang X Y, Mao X N, Wang K, Chen Q 2021 Mater. Rep. 35 01162

    [25]

    Mohammad F, Morteza S, Hamid R S 2020 Biotribology 23 100131Google Scholar

    [26]

    Wang J L, Yang W, Xu D P, Yao X F 2017 Acta Metal. Sin. 30 110 9

    [27]

    Yuan X H, Tan F, Xu H T, Zhang S J, Qu F Z, Liu J 2016 J. Prosthodont. Res. 61 297

    [28]

    M. Vargas, H. A. Castillo, E. Restrepo-Parra, W. De La Cruz 2013 Appl. Surf. Sci. 279 7Google Scholar

    [29]

    曹飞, 吕凯, 张雅萍, 陈伟东, 刘小鱼 2020 热加工工艺 49 84

    Cao F, Lv K, Zhang Y P, Chen W D, Liu X Y 2020 Hot Working Technol. 49 84

    [30]

    沈雁, 谢荣, 王红 2019 船舶工程 41 101

    Shen Y, Xie R, Wang H F 2019 Ship Eng. 41 101

    [31]

    任冰, 万熠, 王桂森, 王滕, 曹恩源 2018 表面技术 47 160

    Ren B, Wan Y, Wang G S, Wang T, Cao E Y 2018 Surf. Technol. 47 160

    [32]

    李文冠, 张瑞志, 罗方伟, 向勇 2020 涂料工业 50 81Google Scholar

    Li W G, Zhang R Z, Luo F W, Xiang Y 2020 Paint Coat. Ind. 50 81Google Scholar

  • [1] Li Xiao-Lin, Yuan Kun, He Jia-Le, Liu Hong-Feng, Zhang Jian-Bo, Zhou Yang. First principle study of adsorption and desorption behaviors of NH3 molecule on the TaC (0001) surface. Acta Physica Sinica, 2022, 71(1): 017103. doi: 10.7498/aps.71.20210400
    [2] Effect of TaC microparticles on structure and properties of micro- arc oxidation coating on Ti-6Al-4V alloy. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210835
    [3] Liang Xian-Ye, Mi Guang-Bao, Li Pei-Jie, Huang Xu, Cao Chun-Xiao. Theoretical study on ignition of titanium alloy under high temperature friction condition. Acta Physica Sinica, 2020, 69(21): 216101. doi: 10.7498/aps.69.20200304
    [4] Zhou Yuan-Yuan, Zhang He-Qing, Zhou Xue-Jun, Tian Pei-Gen. Performance analysis of decoy-state quantum key distribution with a heralded pair coherent state photon source. Acta Physica Sinica, 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [5] Wang Yong-Jun, Li Hong-Xuan, Ji Li, Liu Xiao-Hong, Wu Yan-Xia, Zhou Hui-Di, Chen Jian-Min. Preparation and properties of graphite-like carbon films fabricated by unbalanced magnetron sputtering. Acta Physica Sinica, 2012, 61(5): 056103. doi: 10.7498/aps.61.056103
    [6] Tang Jie, Yang Li-Rong, Wang Xiao-Jun, Zhang Lin, Wei Cheng-Fu, Chen Bo-Wei, Mei Yang. Effects of high pressure on microstructure and properties of bulk (PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x alloys. Acta Physica Sinica, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [7] Yu Huang-Zhong, Wen Yuan-Xin. Influence of the thickness and cathode material on the performance of the polymer solar cell. Acta Physica Sinica, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [8] Yu Huang-Zhong, Zhou Xiao-Ming, Deng Jun-Yu. Annealing treatment effects on the performances of solar cells based on different solvent blend systems. Acta Physica Sinica, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [9] Liu Jun-Cheng, Gao Cong-Jie, Li Jiao. Influence of PEDOT:PSS film doped with sorbitol on performances of organic solar cells. Acta Physica Sinica, 2011, 60(7): 078803. doi: 10.7498/aps.60.078803
    [10] Yu Song-Nan, Wu Han-Hua, Chen Gen-Yu, Yuan Xin, Li Yue. Effect of Al(OH)3 sol concentration on characteristics of microarc oxidation coatings of titanium alloy. Acta Physica Sinica, 2011, 60(2): 028104. doi: 10.7498/aps.60.028104
    [11] Wang De-Yi, Gao Shu-Xia, Li Gang, Zhao Ming. The structure,optical and electrical properties of Li-N dual-acceptor doped p-type ZnO thin films prepared by sol-gel method. Acta Physica Sinica, 2010, 59(5): 3473-3480. doi: 10.7498/aps.59.3473
    [12] Wang Gong-Tang, Liu Xiu-Xi. Studies on the mechanisms of enhancing the performances of thyristors by Ga-Al doping. Acta Physica Sinica, 2010, 59(3): 1964-1969. doi: 10.7498/aps.59.1964
    [13] Chen Gen-Yu, Wu Han-Hua, Li Yue, Chang Hong, Tang Yuan-Guang. Effect of electrical parameters on characteristics of microarc oxidation coatings of commercially pure titanium in colloid. Acta Physica Sinica, 2010, 59(3): 1958-1963. doi: 10.7498/aps.59.1958
    [14] Zhang Xin-Meng, Tian Xiu-Bo, Gong Chun-Zhi, Yang Shi-Qin. Discharge characteristics of confined cathode micro-arc oxidation. Acta Physica Sinica, 2010, 59(8): 5613-5619. doi: 10.7498/aps.59.5613
    [15] Tang Yuan-Guang, Wu Han-Hua, Chang Hong, Chen Gen-Yu, Sang Yong, Bai Yi-Zhen. Effects of cathodic voltage pulse duty cycle on characteristics of microarc oxidation coatings of titanium alloy. Acta Physica Sinica, 2009, 58(7): 4840-4845. doi: 10.7498/aps.58.4840
    [16] Liu Xiu-Xi, Wang Gong-Tang. Fabrication of high voltage thyristor based on silicon organic compounds and metal oxides type isolation protective material. Acta Physica Sinica, 2008, 57(1): 576-580. doi: 10.7498/aps.57.576
    [17] Wu Han-Hua, Long Bei-Hong, Long Bei-Yu, Tang Yuan-Guang, Chang Hong, Bai Yi-Zhen. Characteristics of electrical parameters during microarc oxidation of titanium alloys. Acta Physica Sinica, 2007, 56(11): 6537-6542. doi: 10.7498/aps.56.6537
    [18] Peng Hong-Yan, Zhou Chuan-Sheng, Zhao Li-Xin, Jin Zeng-Sun, Zhang Bing, Chen Bao-Ling, Chen Yu-Qiang, Li Min-Jun. Effect of the laser power density on the properties and structures of the diamond-like carbon films deposited by pulsed laser ablation of graphite. Acta Physica Sinica, 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
    [19] Wu Han-Hua, Wang Jian-Bo, Long Bei-Yu, Lü Xian-Yi, Long Bei-Hong, Jin Zeng-Sun, Bai Yi-Zhen, Bi Dong-Mei. Effect of current density on physical and chemical properties of microarc oxidation coatings of aluminium alloy. Acta Physica Sinica, 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
    [20] Wu Han-Hua, Long Bei-Hong, Lü Xian-Yi, Wang Jian-Bo, Jin Zeng-Sun. Study on the electrical parameter variation during microarc oxidation of alumini um alloys. Acta Physica Sinica, 2005, 54(4): 1697-1701. doi: 10.7498/aps.54.1697
Metrics
  • Abstract views:  5451
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2021
  • Accepted Date:  13 September 2021
  • Available Online:  01 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回