Processing math: 100%

Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells

Liu Si-Wen Ren Li-Zhi Jin Bo-Wen Song Xin Wu Cong-Cong

Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong. Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells. Acta Phys. Sin., 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
Citation: Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong. Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells. Acta Phys. Sin., 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678

Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells

Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Organic-inorganic metal halide perovskite solar cells (PSCs) have been widely studied due to their excellent photoelectric conversion performance, but the inherent chemical instability of CH(NH2)2PbI3 (FAPbI3) hinders its sustainable development. In particular, the surface interface of the membrane has prominent humidity sensitivity due to lower activation energy, the defect of the surface interface has a strong correlation with the film stability, and the treatment result of the defect is one of the key factors to improve the long-term stability. The FAPbI3 suffers phase transition from black perovskite phase to yellow non-perovskite phase at room temperature, and the moisture will accelerate this phase transition. Interface engineering is one of the common methods to improve the stability of perovskite solar cells. In addition to interface engineering, there is a strategy of stacking a two-dimensional (2D) perovskite layer on the surface for interface passivation. However, most of the preparation methods of 2D perovskite layer have limitations. In this work, the full solution method and post-treatment mode of annealing are adopted, the hybrid perovskite solar cells of vitamin perovskite are successfully fabricated. The FAPbI3 perovskite surface is uniformly spin-coated with butylamine iodide (BAI) solution, and the formation of 2D perovskite is driven on the surface of FAPbI3 perovskite. Due to the passivation of surface interface defects by the 2D perovskite layer, the non-radiative recombination of charge carriers is reduced, greatly improving the carrier lifetime. Because of the hydrophobicity of long chain molecules in 2D perovskite, the long-term stability of the device is significantly improved. Consequently, the unencapsulated device containing 2D perovskite layer remains above 80% after operating at room temperature in ambient air with a relative humidity (RH) of 60% for nearly 1000 hours. The 2D perovskite layer can significantly improve the long-term stability of the film without affecting the charge carrier transport performance. This method of improving the stability of the device by constructing 2D perovskite layer is in line with the requirements and development trend of high-quality perovskite solar cells, and is a strategy with great development potential.
      PACS:
      88.40.H-(Solar cells (photovoltaics))
      88.40.J-(Types of solar cells)
      88.40.hj(Efficiency and performance of solar cells)
      73.50.-h(Electronic transport phenomena in thin films)
      Corresponding author: Wu Cong-Cong, ccwu@hubu.edu.cn
    • Funds: Project supported by the Key Research and Development Program of Hubei Province, China (Grant No. 2022BAA096) and the National Natural Science Foundation of China (Grant No. 62004064).

    有机-无机杂化钙钛矿(OIHPs)具有优异的光伏性能, 包括载流子扩散长度长[1]、载流子迁移率高(约10 cm2/(V·s))[2]、激子结合能低(约16 meV ± 2 meV)[3]、带隙可调性好[4]和在可见光-近红外波长范围内的高光学吸收[5]等. 将OIHPs作为光活性层的有机-无机金属卤化物钙钛矿太阳能电池(PSCs)具有性价比高、载流子寿命长、易于制造加工[6-12]和高效率的特点[13]. 目前单结钙钛矿太阳能电池认证的最高光电转换效率已达到26.1%[14], 在清洁能源领域表现出巨大的潜力. 虽然电池器件性能表现优异, 但是有机-无机金属卤化物钙钛矿由于外界因素, 如紫外线、温度和湿度, 会导致其结构不可逆转地退化[15-17]. 同时钙钛矿材料还会因离子迁移发生分解, 损失了器件实际使用寿命[18]. 钙钛矿太阳能电池稳定性问题已经成为制约钙钛矿太阳能电池发展的瓶颈. 因此对于实际应用于光照与高温环境下的钙钛矿太阳能电池, 器件的长期稳定性是需要解决的问题, 也是推进PSCs商业化过程中的挑战之一[19].

    通过在三维钙钛矿表面引入一层具有阻隔空气中水分且能提高光电性能的材料是一个极具前途的策略. 近期有研究提出了一种二维/三维(2D-3D)混合维钙钛矿薄膜, 其中三维(3D)钙钛矿的通式为AMX3[A = Cs+, CH3NH3+(MA+), 或HC(NH2)2+(FA+); M = Ge2+, Sn2+, Pb2+; X = Cl, Br, I], 且最小单元晶胞中卤素原子占据八面体的角, A位原子位于面心立方晶格顶角位置, 卤素八面体共顶点连接形成了三维框架空间结构[20]. 而二维(2D)钙钛矿结构是指位于A位阳离子的半径大于三维钙钛矿结构的容忍因子τ的数值范围, 结构上只是无机金属卤化物八面体[BX6]4–以共顶点的方式连接并往二维方向铺展成层状结构, 此外, 两个大有机阳离子R-NH+3上的质子氢分别与两边无机层的卤素离子形成氢键, 各烷基链之间通过范德瓦耳斯力结合形成了有机层, 整体仍为二维空间结构[21]. 通过将2D钙钛矿的稳定性与3D钙钛矿的全色吸收以及出色的电荷传输等优势结合在一起, 使得制备出高效且具有长期稳定性的有机-无机金属卤化物钙钛矿成为可能[22]. 此外, 2D钙钛矿对3D钙钛矿的表面缺陷钝化也会产生积极的影响[23]. 3D钙钛矿薄膜通常在表面含有结构缺陷, 这会导致钙钛矿薄膜与电子传输层界面处发生非辐射载流子复合[24]. 界面复合被认为是钙钛矿太阳能电池的开路电压损失的关键因素, 这大大降低了器件的性能[25]. 因此, 开发有效的表面钝化技术对钙钛矿太阳能电池来说至关重要. 对于2D-3D混合维钙钛矿太阳能电池的光活性功能层, 在3D钙钛矿薄膜的表面晶界处覆盖一层2D钙钛矿可起到化学钝化作用[26,27]. 而且混合2D-3D钙钛矿薄膜比纯2D或纯3D钙钛矿薄膜更适合用于制备PSCs, 因为制备出的器件既可以利用3D钙钛矿提供的高光伏性能, 又可以利用2D钙钛矿增强器件稳定性. 要同时获得混合尺寸PSCs的高效率和稳定性, 需要在2D和3D钙钛矿组成及其结构配置之间取得平衡, 以便实现每个钙钛矿相的最佳贡献[28]. 不同制备方法对薄膜中2D和3D钙钛矿的相组成与相分布有着重要影响[29]. Tsai等[21]采用2D钙钛矿掺入法制备出具有良好的面外层取向的混合2D-3D钙钛矿薄膜. 由于大块2D钙钛矿的掺入阻碍了载流子传输, 导致器件的光电转换效率降低. 文献[30]用气相沉积方法制备了混合2D-3D钙钛矿薄膜, 一般来说, 真空沉积的2D钙钛矿薄膜具有较高的相纯度, 与溶液处理的膜相比, 更均匀、光滑、无针孔. 然而真空气相沉积法通常是一个耗时的过程, 需要较高的真空度和对沉积速率的严格控制.

    由于上述2D钙钛矿层制备方法的局限性, 本文采用溶液处理3D钙钛矿表面形成2D钙钛矿层的策略. 溶液处理薄膜表面相比于大块2D钙钛矿的掺入, 可操作性更强; 相比于真空气相沉积方法, 工艺更简便效率更高, 并且调整工艺的溶液制备法获得的薄膜整体质量与真空气相沉积法相当. 通过将间隔阳离子化合物——丁基碘化铵(BAI)的前驱体溶液涂覆在3D钙钛矿CH(NH2)2PbI3(FAPbI3)薄膜上, 经热处理后形成2D钙钛矿层作为薄膜的新表面层. 在3D钙钛矿表面采用全溶液法制备的2D钙钛矿, 可起到界面钝化与阻隔空气中水分的作用, 达到提高器件效率和稳定性的目标. 本工作设计的2D钙钛矿层在光活性功能层中既作钝化层, 也作表面疏水层. 得益于2D钙钛矿层对界面处缺陷的钝化作用, 载流子非辐射复合减少, 从而使载流子寿命得到大幅度提高, 电池器件的光电转换效率达到20.28%. 由于2D钙钛矿中长链分子的疏水性, 器件的长期稳定性得到显著提高, 含2D钙钛矿层的未封装器件在相对湿度(RH)为60%, 室温环境空气中连续工作近1000 h后仍保持初始效率的80%以上. 这种在3D钙钛矿表面制备2D钙钛矿层的全溶液法简便高效, 其2D钙钛矿层在不影响载流子传输性能的同时也能显著提高薄膜的长期稳定性. 这种通过构建2D钙钛矿层提高器件稳定性的方法, 符合高质量钙钛矿太阳能电池的要求与发展趋势, 是一种极具发展潜力的策略.

    掺杂氟的氧化锡导电玻璃(FTO)、碘化铅(PbI2, 纯度99.99%)、甲脒碘(FAI, 纯度99.5%)和 2, 2′, 7, 7′-四[N, N-二(4-甲氧基苯基) 氨基]-9,9′-螺二芴(Spiro-OMeTAD, 纯度99.86%)购买于辽宁优选新能源科技有限公司. 氧化钛(TiO2)介孔浆料(18NR-T)购买于西安浴日光能科技有限公司. 乙腈(ACN, 纯度99.5%)和氯苯(CB, 纯度99.5%)购买于Aladdin. 二甲基亚砜(DMSO, 纯度99.7%)与N, N-二甲基甲酰胺(DMF, 纯度99.8%)购买于北京百灵威科技有限公司. 所有药品购买后直接使用, 无需纯化处理.

    FAPbI3钙钛矿前驱液的制备: 将FAI, PbI2按1∶1化学计量比精准称量, 混合均匀后加入乙腈搅拌3 h, 得到含有黄色钙钛矿前体粉末的悬浊液, 静置后取下层黄色钙钛矿前体粉末并用乙腈清洗3遍, 在手套箱中避光静置放干. 将干燥后的粉末溶于DMF与DMSO的混合溶液(DMSO体积分数为20%)中搅拌2 h, 得到摩尔浓度为1.8 mol/L的FAPbI3钙钛矿前驱液.

    2D钙钛矿层前体(BAI溶液)的制备: 将0.5 mg的BAI的粉末溶于1 mL的异丙醇(IPA)溶液中搅拌2 h至完全溶解, 呈澄清无色状.

    太阳能电池器件的制备: FTO玻璃依次经过去离子水、丙酮、IPA和乙醇超声各清洗20 min后用紫外臭氧机照射20 min备用. 在FTO基底上沉积致密层氧化钛, 接着将旋涂介孔TiO2来制备电子传输层, 旋涂转速为6000 r/min, 旋涂时间为50 s. 将旋涂结束后的样品置于100 ℃的加热板上退火10 min后放入500 ℃的马弗炉中煅烧1 h完成电子传输层制备. 将30 μL的FAPbI3钙钛矿前体溶液滴涂在经紫外臭氧机照射20 min的样品上, 启动旋涂仪均匀分散钙钛矿前驱液, 旋涂转速为5000 r/min, 旋涂时间为50 s, 在旋涂后第25 s滴涂200 μL氯苯, 旋涂结束后移至150 ℃加热板上退火10 min完成相转变过程, 获得α-FAPbI3完成3D钙钛矿薄膜制备. 实验组的钙钛矿层再将30 μL的BAI溶液旋涂于3D钙钛矿薄膜上. 旋涂转速为4000 r/min, 旋涂时间为30 s, 旋涂结束后移至80 ℃加热板上退火5 min, 完成2D钙钛矿层的制备. 称取72.3 mg的Spiro-OMeTAD粉末溶于1 mL氯苯中, 并加入28.8 µL的4-叔丁基吡啶(4-TBP)溶液和17.5 µL的双氟甲磺酰亚胺锂(Li-TFSI)的乙腈溶液(520 mg/mL), 搅拌至全部溶解. 取过滤后的溶液20 μL旋涂于上述钙钛矿薄膜上, 旋涂转速为4000 r/min, 旋涂时间为30 s, 完成空穴传输层的制备. 所有的薄膜制备过程是在充满氮气的手套箱中进行的. 随后使用金属热蒸发仪在上述样品上热沉积厚度约为80 nm的金电极薄膜, 活性区域的面积为0.06 cm2, 完成器件的制备.

    X射线衍射(XRD)测试: 采用Bruker D8 Advance型X射线衍射仪分析钙钛矿薄膜的晶体性质. 瞬、稳态荧光光谱(PL/TRPL)测试: 采用Perkin Elmer LS55型时间分辨光致发光仪研究钙钛矿薄膜的载流子迁移动力学. 场发射扫描电子显微镜(FESEM)测试: 采用Zeiss Sigma 500型扫描电子显微镜测试样品的表面与界面的形貌信息. 紫外-可见光(UV-vis)吸收测试: 采用Shimadzu UV-3600型紫外-可见光分光光度计测试样品的吸光特性, 扫描范围500—850 nm. 电化学测试: 在AM 1.5G模拟太阳光的照射下, 采用 Zahner IM6 型电化学工作站进行电化学表征.

    为了验证2D相的存在, 对样品进行XRD测试, 对照组与含2D钙钛矿层薄膜的晶体物相分析结果展示在图1(b)中. 图谱结果显示对照组与实验组薄膜在X射线二倍入射角为14.1°和28.2°处均出现峰型尖锐的衍射峰, 分别对应3D钙钛矿FAPbI3的(001)和(002)晶面, 这与文献[31]报道的结果一致. 值得注意的是, 两组样品的相对结晶强度是相当的, 说明了旋涂BAI溶液并且后处理的工艺对3D钙钛矿层晶粒基本无影响. 与此同时, 实验组样品在9.2°出现了衍射峰, 根据以往研究者的报道, 此处对应的是n = 2的2D钙钛矿特征峰[32]. 衍射实验结果说明本工作在不影响3D钙钛矿的基础上成功制备了2D钙钛矿层. 为测试增加2D钙钛矿层后薄膜的光吸收特性, 进行紫外-可见光区域(波长为500—850 nm)的光吸收测试. 图1(c)的吸收图谱结果显示两组样品的吸收曲线均表现出3D钙钛矿的光吸收特性[33]. 我们发现一方面含2D钙钛矿薄膜的吸收强度相对更强, 增强的来源是2D钙钛矿层的光吸收; 另一方面, 实验组薄膜在波长为580 nm附近出现了2D钙钛矿的特征吸收峰, 这与文献[32]报道的n = 2的2D钙钛矿特征峰是一致的. 这些结果表明2D钙钛矿层的存在与对薄膜光吸收能力的增强. 为了检验薄膜的光电性能, 图1(d)为对照组与含2D钙钛矿层薄膜的稳态光致发光(PL)图谱. 图中显示对照组与实验组薄膜分别在780与798 nm出现了3D钙钛矿特征光致发光峰[34], 经过BAI后处理的薄膜在582 nm处出现荧光峰, 与之前研究者的结果对比, 此处为2D钙钛矿特征荧光峰[32]. PL表征的结果与紫外-可见光吸收图谱的结果是对应的, 这些表征共同证实了本工作中全溶液法制备的2D钙钛矿层的存在.

    图 1 钙钛矿薄膜中2D相与3D相的示意与表征 (a) 二维钙钛矿薄膜与2D-3D钙钛矿薄膜结构的制备图; (b)—(d) 3D薄膜(对照组)和2D薄膜(实验组, BAI/IPA 0.5 mg/mL)的表征, 其中(b) XRD图谱, (c) 紫外-可见光吸收图谱, (d) 稳态PL图谱\r\nFig. 1. Schematic and characterization of 2D and 3D phases in perovskite films. (a) Preparation diagram of perovskite structure at the interface of 2D and 2D-3D perovskite film (CB, chlorobenzene). (b)–(d) The characterization of 3D film (control) and 2D film (target, with BAI/IPA 0.5 mg/mL): (b) X-ray diffraction patterns; (c) UV-vis absorption spectra; (d) steady-state PL spectra.
    图 1  钙钛矿薄膜中2D相与3D相的示意与表征 (a) 二维钙钛矿薄膜与2D-3D钙钛矿薄膜结构的制备图; (b)—(d) 3D薄膜(对照组)和2D薄膜(实验组, BAI/IPA 0.5 mg/mL)的表征, 其中(b) XRD图谱, (c) 紫外-可见光吸收图谱, (d) 稳态PL图谱
    Fig. 1.  Schematic and characterization of 2D and 3D phases in perovskite films. (a) Preparation diagram of perovskite structure at the interface of 2D and 2D-3D perovskite film (CB, chlorobenzene). (b)–(d) The characterization of 3D film (control) and 2D film (target, with BAI/IPA 0.5 mg/mL): (b) X-ray diffraction patterns; (c) UV-vis absorption spectra; (d) steady-state PL spectra.

    为了观察钙钛矿薄膜的形貌变化, 对薄膜进行了SEM测试. 对相对较好的组分进行了表面和截面表征, 如图2(a)(d)所示. 从图2(a)的表面图像可以看出, 纯3D FAPbI3的晶粒尺寸规整, 排列整齐. 图2(b)为在3D钙钛矿表面涂敷0.5 mg/mL的BAI溶液后经热处理形成的表面, 2D-3D钙钛矿表面形貌平整晶粒排列紧凑无针孔, 分布均匀且粒径一致, 在晶界处可以观察到有2D钙钛矿晶粒形成. 观察样品的横截面可以发现, 图2(c)中3D钙钛矿在垂直方向上生长良好, 图2(d)中出现双层结构, 在3D钙钛矿层(橙黄色)界面上出现厚度约50 nm的2D钙钛矿层(灰白色). 在实验组的表面与截面微观形貌中均证实了2D钙钛矿层的形成, 验证了有2D相的存在.

    图 2 钙钛矿薄膜SEM形貌表征 (a) 3D钙钛矿薄膜的表面; (b) 2D-3D钙钛矿薄膜的表面; (c) 3D钙钛矿薄膜的截面; (d) 2D-3D钙钛矿薄膜的截面\r\nFig. 2. Surface morphology characterization of perovskite film: (a) Surface image of 3D perovskite film; (b) surface image of 2D-3D perovskite film; (c) surface image of 3D perovskite film; (d) surface image of 2D-3D perovskite film.
    图 2  钙钛矿薄膜SEM形貌表征 (a) 3D钙钛矿薄膜的表面; (b) 2D-3D钙钛矿薄膜的表面; (c) 3D钙钛矿薄膜的截面; (d) 2D-3D钙钛矿薄膜的截面
    Fig. 2.  Surface morphology characterization of perovskite film: (a) Surface image of 3D perovskite film; (b) surface image of 2D-3D perovskite film; (c) surface image of 3D perovskite film; (d) surface image of 2D-3D perovskite film.

    确认了成功地在不影响3D钙钛矿的基础上制备2D钙钛矿层后, 对是否含2D钙钛矿层的样品进行以下薄膜载流子传输性能测试. 图3(a)为是否含2D钙钛矿层薄膜的瞬态光致发光(TRPL)光谱. 采用双指数模型对光致发光衰减曲线进行拟合, 以获得有关载流子动力学的信息[35,36]. 载流子寿命和平均载流子寿命τave可以根据如下公式计算:

    图 3 电池器件的载流子传输性能分析 (a) 钙钛矿薄膜的瞬态(TRPL)光谱; (b) FTO/ETL (TiO2) /Perovskite/PCBM/Ag结构的纯电子器件空间电荷限制电流(SCLC); (c) 3D与2D-3D钙钛矿器件的暗电流-电压(I-V)特性; (d) 3D与2D-3D钙钛矿器件的电化学阻抗谱(EIS)\r\nFig. 3. Analysis of carrier transport performance of devices: (a) Time-resolved photoluminescence (TRPL) for 3D perovskite film and 2D-3D perovskite film; (b) space charge limited current (SCLC) plots of electron-only devices with an architecture of FTO/ETL (TiO2) /Perovskite/PCBM/Ag based on 3D perovskite film and 2D-3D perovskite film; (c) dark current density-voltage (I-V ) characteristics of 3D perovskite film and 2D-3D perovskite film devices; (d) EIS of devices with 3D perovskite film and 2D-3D perovskite film.
    图 3  电池器件的载流子传输性能分析 (a) 钙钛矿薄膜的瞬态(TRPL)光谱; (b) FTO/ETL (TiO2) /Perovskite/PCBM/Ag结构的纯电子器件空间电荷限制电流(SCLC); (c) 3D与2D-3D钙钛矿器件的暗电流-电压(I-V)特性; (d) 3D与2D-3D钙钛矿器件的电化学阻抗谱(EIS)
    Fig. 3.  Analysis of carrier transport performance of devices: (a) Time-resolved photoluminescence (TRPL) for 3D perovskite film and 2D-3D perovskite film; (b) space charge limited current (SCLC) plots of electron-only devices with an architecture of FTO/ETL (TiO2) /Perovskite/PCBM/Ag based on 3D perovskite film and 2D-3D perovskite film; (c) dark current density-voltage (I-V ) characteristics of 3D perovskite film and 2D-3D perovskite film devices; (d) EIS of devices with 3D perovskite film and 2D-3D perovskite film.
    f(t)=A1exp(tτ1)+A2exp(tτ2)+B, (1)
    τave=Aiτi2Aiτi, (2)

    其中τ1是快速衰减分量的时间常数, τ2是慢衰减分量的时间常数, A1A2是相应的衰减幅度, B是常数[37]. τ1与界面处的电荷载流子复合相关, τ2对应于钙钛矿内部的体相复合. 根据(2)式计算得出3D钙钛矿薄膜的平均寿命为0.74 μs, 2D-3D钙钛矿薄膜的平均寿命为3.39 μs. 因此用BAI处理的薄膜载流子寿命明显比纯3D钙钛矿FAPbI3薄膜的载流子寿命更长, 这意味着实验组中形成的2D钙钛矿层具有钝化效果, 使缺陷密度显著降低, 促进了载流子的传输.

    为了量化3D与2D-3D钙钛矿层的陷阱态密度, 构建了FTO/电子传输层(TiO2)/钙钛矿/PCBM/Ag纯电子器件进行空间电荷限制电流(SCLC)的测试, 结果如图3(b)所示. 陷阱密度Nt可以根据(3)式来计算得出:

    VTFL=eNtL2/(2εε0), (3)

    其中e为元素电荷, L为钙钛矿薄膜厚度, ε0为真空介电常数, ε为FAPbI3的相对介电常数, VTFL为陷阱填充电压. 经过计算得到3D钙钛矿的陷阱密度为3.98×1015 cm–3, 而经过BAI处理后的2D-3D钙钛矿的陷阱密度为3.10×1015 cm–3. 这与通过荧光光谱分析得出的形成的2D相降低了陷阱密度的结果一致, 陷阱密度降低归因于钙钛矿晶界的减少, 晶粒尺寸变大, 这样晶界处的缺陷也随之减少.

    此外, 陷阱钝化效果还可以通过暗态下电流-电压(I-V )特性来验证, 如图3(c)所示. 经过BAI处理后的钙钛矿薄膜的漏电流比原始的钙钛矿薄膜的漏电流更低, 这表明被陷阱捕获的电子较少, 进一步证明了2D相在缺陷钝化方面起到了积极作用.

    为了表征界面载流子转移动力学, 对钙钛矿太阳能电池器件进行了电化学阻抗谱(EIS)测试. 进一步解释了界面电荷输运过程和载流子复合, 在黑暗条件下测量了基于3D和2D-3D器件的Nyquist图, 如图3(d)所示. Nyquist图从左至右包含一个高频圆弧和一个低频圆弧, 分别代表电荷转移电阻Rtr和电荷复合电阻Rrec. 通过对钙钛矿电池器件相对应的等效电路进行拟合, 计算得到RtrRrec. Rtr越小说明传输电阻越小, 电荷积累也越小. Rrec越大, 说明钙钛矿内部载流子复合越困难, 载流子层能收集到的电子和空穴就越多[38]. 从图3(d)可以看出3D器件高频区的圆弧大于2D-3D器件, 说明2D-3D的传输电阻小. 较低的电荷转移电阻是由于钙钛矿中较高的电子迁移率, 这促进了界面电荷转移. 测试结果表明, 经过BAI处理后的器件可以有效抑制器件中的载流子复合.

    为了检验全溶液法制备的2D钙钛矿层对3D钙钛矿器件光电性能的影响, 制备了具有FTO/TiO2电子传输层/钙钛矿层/Spiro-OMeTAD空穴传输层/金电极结构的n-i-p型PSC器件. 器件结构示意图如图4(a)所示, 将光活性层只含FAPbI3成分的纯3D钙钛矿器件作为对照组; 将在FAPbI3表面制备有2D钙钛矿层的混合维钙钛矿器件作为实验组(BAI/IPA溶液浓度为0.5 mg/mL). 图4(b)展现的是对照组与含2D钙钛矿层实验组的钙钛矿太阳能电池器件的电流密度-电压(J-V )特性曲线. 纯3D钙钛矿对照组的光电转换效率(PCE)为18.99%, 短路电流密度(JSC)为23.30 mA/cm2, 开路电压(VOC)为1.01 V, 填充因子(FF)为80.8%. 而2D-3D钙钛矿器件表现出显著的PCE提升, 冠军PCE为20.28%, JSC为24.33 mA/cm2, VOC为1.06 V, FF为78.9%. 这些光伏参数的提高得益于2D钙钛矿对界面缺陷的钝化作用, 减少了载流子的非辐射复合, 拥有了更加优异的载流子传输性能. 为了说明2D-3D钙钛矿改善光电性能策略的可重复性, 进行了20组样品重复性实验的数据统计, 对应的VOC, PCE, JSC和FF分别如图4(c)(f)所示. 含有2D钙钛矿层的电池器件, 平均光伏参数得到了明显提高. 可以注意到, 对照组与实验组的平均PCE分别为17.75% ± 0.78%和18.94% ± 0.47%; 平均FF分别为73.5% ± 1.85%和78.6% ± 1.29%, 结果表明经BAI/IPA溶液处理而获得的2D-3D器件的PCE从17.75%(最佳为18.9%)增至18.94%(最佳为20.28%). 并且, 20组样品重复性实验结果的统计学分布较窄, 证明了2D-3D异质结结构改善光电性能的可靠性.

    图 4 电池器件的光电性能分析 (a) 钙钛矿太阳能电池的器件结构图; (b) 3D钙钛矿与2D-3D钙钛矿器件的J-V曲线; (c)—(f) 20组钙钛矿器件的光伏性能参数统计图\r\nFig. 4. Analysis of photoelectric performance of devices: (a) Device structure of perovskite solar cells; (b) J-V curves of perovskite solar cells prepared by 3D perovskite film and 2D-3D perovskite film; (c)–(f) statistical distribution of photovoltaic performance of perovskite devices.
    图 4  电池器件的光电性能分析 (a) 钙钛矿太阳能电池的器件结构图; (b) 3D钙钛矿与2D-3D钙钛矿器件的J-V曲线; (c)—(f) 20组钙钛矿器件的光伏性能参数统计图
    Fig. 4.  Analysis of photoelectric performance of devices: (a) Device structure of perovskite solar cells; (b) J-V curves of perovskite solar cells prepared by 3D perovskite film and 2D-3D perovskite film; (c)–(f) statistical distribution of photovoltaic performance of perovskite devices.

    为了检验空气中的水分对于钙钛矿薄膜的影响, 进行了接触角测试. 图5(a)为钙钛矿薄膜的接触角测量. 与3D薄膜相比, 2D-3D薄膜显示出更高的疏水性, 这证明滴涂在3D表面上的BAI与3D钙钛矿形成了2D相, 提高了薄膜的疏水性. 为了进一步验证加入BAI后形成的二维相对器件稳定性的影响, 将未封装的器件置于60%相对湿度(RH)的环境空气中, 并且监测PCE随时间的变化, 如图5(b)所示. 经BAI处理后的器件在经过近1000 h后仍然保持其初始效率的80%以上, 而对照组则损失了其初始值的近50%, 这表明了实验组中2D钙钛矿层的疏水性起到了显著化效果, 显著提高了器件的稳定性.

    图 5 电池器件的稳定性分析 (a) 3D钙钛矿薄膜与2D-3D钙钛矿薄膜的接触角测试; (b) 未封装器件在60%的相对湿度下, 在环境空气中进行近1000 h的PCE稳定性试验; (c)—(e) 3D钙钛矿薄膜与2D-3D钙钛矿薄膜在(c) 加热 (85 ℃)、(d) 高湿度 (RH: 85%)、(e) 光照 (AM 1.5G)下的相应XRD谱图\r\nFig. 5. Stability of devices: (a) Contact angle images of 3D perovskite film and 2D-3D perovskite film; (b) PCE stability test of the unencapsulated devices under 60% relative humidity at ambient air for nearly 1000 h; (c)–(e) XRD patterns of the control and target layers against (c) heat (85 ℃) , (d) moisture (RH: 85%), and (e) light (AM 1.5G).
    图 5  电池器件的稳定性分析 (a) 3D钙钛矿薄膜与2D-3D钙钛矿薄膜的接触角测试; (b) 未封装器件在60%的相对湿度下, 在环境空气中进行近1000 h的PCE稳定性试验; (c)—(e) 3D钙钛矿薄膜与2D-3D钙钛矿薄膜在(c) 加热 (85 ℃)、(d) 高湿度 (RH: 85%)、(e) 光照 (AM 1.5G)下的相应XRD谱图
    Fig. 5.  Stability of devices: (a) Contact angle images of 3D perovskite film and 2D-3D perovskite film; (b) PCE stability test of the unencapsulated devices under 60% relative humidity at ambient air for nearly 1000 h; (c)–(e) XRD patterns of the control and target layers against (c) heat (85 ℃) , (d) moisture (RH: 85%), and (e) light (AM 1.5G).

    为深入了解不同的外界环境对于钙钛矿层中的晶体结构的影响程度, 对器件提供高温度、高湿度和光照的不同条件, 周期性地记录钙钛矿层的XRD图谱. 通过器件在不同条件下的情况来评价钙钛矿层的稳定性. 通过在相对湿度为60%的环境空气中, 以85 °C的温度加热钙钛矿层来评价薄膜的热稳定性. 将制备的钙钛矿薄膜进行X射线衍射后置于给定环境中观察其形貌变化, 如图5(c)所示, 3D钙钛矿薄膜在加热30 h后在12.8°处开始出现PbI2的衍射峰[39], 而2D-3D钙钛矿薄膜未出现PbI2的衍射峰. 经过70 h的加热老化实验后, 3D钙钛矿薄膜PbI2的衍射峰强高于FAPbI3的衍射峰, 2D-3D钙钛矿薄膜中钙钛矿晶体仍然占据主导地位. 相比之下, 2D-3D钙钛矿薄膜表现出更好的热稳定性. 为了测试湿度稳定性, 将薄膜置于室温相对湿度为85%的黑暗环境中5天, 如图5(d)所示. 对于3D钙钛矿薄膜在3天后部分分解为PbI2, 5天后钙钛矿大量分解为PbI2. 而2D-3D钙钛矿薄膜在3天后未出现PbI2的衍射峰, 5天后很少一部分钙钛矿分解为PbI2. 湿度稳定性测试表明, BAI加入后形成的异质结结构能提升钙钛矿薄膜的抗湿能力, 抗湿作用一直持续到第3天, 并且老化5天后大部分钙钛矿晶体仍保持不变. 为了进一步模拟更加恶劣的环境条件, 将样品进行光稳定性测试, 如图5(e)所示. 将薄膜置于环境空气中(RH: 60%)使用太阳光模拟器恒定照射10 h检测薄膜的光稳定性. 在光照5 h后, 3D钙钛矿薄膜衍射峰强度明显下降, 而2D-3D钙钛矿薄膜衍射峰强度下降程度不明显. 经过10 h光照后, 3D钙钛矿薄膜大部分分解为PbI2. 相比较而言, 2D-3D钙钛矿薄膜显示出明显不同的结构演化, 在承受10 h恒定光照后, 只有微量部分分解. 通过稳定性测试表明, 2D-3D钙钛矿薄膜在不同环境的条件下都显示出优异的稳定性.

    本文采用全溶液法的制备工艺, 通过在FAPbI3钙钛矿表面均匀涂覆薄薄一层BAI/IPA溶液, 通过热退火的后处理方式, 驱动表面2D钙钛矿的形成. 通过XRD物相分析, PL光谱分析等表征手段证实了表面2D钙钛矿的存在. 并且通过对载流子寿命和缺陷态密度等薄膜质量进行了测试, 我们发现得益于2D钙钛矿层对界面处缺陷的钝化作用, 构建了2D钙钛矿的实验组载流子非辐射复合减少, 载流子寿命达到3.39 μs. 对应的电池器件各性能都得到了提高, 冠军光电转换效率为20.28%, 相比较于对照组的18.99%的光电效率提高了6.8%. 其中JSC为24.33 mA/cm2, VOC为1.06 V, FF为78.9%. 这种方法成功构建的2D钙钛矿对器件的长期稳定性上有着显著的提高, 原因在于2D钙钛矿中长链分子的疏水性, 将水、氧气隔绝在光电功能层以外. 通过追踪分解产物PbI2的XRD特征峰, 发现含2D钙钛矿层薄膜相较对照组3D钙钛矿薄膜的热稳定性、湿度稳定性和光照稳定性均获得不同程度的提高. 在相对湿度为60%的自然空气环境中, 模拟连续光照近1000 h后, 含2D钙钛矿层的器件效率仍保持在初始效率的80%以上, 而对照组3D钙钛矿的器件效率损失了初始值的近50%. 这种在3D钙钛矿表面制备2D钙钛矿层的全溶液法简便高效, 其中2D钙钛矿层在器件中既作光吸收层也作界面钝化层, 不影响载流子传输性能的同时显著提高了器件性能和薄膜的长期稳定性.

    [1]

    Wang Y W, Zhang Y B, Zhang P H, Zhang W Q 2015 Phys. Chem. Chem. Phys. 17 11516Google Scholar

    [2]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584Google Scholar

    [3]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nat. Phys. 11 582Google Scholar

    [4]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [5]

    Du Q G, Shen G, John S 2016 AIP Adv. 6 065002Google Scholar

    [6]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295Google Scholar

    [7]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [8]

    Park N G 2015 Mater. Today 18 65Google Scholar

    [9]

    Dong Q, Liu F, Wong M K, Tam H W, Djurišić A B, Ng A, Surya C, Chan W K, Ng A M C 2016 ChemSusChem 9 2597Google Scholar

    [10]

    Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G 2015 Adv. Energy Mater. 5 1501310Google Scholar

    [11]

    Meng R, Wu G B, Zhou J Y, Zhou H Q, Fang H, Loi M A, Zhang Y 2019 Chem. A Eur. J. 25 5480Google Scholar

    [12]

    Wu G B, Zhou J Y, Meng R, Xue B D, Zhou H Q, Tang Z Y, Zhang Y 2019 Phys. Chem. Chem. Phys. 21 3106Google Scholar

    [13]

    Yang T H, Ma C, Cai W L, Wang S Q, Wu Y, Feng J S, Wu N, Li H J, Huang W L, Ding Z C, Gao L L, Liu S Z, Zhao K 2023 Joule 7 574Google Scholar

    [14]

    Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2023-10-19]

    [15]

    Wang D, Wright M, Elumalai N K, Uddin A 2016 Sol. Energy Mater. Sol. Cells 147 255Google Scholar

    [16]

    Philippe B, Park B W, Lindblad R, Oscarsson J, Ahmadi S, Johansson E M J, Rensmo H 2015 Chem. Mater. 27 1720Google Scholar

    [17]

    Kim H S, Seo J Y, Park N G 2016 ChemSusChem 9 2528Google Scholar

    [18]

    Madhavan V E, Zimmermann I, Baloch A A B, Manekkathodi A, Belaidi A, Tabet N, Nazeeruddin M K 2020 ACS Appl. Energy Mater. 3 114Google Scholar

    [19]

    Li N X, Niu X X, Chen Q, Zhou H P 2020 Chem. Soc. Rev. 49 8235Google Scholar

    [20]

    Li X, Hoffman J M, Kanatzidis M G 2021 Chem. Rev. 121 2230Google Scholar

    [21]

    Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D 2016 Nature 536 312Google Scholar

    [22]

    Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar

    [23]

    Zhao S H, Xie J S, Cheng G H, Xiang Y R, Zhu H Y, Guo W Y, Wang H, Qin M C, Lu X H, Qu J L, Wang J N, Xu J B, Yan K Y 2018 Small 14 803350Google Scholar

    [24]

    Perini C A R, Doherty T A S, Stranks S D, Correa-Baena J P, Hoye R L Z 2021 Joule 5 1024Google Scholar

    [25]

    Wolff C M, Caprioglio P, Stolterfoht M, Neher D 2019 Adv. Mater. 31 1902762Google Scholar

    [26]

    Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418Google Scholar

    [27]

    Kong W Y, Zeng F, Su Z H, Wang T, Qiao L, Ye T S, Zhang L, Sun R T, Barbaud J, Li F, Gao X Y, Zheng R K, Yang X D 2022 Adv. Energy Mater. 12 202202704Google Scholar

    [28]

    Li C, Zhu R, Yang Z, Lai J, Tan J, Luo Y, Ye S 2023 Angew. Chemie Int. Ed. 62 e202214208Google Scholar

    [29]

    Mahmud M A, Duong T, Peng J, Wu Y, Shen H, Walter D, Nguyen H T, Mozaffari N, Tabi G D, Catchpole K R, Weber K J, White T P 2021 Adv. Funct. Mater. 32 2009164Google Scholar

    [30]

    Li M H, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv. Mater. 30 801401Google Scholar

    [31]

    Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H, Seok S Il 2019 Science 366 749Google Scholar

    [32]

    Raghavan C M, Chen T P, Li S S, Chen W L, Lo C Y, Liao Y M, Haider G, Lin C C, Chen C C, Sankar R, Chang Y M, Chou F C, Chen C W 2018 Nano Lett. 18 3221Google Scholar

    [33]

    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [34]

    Zhang Y, Seo S, Lim S Y, Kim Y, Kim S G, Lee D K, Lee S H, Shin H, Cheong H, Park N G 2020 ACS Energy Lett. 5 360Google Scholar

    [35]

    Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci. 12 308Google Scholar

    [36]

    He M, Li B, Cui X, Jiang B B, He Y J, Chen Y H, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J S, Lin Z Q 2017 Nat. Commun. 8 16045Google Scholar

    [37]

    Xing G C, Wu B, Chen S, Chua J, Yantara N, Mhaisalkar S, Mathews N, Sum T C 2015 Small 11 3613Google Scholar

    [38]

    Galatopoulos F, Savva A, Papadas I T, Choulis S A 2017 APL Mater. 5 076102Google Scholar

    [39]

    Cho Y, Soufiani A M, Yun J S, Kim J, Lee D S, Seidel J, Deng X, Green M A, Huang S, Ho-Baillie A W Y 2018 Adv. Energy Mater. 8 1703392Google Scholar

    期刊类型引用(1)

    1. 武光宝,夏俊民,陈润锋. 多量子阱钙钛矿半导体合成及光伏性能表征的综合实验设计. 大学物理实验. 2024(05): 27-33 . 百度学术

    其他类型引用(1)

  • 图 1  钙钛矿薄膜中2D相与3D相的示意与表征 (a) 二维钙钛矿薄膜与2D-3D钙钛矿薄膜结构的制备图; (b)—(d) 3D薄膜(对照组)和2D薄膜(实验组, BAI/IPA 0.5 mg/mL)的表征, 其中(b) XRD图谱, (c) 紫外-可见光吸收图谱, (d) 稳态PL图谱

    Figure 1.  Schematic and characterization of 2D and 3D phases in perovskite films. (a) Preparation diagram of perovskite structure at the interface of 2D and 2D-3D perovskite film (CB, chlorobenzene). (b)–(d) The characterization of 3D film (control) and 2D film (target, with BAI/IPA 0.5 mg/mL): (b) X-ray diffraction patterns; (c) UV-vis absorption spectra; (d) steady-state PL spectra.

    图 2  钙钛矿薄膜SEM形貌表征 (a) 3D钙钛矿薄膜的表面; (b) 2D-3D钙钛矿薄膜的表面; (c) 3D钙钛矿薄膜的截面; (d) 2D-3D钙钛矿薄膜的截面

    Figure 2.  Surface morphology characterization of perovskite film: (a) Surface image of 3D perovskite film; (b) surface image of 2D-3D perovskite film; (c) surface image of 3D perovskite film; (d) surface image of 2D-3D perovskite film.

    图 3  电池器件的载流子传输性能分析 (a) 钙钛矿薄膜的瞬态(TRPL)光谱; (b) FTO/ETL (TiO2) /Perovskite/PCBM/Ag结构的纯电子器件空间电荷限制电流(SCLC); (c) 3D与2D-3D钙钛矿器件的暗电流-电压(I-V)特性; (d) 3D与2D-3D钙钛矿器件的电化学阻抗谱(EIS)

    Figure 3.  Analysis of carrier transport performance of devices: (a) Time-resolved photoluminescence (TRPL) for 3D perovskite film and 2D-3D perovskite film; (b) space charge limited current (SCLC) plots of electron-only devices with an architecture of FTO/ETL (TiO2) /Perovskite/PCBM/Ag based on 3D perovskite film and 2D-3D perovskite film; (c) dark current density-voltage (I-V ) characteristics of 3D perovskite film and 2D-3D perovskite film devices; (d) EIS of devices with 3D perovskite film and 2D-3D perovskite film.

    图 4  电池器件的光电性能分析 (a) 钙钛矿太阳能电池的器件结构图; (b) 3D钙钛矿与2D-3D钙钛矿器件的J-V曲线; (c)—(f) 20组钙钛矿器件的光伏性能参数统计图

    Figure 4.  Analysis of photoelectric performance of devices: (a) Device structure of perovskite solar cells; (b) J-V curves of perovskite solar cells prepared by 3D perovskite film and 2D-3D perovskite film; (c)–(f) statistical distribution of photovoltaic performance of perovskite devices.

    图 5  电池器件的稳定性分析 (a) 3D钙钛矿薄膜与2D-3D钙钛矿薄膜的接触角测试; (b) 未封装器件在60%的相对湿度下, 在环境空气中进行近1000 h的PCE稳定性试验; (c)—(e) 3D钙钛矿薄膜与2D-3D钙钛矿薄膜在(c) 加热 (85 ℃)、(d) 高湿度 (RH: 85%)、(e) 光照 (AM 1.5G)下的相应XRD谱图

    Figure 5.  Stability of devices: (a) Contact angle images of 3D perovskite film and 2D-3D perovskite film; (b) PCE stability test of the unencapsulated devices under 60% relative humidity at ambient air for nearly 1000 h; (c)–(e) XRD patterns of the control and target layers against (c) heat (85 ℃) , (d) moisture (RH: 85%), and (e) light (AM 1.5G).

  • [1]

    Wang Y W, Zhang Y B, Zhang P H, Zhang W Q 2015 Phys. Chem. Chem. Phys. 17 11516Google Scholar

    [2]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584Google Scholar

    [3]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nat. Phys. 11 582Google Scholar

    [4]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [5]

    Du Q G, Shen G, John S 2016 AIP Adv. 6 065002Google Scholar

    [6]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295Google Scholar

    [7]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [8]

    Park N G 2015 Mater. Today 18 65Google Scholar

    [9]

    Dong Q, Liu F, Wong M K, Tam H W, Djurišić A B, Ng A, Surya C, Chan W K, Ng A M C 2016 ChemSusChem 9 2597Google Scholar

    [10]

    Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G 2015 Adv. Energy Mater. 5 1501310Google Scholar

    [11]

    Meng R, Wu G B, Zhou J Y, Zhou H Q, Fang H, Loi M A, Zhang Y 2019 Chem. A Eur. J. 25 5480Google Scholar

    [12]

    Wu G B, Zhou J Y, Meng R, Xue B D, Zhou H Q, Tang Z Y, Zhang Y 2019 Phys. Chem. Chem. Phys. 21 3106Google Scholar

    [13]

    Yang T H, Ma C, Cai W L, Wang S Q, Wu Y, Feng J S, Wu N, Li H J, Huang W L, Ding Z C, Gao L L, Liu S Z, Zhao K 2023 Joule 7 574Google Scholar

    [14]

    Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2023-10-19]

    [15]

    Wang D, Wright M, Elumalai N K, Uddin A 2016 Sol. Energy Mater. Sol. Cells 147 255Google Scholar

    [16]

    Philippe B, Park B W, Lindblad R, Oscarsson J, Ahmadi S, Johansson E M J, Rensmo H 2015 Chem. Mater. 27 1720Google Scholar

    [17]

    Kim H S, Seo J Y, Park N G 2016 ChemSusChem 9 2528Google Scholar

    [18]

    Madhavan V E, Zimmermann I, Baloch A A B, Manekkathodi A, Belaidi A, Tabet N, Nazeeruddin M K 2020 ACS Appl. Energy Mater. 3 114Google Scholar

    [19]

    Li N X, Niu X X, Chen Q, Zhou H P 2020 Chem. Soc. Rev. 49 8235Google Scholar

    [20]

    Li X, Hoffman J M, Kanatzidis M G 2021 Chem. Rev. 121 2230Google Scholar

    [21]

    Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D 2016 Nature 536 312Google Scholar

    [22]

    Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar

    [23]

    Zhao S H, Xie J S, Cheng G H, Xiang Y R, Zhu H Y, Guo W Y, Wang H, Qin M C, Lu X H, Qu J L, Wang J N, Xu J B, Yan K Y 2018 Small 14 803350Google Scholar

    [24]

    Perini C A R, Doherty T A S, Stranks S D, Correa-Baena J P, Hoye R L Z 2021 Joule 5 1024Google Scholar

    [25]

    Wolff C M, Caprioglio P, Stolterfoht M, Neher D 2019 Adv. Mater. 31 1902762Google Scholar

    [26]

    Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418Google Scholar

    [27]

    Kong W Y, Zeng F, Su Z H, Wang T, Qiao L, Ye T S, Zhang L, Sun R T, Barbaud J, Li F, Gao X Y, Zheng R K, Yang X D 2022 Adv. Energy Mater. 12 202202704Google Scholar

    [28]

    Li C, Zhu R, Yang Z, Lai J, Tan J, Luo Y, Ye S 2023 Angew. Chemie Int. Ed. 62 e202214208Google Scholar

    [29]

    Mahmud M A, Duong T, Peng J, Wu Y, Shen H, Walter D, Nguyen H T, Mozaffari N, Tabi G D, Catchpole K R, Weber K J, White T P 2021 Adv. Funct. Mater. 32 2009164Google Scholar

    [30]

    Li M H, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv. Mater. 30 801401Google Scholar

    [31]

    Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H, Seok S Il 2019 Science 366 749Google Scholar

    [32]

    Raghavan C M, Chen T P, Li S S, Chen W L, Lo C Y, Liao Y M, Haider G, Lin C C, Chen C C, Sankar R, Chang Y M, Chou F C, Chen C W 2018 Nano Lett. 18 3221Google Scholar

    [33]

    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [34]

    Zhang Y, Seo S, Lim S Y, Kim Y, Kim S G, Lee D K, Lee S H, Shin H, Cheong H, Park N G 2020 ACS Energy Lett. 5 360Google Scholar

    [35]

    Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci. 12 308Google Scholar

    [36]

    He M, Li B, Cui X, Jiang B B, He Y J, Chen Y H, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J S, Lin Z Q 2017 Nat. Commun. 8 16045Google Scholar

    [37]

    Xing G C, Wu B, Chen S, Chua J, Yantara N, Mhaisalkar S, Mathews N, Sum T C 2015 Small 11 3613Google Scholar

    [38]

    Galatopoulos F, Savva A, Papadas I T, Choulis S A 2017 APL Mater. 5 076102Google Scholar

    [39]

    Cho Y, Soufiani A M, Yun J S, Kim J, Lee D S, Seidel J, Deng X, Green M A, Huang S, Ho-Baillie A W Y 2018 Adv. Energy Mater. 8 1703392Google Scholar

  • [1] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [2] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [4] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [5] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [6] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [7] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [8] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] Wang Gui-Qiang, Bi Jia-Yu, Liu Jie-Qiong, Lei Miao, Zhang Wei. Enhancing quality of CsPbIBr2 inorganic perovskite via cellulose acetate addition for high-performance perovskite solar cells. Acta Physica Sinica, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [10] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [11] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [12] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [13] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [14] Guo Ning, Zhou Zhou, Ni Jian, Cai Hong-Kun, Zhang Jian-Jun, Sun Yan-Yan, Li Juan. Thin film transistor based on two-dimensional organic-inorganic hybrid perovskite. Acta Physica Sinica, 2020, 69(19): 198102. doi: 10.7498/aps.69.20200701
    [15] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [16] Chen Jun-Fan, Ren Hui-Zhi, Hou Fu-Hua, Zhou Zhong-Xin, Ren Qian-Shang, Zhang De-Kun, Wei Chang-Chun, Zhang Xiao-Dan, Hou Guo-Fu, Zhao Ying. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells. Acta Physica Sinica, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [17] Li Xiao-Guo, Zhang Xin, Shi Ze-Jiao, Zhang Hai-Juan, Zhu Cheng-Jun, Zhan Yi-Qiang. Research progress of interface passivation of n-i-p perovskite solar cells. Acta Physica Sinica, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [18] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [19] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
  • 期刊类型引用(1)

    1. 武光宝,夏俊民,陈润锋. 多量子阱钙钛矿半导体合成及光伏性能表征的综合实验设计. 大学物理实验. 2024(05): 27-33 . 百度学术

    其他类型引用(1)

Metrics
  • Abstract views:  4651
  • PDF Downloads:  110
  • Cited By: 2
Publishing process
  • Received Date:  20 October 2023
  • Accepted Date:  07 December 2023
  • Available Online:  23 December 2023
  • Published Online:  20 March 2024

/

返回文章
返回