Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field

Jin Cheng-Cheng Ding Ling-Ling Song Zi-Xin Tao Hai-Jun

Citation:

Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field

Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun
PDF
HTML
Get Citation
  • The preparation of hybrid perovskite solar cells is expensive and environmentally demanding. Carbon-based HTL-free perovskite solar cells (C-PSCs) have attracted much attention because they replace the expensive precious metal electrode and remove the poor stability of the hole transport material. However, the improvement of efficiency is hampered by poor carrier separation and transport performance within C-PSCs, while the enhancement of the built-in electric field can improve the carrier transport performance, thus enhancing photoelectric performance. The built-in electric field can be regulated by doping. The anomalous photovoltaic effect and the built-in electric field of ferroelectric material play an important role in the field of optoelectronics. In this work, a simple and effective method is developed to improve the performance of perovskite solar cells via the combination of internal doping of ferroelectric polymer and external control of electric field. Ferroelectric material barium titanate (BaTiO3) powder is added into perovskite precursor solution as an additive to prepare C-PSCs, which can improve the perovskite film morphology, reduce the film defect density, and enhance the carrier transport performance of C-PSCs. The results show that when the addition of BaTiO3 is 1.0% (mass fraction), the perovskite film is uniform and dense, and the photoelectric conversion efficiency of the cell is the highest. After the forward voltage polarization treatment, the residual polarized electric field of ferroelectric material BaTiO3 increases the built-in electric field, which provides sufficient power for realizing carrier transport and extraction, thus inhibiting the occurrence of non-radiative recombination. At the same time, the depletion layer width is increased, and the reverse saturation current is reduced, so the cell performance is significantly improved. The optimal device efficiency is 9.02%. This work provides an efficient strategy for regulating the built-in electric field by doping perovskite absorption layer.
      Corresponding author: Tao Hai-Jun, taohaijun@nuaa.edu.cn
    [1]

    Qiu L B, Ono L K, Qi Y B 2018 Mater. Today Energy 7 169Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    NREL, Best Research-Cell Efficiencies: Emerging Photovoltaics https://www.nrel.gov/pv/cell-efficiency.html [2023-5-28

    [4]

    Cai Y, Liang L S, Gao P 2018 Chin. Phys. B 27 018805Google Scholar

    [5]

    Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J, Seo J 2018 Nat. Energy 3 682Google Scholar

    [6]

    Su H, Xiao J Y, Li Q H, Peng C, Zhang X X, Mao C, Yao Q, Lu Y J, Ku Z L, Zhong J 2020 Mater. Sci. Semicond. Proc. 107 104809Google Scholar

    [7]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396Google Scholar

    [8]

    李家森 2021 硕士学位论文 (北京: 北京交通大学)

    Li J S 2021 M. S. Thesis (Beijing: Beijing Jiaotong University

    [9]

    Zhang L Z, Liu C, Zhang J, Li X N, Cheng C, Tian Y Q, Jen A K Y, Xu B M 2018 Adv. Mater. 30 1804028Google Scholar

    [10]

    Ye T, Hou Y C, Nozariasbmarz A, Yang D, Yoon J, Zheng L Y, Wang K, Wang K, Ramakrishna S, Priya S 2021 ACS Energy Lett. 6 3044Google Scholar

    [11]

    Wang K, Zheng L Y, Hou Y C, Nozariasbmarz A, Poudel B, Yoon J, Ye T, Yang D, Pogrebnyakov A V, Gopalan V, Priya S 2022 Joule 6 756Google Scholar

    [12]

    张世宁, 张贤, 杨爽, 俞文锦, 任博文, 吴存存, 肖立新 2023 科学通报 68 39Google Scholar

    Zhang S N, Zhang X, Yang S, Yu W J, Ren B W, Wu C C, Xiao L X 2023 Chin. Sci. Bull. 68 39Google Scholar

    [13]

    王明梓 2022 博士学位论文 (西安: 西北大学)

    Wang M Z 2022 Ph. D. Dissertation (Xi’an: Northwest University

    [14]

    Feng K Y, Liu X Y, Si D H, Tang X, Xing A, Osada M, Xiao P 2017 J. Power Sources 350 35Google Scholar

    [15]

    Chen W J, Liu S, Li Q Q, Cheng Q R, He B S, Hu Z J, Shen Y X, Chen H Y, Xu G Y, Ou X M, Yang H Y, Xi J C, Li Y W, Li Y F 2022 Adv. Mater. 34 2110482Google Scholar

    [16]

    Zhang C C, Wang Z K, Yuan S, Wang R, Li M, Jimoh M F, Liao L S, Yang Y 2019 Adv. Mater. 31 1902222Google Scholar

    [17]

    Zhou Z M, Li X, Cai M L, Xie F X, Wu Y Z, Lan Z, Yang X D, Qiang Y H, Islam A, Han L Y 2017 Adv. Energy Mater. 7 1700763Google Scholar

    [18]

    Euvrard J, Gunawan O, Mitzi D B 2019 Adv. Energy Mater. 9 1902706Google Scholar

    [19]

    Jiang Q, Zhang L Q, Wang H L, Yang X L, Meng J H, Liu H, Yin Z G, Wu J L, Zhang X W, You J B 2017 Nat. Energy 2 16177Google Scholar

    [20]

    Chen Q, Zhou H P, Song T B, Luo S, Hong Z R, Duan H S, Dou L T, Liu Y S, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [21]

    Li T T, Pan Y F, Wang Z, Xia Y D, Chen Y H, Huang W 2017 J. Mater. Chem. A 5 12602Google Scholar

    [22]

    Jiang Q, Chu Z N, Wang P Y, Yang X L, Liu H, Wang Y, Yin Z G, Wu J L, Zhang X W, You J B 2017 Adv. Mater. 29 1703852Google Scholar

    [23]

    Liu Z H, Wang L, Xie X Y 2020 J. Mater. Chem. C 8 11882Google Scholar

    [24]

    O’Malley K M, Li C Z, Yip H L, Jen A K Y 2012 Adv. Energy Mater. 2 82Google Scholar

    [25]

    Abu Laban W, Etgar L 2013 Energy Environ. Sci. 6 3249Google Scholar

    [26]

    Bai D L, Zhang J R, Jin Z W, Bian H, Wang K, Wang H R, Liang L, Wang Q, Liu S F 2018 ACS Energy Lett. 3 970Google Scholar

    [27]

    Zhu L Z, Ye J J, Zhang X H, Zheng H Y, Liu G Z, Pan X, Dai S Y 2017 J. Mater. Chem. A 5 3675Google Scholar

    [28]

    Hegedus S S, Shafarman W N 2004 Prog. Photovolt. 12 155Google Scholar

    [29]

    朱丽杰 2018 博士学位论文 (北京: 北京交通大学)

    Zhu L J 2018 Ph. D. Dissertation (Beijing: Beijing Jiaotong University

    [30]

    Niu T Q, Lu J, Tang M C, Barrit D, Smilgies D M, Yang Z, Li J B, Fan Y Y, Luo T, McCulloch I, Amassian A, Liu S Z, Zhao K 2018 Energy Environ. Sci. 11 3358Google Scholar

  • 图 1  (a) BaTiO3浓度不同时所制备的MAPbI3薄膜的XRD衍射图谱; (b)—(d)对应BaTiO3:MAPbI3复合薄膜(110)衍射峰归一化处理(b), 强度变化(c), 半峰宽(FWHM)变化(d)

    Figure 1.  (a) XRD patterns of MAPbI3 films prepared with different BaTiO3 concentrations. (b)–(d) Corresponding to the (110) diffraction peak of BaTiO3:MAPbI3 composite film: (b) (110) crystal plane normalization treatment; (c) strength variation; (d) full-width at half-maximum (FWHM) variation.

    图 2  不同质量分数BaTiO3掺杂MAPbI3薄膜的FE-SEM图 (a) 0; (b) 0.5%; (c) 1.0%; (d) 2.0%

    Figure 2.  FE-SEM images of MAPbI3 films prepared with different BaTiO3 concentrations: (a) 0; (b) 0.5%; (c) 1.0%; (d) 2.0%.

    图 3  (a) FTO/TiO2/MAPbI3和(b) FTO/TiO2/BaTiO3:MAPbI3薄膜的截面图

    Figure 3.  Film cross-section of (a) FTO/TiO2/MAPbI3 and (b) FTO/TiO2/BaTiO3:MAPbI3.

    图 4  BaTiO3浓度不同时所制备的MAPbI3 C-PSCs的J -V特性曲线

    Figure 4.  J -V curves of MAPbI3 C-PSCs prepared with different BaTiO3 concentrations.

    图 5  基于MAPbI3和BaTiO3:MAPbI3单电子器件的空间电荷限制电流(SCLC)测试曲线

    Figure 5.  Space charge limited current measurement curves for MAPbI3 and BaTiO3:MAPbI3 single-electron device.

    图 6  MAPbI3和BaTiO3:MAPbI3基C-PSCs的(a)暗电流曲线, (b) EQE曲线, (c)稳态输出电流曲线, (d)电化学阻抗谱(暗态, 偏压0.6 V, 插图为等效电路图)

    Figure 6.  MAPbI3 and BaTiO3:MAPbI3 C-PSCs: (a) Dark current curves; (b) EQE curves; (c) steady-state output current curves; (d) electrochemical impedance spectroscopy (dark state, 0.6 V bias, illustrated as equivalent circuit diagram).

    图 7  不同极化电压处理的BaTiO3:MAPbI3基C-PSCs的J -V特性曲线

    Figure 7.  J -V curves of BaTiO3:MAPbI3 C-PSCs treated with different polarization voltages.

    图 8  极化处理前后BaTiO3:MAPbI3基C-PSCs的(a) Mott-Schottky曲线和(b)稳态PL光谱

    Figure 8.  BaTiO3:MAPbI3 C-PSCs before and after polarization treatment: (a) Mott-Schottky curves; (b) steady-state PL spectrum.

    图 9  极化处理前后BaTiO3:MAPbI3基C-PSCs的(a) –dV/dJ与(JSCJ )–1关系曲线; (b) d(J/JSC)/dVVVoc关系曲线; (c) 电化学阻抗谱; (d)不同偏压的Rrec

    Figure 9.  BaTiO3:MAPbI3 C-PSCs before and after polarization treatment: (a) Relationship between –dV/dJ and (JSCJ )–1; (b) relationship between d(J/JSC)/dV and VVoc; (c) electrochemical impedance spectroscopy; (d) Rrec with different bias.

    图 10  极化处理前后BaTiO3:MAPbI3基C-PSCs的(a)暗电流曲线和(b)电压衰减曲线

    Figure 10.  BaTiO3:MAPbI3 C-PSCs before and after polarization treatment: (a) Dark current curves; (b) voltage decay curves.

    图 11  BaTiO3:MAPbI3基C-PSCs的(a)极化原理图和(b)性能提升原理图

    Figure 11.  BaTiO3:MAPbI3 C-PSCs: (a) Polarization schematic diagram; (b) performance improvement schematic diagram.

    表 1  不同浓度BaTiO3所制备的MAPbI3 C-PSCs的光伏性能参数

    Table 1.  Photovoltaic parameters of MAPbI3 C-PSCs prepared with different BaTiO3 concentrations.

    Voc/V JSC/(mA·cm–2) FF/% PCE/%
    Pristine 0.868 10.39 48.26 4.35
    0.5% 0.885 12.41 46.92 5.15
    1.0% 0.904 12.72 50.99 5.87
    2.0% 0.921 11.92 43.70 4.80
    DownLoad: CSV

    表 2  不同极化电压处理的BaTiO3:MAPbI3基C-PSCs的光伏性能参数

    Table 2.  Photovoltaic parameters of BaTiO3:MAPbI3 C-PSCs treated with different polarization voltages.

    Voc/V JSC/(mA·cm–2) FF/% PCE/%
    Pristine 0.888 13.47 47.10 5.64
    0.5 V/μm 0.989 15.72 55.66 8.65
    1.0 V/μm 1.005 15.59 56.40 8.83
    2.0 V/μm 0.940 14.92 50.57 7.09
    DownLoad: CSV

    表 3  极化处理前后BaTiO3:MAPbI3基C-PSCs的NA, Vbi, W

    Table 3.  NA, Vbi, W values of BaTiO3:MAPbI3 C-PSCs before and after polarization treatment.

    NA/cm–3 W/nm Vbi/V
    With BaTiO3 5.82×1015 75.23 0.926
    After Poling 3.91×1015 86.30 1.002
    DownLoad: CSV
  • [1]

    Qiu L B, Ono L K, Qi Y B 2018 Mater. Today Energy 7 169Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    NREL, Best Research-Cell Efficiencies: Emerging Photovoltaics https://www.nrel.gov/pv/cell-efficiency.html [2023-5-28

    [4]

    Cai Y, Liang L S, Gao P 2018 Chin. Phys. B 27 018805Google Scholar

    [5]

    Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J, Seo J 2018 Nat. Energy 3 682Google Scholar

    [6]

    Su H, Xiao J Y, Li Q H, Peng C, Zhang X X, Mao C, Yao Q, Lu Y J, Ku Z L, Zhong J 2020 Mater. Sci. Semicond. Proc. 107 104809Google Scholar

    [7]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396Google Scholar

    [8]

    李家森 2021 硕士学位论文 (北京: 北京交通大学)

    Li J S 2021 M. S. Thesis (Beijing: Beijing Jiaotong University

    [9]

    Zhang L Z, Liu C, Zhang J, Li X N, Cheng C, Tian Y Q, Jen A K Y, Xu B M 2018 Adv. Mater. 30 1804028Google Scholar

    [10]

    Ye T, Hou Y C, Nozariasbmarz A, Yang D, Yoon J, Zheng L Y, Wang K, Wang K, Ramakrishna S, Priya S 2021 ACS Energy Lett. 6 3044Google Scholar

    [11]

    Wang K, Zheng L Y, Hou Y C, Nozariasbmarz A, Poudel B, Yoon J, Ye T, Yang D, Pogrebnyakov A V, Gopalan V, Priya S 2022 Joule 6 756Google Scholar

    [12]

    张世宁, 张贤, 杨爽, 俞文锦, 任博文, 吴存存, 肖立新 2023 科学通报 68 39Google Scholar

    Zhang S N, Zhang X, Yang S, Yu W J, Ren B W, Wu C C, Xiao L X 2023 Chin. Sci. Bull. 68 39Google Scholar

    [13]

    王明梓 2022 博士学位论文 (西安: 西北大学)

    Wang M Z 2022 Ph. D. Dissertation (Xi’an: Northwest University

    [14]

    Feng K Y, Liu X Y, Si D H, Tang X, Xing A, Osada M, Xiao P 2017 J. Power Sources 350 35Google Scholar

    [15]

    Chen W J, Liu S, Li Q Q, Cheng Q R, He B S, Hu Z J, Shen Y X, Chen H Y, Xu G Y, Ou X M, Yang H Y, Xi J C, Li Y W, Li Y F 2022 Adv. Mater. 34 2110482Google Scholar

    [16]

    Zhang C C, Wang Z K, Yuan S, Wang R, Li M, Jimoh M F, Liao L S, Yang Y 2019 Adv. Mater. 31 1902222Google Scholar

    [17]

    Zhou Z M, Li X, Cai M L, Xie F X, Wu Y Z, Lan Z, Yang X D, Qiang Y H, Islam A, Han L Y 2017 Adv. Energy Mater. 7 1700763Google Scholar

    [18]

    Euvrard J, Gunawan O, Mitzi D B 2019 Adv. Energy Mater. 9 1902706Google Scholar

    [19]

    Jiang Q, Zhang L Q, Wang H L, Yang X L, Meng J H, Liu H, Yin Z G, Wu J L, Zhang X W, You J B 2017 Nat. Energy 2 16177Google Scholar

    [20]

    Chen Q, Zhou H P, Song T B, Luo S, Hong Z R, Duan H S, Dou L T, Liu Y S, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [21]

    Li T T, Pan Y F, Wang Z, Xia Y D, Chen Y H, Huang W 2017 J. Mater. Chem. A 5 12602Google Scholar

    [22]

    Jiang Q, Chu Z N, Wang P Y, Yang X L, Liu H, Wang Y, Yin Z G, Wu J L, Zhang X W, You J B 2017 Adv. Mater. 29 1703852Google Scholar

    [23]

    Liu Z H, Wang L, Xie X Y 2020 J. Mater. Chem. C 8 11882Google Scholar

    [24]

    O’Malley K M, Li C Z, Yip H L, Jen A K Y 2012 Adv. Energy Mater. 2 82Google Scholar

    [25]

    Abu Laban W, Etgar L 2013 Energy Environ. Sci. 6 3249Google Scholar

    [26]

    Bai D L, Zhang J R, Jin Z W, Bian H, Wang K, Wang H R, Liang L, Wang Q, Liu S F 2018 ACS Energy Lett. 3 970Google Scholar

    [27]

    Zhu L Z, Ye J J, Zhang X H, Zheng H Y, Liu G Z, Pan X, Dai S Y 2017 J. Mater. Chem. A 5 3675Google Scholar

    [28]

    Hegedus S S, Shafarman W N 2004 Prog. Photovolt. 12 155Google Scholar

    [29]

    朱丽杰 2018 博士学位论文 (北京: 北京交通大学)

    Zhu L J 2018 Ph. D. Dissertation (Beijing: Beijing Jiaotong University

    [30]

    Niu T Q, Lu J, Tang M C, Barrit D, Smilgies D M, Yang Z, Li J B, Fan Y Y, Luo T, McCulloch I, Amassian A, Liu S Z, Zhao K 2018 Energy Environ. Sci. 11 3358Google Scholar

  • [1] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [4] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [5] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [6] Sun Meng-Jie, He Zhi-Qun, Zheng Yi-Fan, Shao Yu-Chuan. Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells. Acta Physica Sinica, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [7] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [10] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [11] Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang. Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells. Acta Physica Sinica, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [12] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [13] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [14] Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin. Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Acta Physica Sinica, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [15] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [16] Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Acta Physica Sinica, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [17] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [18] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] Gong Wei, Xu Zheng, Zhao Su-Ling, Liu Xiao-Dong, Yang Qian-Qian, Fan Xing. Effects of NPB anode buffer layer on the performances of inverted bulk heterojunction polymer solar cells. Acta Physica Sinica, 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [20] Zhao Feng-Qi, Zhang Min, Li Zhi-Qiang, Ji Yan-Ming. Effects of optical phonon and built-in electric field on the binding energy of bound polarons in a wurtzite In0.19Ga0.81N/GaN quantum well. Acta Physica Sinica, 2014, 63(17): 177101. doi: 10.7498/aps.63.177101
Metrics
  • Abstract views:  1077
  • PDF Downloads:  35
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2023
  • Accepted Date:  19 October 2023
  • Available Online:  02 November 2023
  • Published Online:  05 February 2024

/

返回文章
返回