Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells

Chen Jun-Fan Ren Hui-Zhi Hou Fu-Hua Zhou Zhong-Xin Ren Qian-Shang Zhang De-Kun Wei Chang-Chun Zhang Xiao-Dan Hou Guo-Fu Zhao Ying

Citation:

Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells

Chen Jun-Fan, Ren Hui-Zhi, Hou Fu-Hua, Zhou Zhong-Xin, Ren Qian-Shang, Zhang De-Kun, Wei Chang-Chun, Zhang Xiao-Dan, Hou Guo-Fu, Zhao Ying
PDF
HTML
Get Citation
  • Recently, the monolithic spin-coating perovskite/planar silicon heterojunction tandem solar cells with high performance have attracted attention mainly due to simple fabrication, low preparation cost and high efficiency, especially compared with fully textured multi-junction perovskite/silicon tandem device. As is well known, the excellent passivation of a-Si:H/c-Si interface is the key to achieving a high-efficiency planar silicon heterojunction solar cell, which further improves the performance of the corresponding tandem cell. Therefore, we investigate the elements affecting a-Si:H/c-Si interface passivation, including the c-Si surface treatment technique, a-Si:H passivation layer and P-type emitter layer and so on. In these experiments, we adjust the immersed time of diluent hydrofluoric acid and pre-deposited hydrogen plasma with different gas mixture flows. Also, the suitable deposition parameters of intrinsic a-Si:H passivation layer are regulated by varying hydrogen dilution and time, and variously slight silane content is embedded into i-a-Si:H /P-type (I/P) emitter interface by hydrogen-rich plasma treating which is for acquiring optimal experimental processing conditions to promote the chemical passivation. In addition, the p-a-Si:H and p-nc-Si:H are comparatively studied as buffer layers to further improve the I/P interface passivation by varying the hydrogen dilution in the gas mixture during deposition. It can be found that p-nc-Si:H buffer layer with high conductivity and wide bandgap can not only reduce the defect density at the I/P interface, but also increase the conductivity of P-type emitter, which further improves the field passivation effect. By the above- mentioned optimization, the highest minority carrier lifetime and implied open-circuit voltage (iVoc) of the structure of P-type emitter/a-Si:H(i)/c-Si/a-Si:H(i)/N-type layer (inip) sample can respectively reach 2855 μs and 709 mV, which demonstrates authentically outstanding passivation performance. An efficiency of 18.76% can be obtained for the planar a-Si/c-Si heterojunction solar cell with a Voc of 681.5 mV, which is 34.3 mV higher than that of the reference device. Regarding the optimized planar a-Si:H/c-Si heterojunction solar cell as the bottom cell, we also obtain an efficiency of 21.24% for perovskite/silicon heterojunction tandem solar cell with an open-circuit voltage of 1780 mV, which proves that the above strategies are very effective for improving the passivation optimization and performance of bottom cell in the tandem device.
      Corresponding author: Zhang Xiao-Dan, xdzhang@nankai.edu.cn ; Hou Guo-Fu, gfhou@nankai.edu.cn
    • Funds: Project supported by the International Cooperation of the Ministry of Science and Technology of China (Grant No. 2014DFE60170), the National Natural Science Foundation of China (Grant Nos. 61474065, 61674084, 61474066), the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China (Grant No. B16027), the Open Project of the Key Laboratory of Optical Information Science and Technology of the Ministry of Education of China (Grant No. 2017KFKT015), and the Fundamental Research Fund for the Central Universities, China.
    [1]

    贾旭平 2011 电源技术 35 127Google Scholar

    Jia X P 2011 Power Technology 35 127Google Scholar

    [2]

    Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37Google Scholar

    [3]

    Kerr M J, Cuevas A, Campbell P 2003 Prog. Photovoltaics Res. Appl. 11 97Google Scholar

    [4]

    Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovoltaics 3 1184Google Scholar

    [5]

    Kurtz S, Geisz J 2010 Opt. Express 18 A73Google Scholar

    [6]

    Shah A V, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll E, Droz C, Bailat J 2004 Prog. Photovoltaics Res. Appl. 12 113Google Scholar

    [7]

    Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S, Lee J, Seo J 2018 Nat. Energy 3 682Google Scholar

    [8]

    Lal N N, Dkhissi Y, Li W, Hou Q C, Cheng Y B, Bach U 2017 Adv. Energy Mater. 7 1602761Google Scholar

    [9]

    Filipič M, Löper P, Niesen B, Wolf S D, Krč J, Ballif C, Topič M 2015 Opt. Express 23 A263Google Scholar

    [10]

    Mailoa J P, Bailie C D, Johlin E C, Johlin, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [11]

    Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Grätzel M, Rech B 2016 Energy Environ. Sci. 9 81Google Scholar

    [12]

    Werner J, Weng C H, Walter A, Fesquet L, Seif J P, Wolf S D, Niesen B, Ballif C 2015 J. Phys. Chem. Lett. 7 161

    [13]

    Ding K, Aeberhard U, Finger F, Rau U 2012 Phys. Status Solidi RRL 6 193Google Scholar

    [14]

    Zhang H, Nakada K, Miyajima S, Konagai M 2015 Phys. Status Solidi RRL 9 225Google Scholar

    [15]

    Krajangsang T, Inthisang S, Sritharathikhun J, Hongsingthong A, Limmanee A , Kittisontirak S, Chinnavornrungsee P, Phatthanakun R, Sriprapha K 2017 Thin Solid Films 628 107Google Scholar

    [16]

    王文静, 李海玲, 周春兰, 赵雷 2014 晶体硅太阳电池制造技术(北京: 机械工业出版社) 第90页

    Wang W J, Li H L, Zhou C L, Zhao L 2014 Technology for Manufacturing Crystalline Silicon Solar Cells (Beijing: China Machine Press) p90 (in Chinese)

    [17]

    Zhao J, Wang A, Green M A 1999 Prog. Photovoltaics Res. Appl. 7 471Google Scholar

    [18]

    Kerr M J, Cuevas A 2002 Semicond. Sci. Technol. 17 166Google Scholar

    [19]

    Agostinelli G, Delabie A, Vitanov P, Alexieva Z, Dekkers H F W, Wolf S D, Beaucarne G 2006 Sol. Energy Mater. Sol. Cells 90 3438Google Scholar

    [20]

    Hoex B, Heil S B S, Langereis E, Sanden M C M V D, Kessels W M M 2006 Appl. Phys. Lett. 89 042112Google Scholar

    [21]

    Fuhs W, Niemann K, Stuke J 1974 AIP Conf. Proc. 20 345

    [22]

    Hamakawa Y, Fujimoto K, Okuda K, Kashima Y, Nonomura S, Okamoto H 1983 Appl. Phys. Lett. 43 644Google Scholar

    [23]

    Ren Q S, Li S Z, Zhu S J, Ren H Z, Yao X, Wei C C, Yan B J, Zhao Y, Zhang X D 2018 Sol. Energy Mater. Sol. Cells 185 124Google Scholar

    [24]

    Shockley W, Read Jr W T 1952 Phys. Rev. 87 835Google Scholar

    [25]

    Hall R N 1952 Phys. Rev. 87 387

    [26]

    Sproul A B 1994 J. Appl. Phys. 76 2851Google Scholar

    [27]

    Jensen N, Rau U, Hausner R M, Uppal S, Oberbeck L, Bergman R B, Werner J H 2000 J. Appl. Phys. 87 2639Google Scholar

    [28]

    杨静, 陈剑辉, 沈艳娇, 陈静伟, 许颖, 麦耀华 2017 太阳能学报 38 201

    Yang J, Chen J H, Shen Y J, Chen J W, Xu Y, Mai Y H 2017 Acta Energiae Solaris Sin. 1 201

    [29]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件(北京: 科学出版社) 第130−208页

    Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijin: Science Press) pp130−208 (in Chinese)

    [30]

    Wang T H, Iwaniczko E, Page M R, Wang Q, Levi D H, Yan Y, Xu Y, Branz H M 2005 MRS Online Proceedings Library Archive. 862 183

    [31]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovoltaics 4 96Google Scholar

    [32]

    王奉友 2016 博士学位论文 (天津:南开大学)

    Wang F Y 2016 Ph.D. Dissertation (Tianjin: Nankai University)(in Chinese)

    [33]

    Garcia-Belmonte G, García-Cañadas J, Mora-Seró I, Bisquert J, Voz C, Puigdollers J, Alcubilla R 2006 Thin Solid Films 514 254Google Scholar

    [34]

    Ling Z P, Ge J, Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 118Google Scholar

    [35]

    Meng F Y, Shen L L, Shi J H, Zhang L P, Liu J N, Liu Y C, Liu Z X 2015 Appl. Phys. Lett. 107 96

    [36]

    Cuony P, Alexander D T, Perez-Wurfl I, Despeisse M, Bugnon G, Boccard M, Söderström T, Hessler-Wyser A, Hébert C, Ballif C 2012 Adv. Mater. 24 1182Google Scholar

    [37]

    Ding K, Aeberhard U, Smirnov V, Holländer B, Finger F, Rau U 2013 Jpn. J. Appl. Phys. 52 122304Google Scholar

    [38]

    Wang L G, Wang F, Zhang X D, Wang N, Jiang Y J, Hao Q Y, Zhao Y 2014 J. Power Sources 268 619Google Scholar

    [39]

    Sonobe H, Sato A, Shimizu S, Matsui T, Kondo M, Matsuda A 2006 Thin Solid Films 502 306Google Scholar

    [40]

    Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62Google Scholar

    [41]

    Wang F Y, Zhang X D, Wang L G, Jiang Y J, Wei C C, Sun J, Zhao Y 2014 ACS Appl. Mater. Interfaces 6 15098Google Scholar

    [42]

    Wang F Y, Zhang X D, Wang L G, Fang J, Wei C C, Chen X L, Wang G C, Zhao Y 2014 Sol. Energy 108 308Google Scholar

    [43]

    Zhang Q F, Zhu M F, Liu F Z, Zhou Y Q 2007 J. Mater. Sci.- Mater. Electron. 18 33Google Scholar

    [44]

    Zhang X D, Ren Q S, Li S Z, Ren H Z, Wei C C, Hou G F, Xu S Z, Zhao Y 2017 Patent 201710878335.7

    [45]

    Fujiwara H, Kondo M 2007 J. Appl. Phys. 101 054516Google Scholar

    [46]

    Jiang Y J, Zhang X D, Wang F Y, Wei C C, Zhao Y 2014 RSC Adv. 4 29794Google Scholar

    [47]

    Wang F Y, Du R C, Ren Q S, Wei C C, Zhao Y, Zhang X D 2017 J. Mater. Chem.5 1751

    [48]

    Qiao Z, Xie X J, Hao Q Y, Wen D , Xue J M, Liu C C 2015 Appl. Surf. Sci. 324 152Google Scholar

    [49]

    Descoeudres A, Barraud L, de Wolf S, Strahm B, Lachenal D, Guérin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J, Ballif C 2011 Appl. Phys. Lett. 99 123506Google Scholar

    [50]

    Yan B, Yue G, Yang J, Guha S, Williamson D L, Han D X, Jiang C S 2004 Appl. Phys. Lett. 85 1955Google Scholar

    [51]

    Ma J, Ni J, Zhang J J, Liu Q, Hou G F, Chen X L, Zhang X D, Geng X H, Zhao Y 2014 Sol. Energy Mater. Sol. Cells 120 635Google Scholar

  • 图 1  inip结构样品的少子寿命与iVoc随HF处理时间的变化    

    Figure 1.  The effective minority carries lifetime and iVoc of inip samples with various hydrofluoric acid treatment time.

    图 2  inip结构样品的少子寿命与iVoc随等离子体处理过程H2流量的变化

    Figure 2.  The effective minority carrier lifetimes and iVoc of inip samples with different H2 flow rates for hydrogen pretreatment.

    图 3  三组不同钝化条件下, 对应inip结构样品的少子寿命与iVoc

    Figure 3.  Effective minori ty carrier lifetime and iVoc of inip samples with different H2 and SiH4 flow rates.

    图 4  不同钝化层沉积时间对应inip结构样品的少子寿命与iVoc

    Figure 4.  Effective minority carrier lifetime and iVoc of inip samples with different deposition time of passivation layer.

    图 5  采用I/P界面富氢处理以及c-Si表面不同氢预处理时间对应inip结构样品的少子寿命与iVoc

    Figure 5.  Effective minority carrier lifetime and iVoc of inip samples with hydrogen-rich plasma treatment on I/P interfaces and different H2 pretreatment on c-Si surfaces.

    图 6  不同H2流量下制备的P型掺杂层的光吸收曲线(图中表格给出对应的截止吸收波长、光学带隙、厚度、暗态电导率)

    Figure 6.  Light absorption spectra of P-type layers with different H2 flow rates (cut-off absorption wavelength, optical bandgap, thickness, dark conductivity of these layers were included in the inserted table).

    图 7  不同P型缓冲层及富氢等离子体处理微调下, 对应inip结构样品的少子寿命与iVoc(1# 无P型缓冲层; 2# P型非晶硅作为缓冲层; 3# P型微晶硅作为缓冲层; 4# 增加富氢处理的H2流量, P型微晶硅作为缓冲层)(黄色、白色区域钝化层沉积分别为40 和35 s)

    Figure 7.  The effective minority carrier lifetime and iVoc of inip samples with different P-type buffer layers and hydrogen-rich plasma treatments (1# without P-type buffer layer; 2# P-type amorphous silicon as the buffer layer; 3# P-type microcrystalline silicon as the buffer layer; 4# increasing the flow of rich hydrogen treatment of H2, P-type microcrystalline silicon as the buffer layer)(The deposition time of passivation layer is 40 and 35 s in yellow and white areas, respectively).

    图 8  采用未经钝化改善和钝化改善后的工艺条件制备平面a-Si:H/c-Si异质结太阳电池 (a)和(b)为电池结构示意图; (c)少子寿命与iVoc; (d) J-V特性与EQE

    Figure 8.  (a) and (b) device-structure, (c) effective minority carrier lifetime and iVoc, (d) J-V characteristics and EQE of planar a-Si:H/c-Si heterojunction cells with (without) passivation improvement.

    图 9  钙钛矿/硅异质结叠层太阳电池 (a) J-V曲线; (b)EQE曲线

    Figure 9.  (a) J-V characteristics and (b) EQE of perovskite/silicon heterojunction tandem solar cell.

  • [1]

    贾旭平 2011 电源技术 35 127Google Scholar

    Jia X P 2011 Power Technology 35 127Google Scholar

    [2]

    Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37Google Scholar

    [3]

    Kerr M J, Cuevas A, Campbell P 2003 Prog. Photovoltaics Res. Appl. 11 97Google Scholar

    [4]

    Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovoltaics 3 1184Google Scholar

    [5]

    Kurtz S, Geisz J 2010 Opt. Express 18 A73Google Scholar

    [6]

    Shah A V, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll E, Droz C, Bailat J 2004 Prog. Photovoltaics Res. Appl. 12 113Google Scholar

    [7]

    Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S, Lee J, Seo J 2018 Nat. Energy 3 682Google Scholar

    [8]

    Lal N N, Dkhissi Y, Li W, Hou Q C, Cheng Y B, Bach U 2017 Adv. Energy Mater. 7 1602761Google Scholar

    [9]

    Filipič M, Löper P, Niesen B, Wolf S D, Krč J, Ballif C, Topič M 2015 Opt. Express 23 A263Google Scholar

    [10]

    Mailoa J P, Bailie C D, Johlin E C, Johlin, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar

    [11]

    Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Grätzel M, Rech B 2016 Energy Environ. Sci. 9 81Google Scholar

    [12]

    Werner J, Weng C H, Walter A, Fesquet L, Seif J P, Wolf S D, Niesen B, Ballif C 2015 J. Phys. Chem. Lett. 7 161

    [13]

    Ding K, Aeberhard U, Finger F, Rau U 2012 Phys. Status Solidi RRL 6 193Google Scholar

    [14]

    Zhang H, Nakada K, Miyajima S, Konagai M 2015 Phys. Status Solidi RRL 9 225Google Scholar

    [15]

    Krajangsang T, Inthisang S, Sritharathikhun J, Hongsingthong A, Limmanee A , Kittisontirak S, Chinnavornrungsee P, Phatthanakun R, Sriprapha K 2017 Thin Solid Films 628 107Google Scholar

    [16]

    王文静, 李海玲, 周春兰, 赵雷 2014 晶体硅太阳电池制造技术(北京: 机械工业出版社) 第90页

    Wang W J, Li H L, Zhou C L, Zhao L 2014 Technology for Manufacturing Crystalline Silicon Solar Cells (Beijing: China Machine Press) p90 (in Chinese)

    [17]

    Zhao J, Wang A, Green M A 1999 Prog. Photovoltaics Res. Appl. 7 471Google Scholar

    [18]

    Kerr M J, Cuevas A 2002 Semicond. Sci. Technol. 17 166Google Scholar

    [19]

    Agostinelli G, Delabie A, Vitanov P, Alexieva Z, Dekkers H F W, Wolf S D, Beaucarne G 2006 Sol. Energy Mater. Sol. Cells 90 3438Google Scholar

    [20]

    Hoex B, Heil S B S, Langereis E, Sanden M C M V D, Kessels W M M 2006 Appl. Phys. Lett. 89 042112Google Scholar

    [21]

    Fuhs W, Niemann K, Stuke J 1974 AIP Conf. Proc. 20 345

    [22]

    Hamakawa Y, Fujimoto K, Okuda K, Kashima Y, Nonomura S, Okamoto H 1983 Appl. Phys. Lett. 43 644Google Scholar

    [23]

    Ren Q S, Li S Z, Zhu S J, Ren H Z, Yao X, Wei C C, Yan B J, Zhao Y, Zhang X D 2018 Sol. Energy Mater. Sol. Cells 185 124Google Scholar

    [24]

    Shockley W, Read Jr W T 1952 Phys. Rev. 87 835Google Scholar

    [25]

    Hall R N 1952 Phys. Rev. 87 387

    [26]

    Sproul A B 1994 J. Appl. Phys. 76 2851Google Scholar

    [27]

    Jensen N, Rau U, Hausner R M, Uppal S, Oberbeck L, Bergman R B, Werner J H 2000 J. Appl. Phys. 87 2639Google Scholar

    [28]

    杨静, 陈剑辉, 沈艳娇, 陈静伟, 许颖, 麦耀华 2017 太阳能学报 38 201

    Yang J, Chen J H, Shen Y J, Chen J W, Xu Y, Mai Y H 2017 Acta Energiae Solaris Sin. 1 201

    [29]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件(北京: 科学出版社) 第130−208页

    Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijin: Science Press) pp130−208 (in Chinese)

    [30]

    Wang T H, Iwaniczko E, Page M R, Wang Q, Levi D H, Yan Y, Xu Y, Branz H M 2005 MRS Online Proceedings Library Archive. 862 183

    [31]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovoltaics 4 96Google Scholar

    [32]

    王奉友 2016 博士学位论文 (天津:南开大学)

    Wang F Y 2016 Ph.D. Dissertation (Tianjin: Nankai University)(in Chinese)

    [33]

    Garcia-Belmonte G, García-Cañadas J, Mora-Seró I, Bisquert J, Voz C, Puigdollers J, Alcubilla R 2006 Thin Solid Films 514 254Google Scholar

    [34]

    Ling Z P, Ge J, Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 118Google Scholar

    [35]

    Meng F Y, Shen L L, Shi J H, Zhang L P, Liu J N, Liu Y C, Liu Z X 2015 Appl. Phys. Lett. 107 96

    [36]

    Cuony P, Alexander D T, Perez-Wurfl I, Despeisse M, Bugnon G, Boccard M, Söderström T, Hessler-Wyser A, Hébert C, Ballif C 2012 Adv. Mater. 24 1182Google Scholar

    [37]

    Ding K, Aeberhard U, Smirnov V, Holländer B, Finger F, Rau U 2013 Jpn. J. Appl. Phys. 52 122304Google Scholar

    [38]

    Wang L G, Wang F, Zhang X D, Wang N, Jiang Y J, Hao Q Y, Zhao Y 2014 J. Power Sources 268 619Google Scholar

    [39]

    Sonobe H, Sato A, Shimizu S, Matsui T, Kondo M, Matsuda A 2006 Thin Solid Films 502 306Google Scholar

    [40]

    Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62Google Scholar

    [41]

    Wang F Y, Zhang X D, Wang L G, Jiang Y J, Wei C C, Sun J, Zhao Y 2014 ACS Appl. Mater. Interfaces 6 15098Google Scholar

    [42]

    Wang F Y, Zhang X D, Wang L G, Fang J, Wei C C, Chen X L, Wang G C, Zhao Y 2014 Sol. Energy 108 308Google Scholar

    [43]

    Zhang Q F, Zhu M F, Liu F Z, Zhou Y Q 2007 J. Mater. Sci.- Mater. Electron. 18 33Google Scholar

    [44]

    Zhang X D, Ren Q S, Li S Z, Ren H Z, Wei C C, Hou G F, Xu S Z, Zhao Y 2017 Patent 201710878335.7

    [45]

    Fujiwara H, Kondo M 2007 J. Appl. Phys. 101 054516Google Scholar

    [46]

    Jiang Y J, Zhang X D, Wang F Y, Wei C C, Zhao Y 2014 RSC Adv. 4 29794Google Scholar

    [47]

    Wang F Y, Du R C, Ren Q S, Wei C C, Zhao Y, Zhang X D 2017 J. Mater. Chem.5 1751

    [48]

    Qiao Z, Xie X J, Hao Q Y, Wen D , Xue J M, Liu C C 2015 Appl. Surf. Sci. 324 152Google Scholar

    [49]

    Descoeudres A, Barraud L, de Wolf S, Strahm B, Lachenal D, Guérin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J, Ballif C 2011 Appl. Phys. Lett. 99 123506Google Scholar

    [50]

    Yan B, Yue G, Yang J, Guha S, Williamson D L, Han D X, Jiang C S 2004 Appl. Phys. Lett. 85 1955Google Scholar

    [51]

    Ma J, Ni J, Zhang J J, Liu Q, Hou G F, Chen X L, Zhang X D, Geng X H, Zhao Y 2014 Sol. Energy Mater. Sol. Cells 120 635Google Scholar

  • [1] Yao Mei-Ling, Liao Ji-Xing, Lu Hao-Feng, Huang Qiang, Cui Yan-Feng, Li Xiang, Yang Xue-Ying, Bai Yang. Key issues and solutions affecting efficiency and stability of perovskite/heterojunction tandem solar cells. Acta Physica Sinica, 2024, 73(8): 088801. doi: 10.7498/aps.73.20231977
    [2] Xu Chang, Zheng De-Xu, Dong Xin-Rui, Wu Sa-Jian, Wu Ming-Xing, Wang Kai, Liu Sheng-Zhong. Research progress of perovskite-based triple-junction tandem solar cells. Acta Physica Sinica, 2024, 73(24): 248802. doi: 10.7498/aps.73.20241187
    [3] Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong. Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells. Acta Physica Sinica, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [4] Zhang Bo-Yu, Zhou Jia-Kai, Ren Cheng-Chao, Su Xiang-Lin, Ren Hui-Zhi, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Design and optimization of passivation layers and emitter layers in silicon heterojunction solar cells. Acta Physica Sinica, 2021, 70(18): 188401. doi: 10.7498/aps.70.20210674
    [5] Wang Qi, Yan Ling-Ling, Chen Bing-Bing, Li Ren-Jie, Wang San-Long, Wang Peng-Yang, Huang Qian, Xu Sheng-Zhi, Hou Guo-Fu, Chen Xin-Liang, Li Yue-Long, Ding Yi, Zhang De-Kun, Wang Guang-Cai, Zhao Ying, Zhang Xiao-Dan. Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation. Acta Physica Sinica, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [6] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [7] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [8] Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [9] Chen Jian-Hui, Yang Jing, Shen Yan-Jiao, Li Feng, Chen Jing-Wei, Liu Hai-Xu, Xu Ying, Mai Yao-Hua. Investigation of post-annealing enhancement effect of passivation quality of hydrogenated amorphous silicon. Acta Physica Sinica, 2015, 64(19): 198801. doi: 10.7498/aps.64.198801
    [10] Zeng Xiang-An, Ai Bin, Deng You-Jun, Shen Hui. Study on light-induced degradation of silicon wafers and solar cells. Acta Physica Sinica, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [11] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [12] Ding Wen-Ge, Sang Yun-Gang, Yu Wei, Yang Yan-Bin, Teng Xiao-Yun, Fu Guang-Sheng. Current transport mechanism in silicon-rich silicon nitride/c-Si heterojunction. Acta Physica Sinica, 2012, 61(24): 247304. doi: 10.7498/aps.61.247304
    [13] Zhong Chun-Liang, Geng Kui-Wei, Yao Ruo-He. S-shaped J-V characteristic of a-Si:H/c-Si heterojunction solar cell. Acta Physica Sinica, 2010, 59(9): 6538-6544. doi: 10.7498/aps.59.6538
    [14] Zhou Chun-Lan, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Cao Xiao-Ning. Preparation and characterization of homogeneity and fine pyramids on the textured single silicon crystal. Acta Physica Sinica, 2010, 59(8): 5777-5783. doi: 10.7498/aps.59.5777
    [15] Li Feng, Ma Zhong-Quan, Meng Xia-Jie, Yin Yan-Ting, Yu Zheng-Shan, Lü Peng. Influence of Fe-B pairs on minority carrier lifetime, trapping density and internal quantum efficiency in mono-crystal Si solar cells. Acta Physica Sinica, 2010, 59(6): 4322-4329. doi: 10.7498/aps.59.4322
    [16] Hu Wei-Da, Yin Fei, Ye Zhen-Hua, Quan Zhi-Jue, Hu Xiao-Ning, Li Zhi-Feng, Chen Xiao-Shuang, Lu Wei. Effects of absorption layer parameters and hetero-interface charge on photoresponse of 12.5 μm long-wavelength HgCdTe photodiode. Acta Physica Sinica, 2009, 58(11): 7891-7896. doi: 10.7498/aps.58.7891
    [17] Zhao Lei, Zhou Chun-Lan, Li Hai-Ling, Diao Hong-Wei, Wang Wen-Jing. Optimizing polymorphous silicon back surface field of a-Si(n)/c-Si(p) heterojunction solar cells by simulation. Acta Physica Sinica, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [18] Xu Xiang-Yan, Ye Zhen-Hua, Li Zhi-Feng, Lu Wei. Optimizing modeling of two-color middle wavelength infrared photovoltaic HgCdTe detectors. Acta Physica Sinica, 2007, 56(5): 2882-2889. doi: 10.7498/aps.56.2882
    [19] Hu Zhi-Hua, Liao Xian-Bo, Zeng Xiang-Bo, Xu Yan-Yue, Zhang Shi-Bin, Diao Hong-Wei, Kong Guang-Lin. Numerical simulation of nc-Si:H/ c-Si heterojunction solar cells. Acta Physica Sinica, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
    [20] PENG YING-CAI, XU GANG-YI, HE YU-LIANG, LIU MING, LI YUE-XIA. CARRIER TRANSPORT PROPERTIES OF THE (n)nc-Si:H/(p)c-Si HETEROJUNCTION. Acta Physica Sinica, 2000, 49(12): 2466-2471. doi: 10.7498/aps.49.2466
Metrics
  • Abstract views:  10933
  • PDF Downloads:  194
  • Cited By: 0
Publishing process
  • Received Date:  25 September 2018
  • Accepted Date:  27 November 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回