-
Recently, the monolithic spin-coating perovskite/planar silicon heterojunction tandem solar cells with high performance have attracted attention mainly due to simple fabrication, low preparation cost and high efficiency, especially compared with fully textured multi-junction perovskite/silicon tandem device. As is well known, the excellent passivation of a-Si:H/c-Si interface is the key to achieving a high-efficiency planar silicon heterojunction solar cell, which further improves the performance of the corresponding tandem cell. Therefore, we investigate the elements affecting a-Si:H/c-Si interface passivation, including the c-Si surface treatment technique, a-Si:H passivation layer and P-type emitter layer and so on. In these experiments, we adjust the immersed time of diluent hydrofluoric acid and pre-deposited hydrogen plasma with different gas mixture flows. Also, the suitable deposition parameters of intrinsic a-Si:H passivation layer are regulated by varying hydrogen dilution and time, and variously slight silane content is embedded into i-a-Si:H /P-type (I/P) emitter interface by hydrogen-rich plasma treating which is for acquiring optimal experimental processing conditions to promote the chemical passivation. In addition, the p-a-Si:H and p-nc-Si:H are comparatively studied as buffer layers to further improve the I/P interface passivation by varying the hydrogen dilution in the gas mixture during deposition. It can be found that p-nc-Si:H buffer layer with high conductivity and wide bandgap can not only reduce the defect density at the I/P interface, but also increase the conductivity of P-type emitter, which further improves the field passivation effect. By the above- mentioned optimization, the highest minority carrier lifetime and implied open-circuit voltage (iVoc) of the structure of P-type emitter/a-Si:H(i)/c-Si/a-Si:H(i)/N-type layer (inip) sample can respectively reach 2855 μs and 709 mV, which demonstrates authentically outstanding passivation performance. An efficiency of 18.76% can be obtained for the planar a-Si/c-Si heterojunction solar cell with a Voc of 681.5 mV, which is 34.3 mV higher than that of the reference device. Regarding the optimized planar a-Si:H/c-Si heterojunction solar cell as the bottom cell, we also obtain an efficiency of 21.24% for perovskite/silicon heterojunction tandem solar cell with an open-circuit voltage of 1780 mV, which proves that the above strategies are very effective for improving the passivation optimization and performance of bottom cell in the tandem device.
-
Keywords:
- a-Si/c-Si heterojunction /
- interface passivation /
- minority lifetime /
- perovskite/silicon heterojunction tandem solar cell
[1] 贾旭平 2011 电源技术 35 127Google Scholar
Jia X P 2011 Power Technology 35 127Google Scholar
[2] Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37Google Scholar
[3] Kerr M J, Cuevas A, Campbell P 2003 Prog. Photovoltaics Res. Appl. 11 97Google Scholar
[4] Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovoltaics 3 1184Google Scholar
[5] Kurtz S, Geisz J 2010 Opt. Express 18 A73Google Scholar
[6] Shah A V, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll E, Droz C, Bailat J 2004 Prog. Photovoltaics Res. Appl. 12 113Google Scholar
[7] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S, Lee J, Seo J 2018 Nat. Energy 3 682Google Scholar
[8] Lal N N, Dkhissi Y, Li W, Hou Q C, Cheng Y B, Bach U 2017 Adv. Energy Mater. 7 1602761Google Scholar
[9] Filipič M, Löper P, Niesen B, Wolf S D, Krč J, Ballif C, Topič M 2015 Opt. Express 23 A263Google Scholar
[10] Mailoa J P, Bailie C D, Johlin E C, Johlin, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar
[11] Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Grätzel M, Rech B 2016 Energy Environ. Sci. 9 81Google Scholar
[12] Werner J, Weng C H, Walter A, Fesquet L, Seif J P, Wolf S D, Niesen B, Ballif C 2015 J. Phys. Chem. Lett. 7 161
[13] Ding K, Aeberhard U, Finger F, Rau U 2012 Phys. Status Solidi RRL 6 193Google Scholar
[14] Zhang H, Nakada K, Miyajima S, Konagai M 2015 Phys. Status Solidi RRL 9 225Google Scholar
[15] Krajangsang T, Inthisang S, Sritharathikhun J, Hongsingthong A, Limmanee A , Kittisontirak S, Chinnavornrungsee P, Phatthanakun R, Sriprapha K 2017 Thin Solid Films 628 107Google Scholar
[16] 王文静, 李海玲, 周春兰, 赵雷 2014 晶体硅太阳电池制造技术(北京: 机械工业出版社) 第90页
Wang W J, Li H L, Zhou C L, Zhao L 2014 Technology for Manufacturing Crystalline Silicon Solar Cells (Beijing: China Machine Press) p90 (in Chinese)
[17] Zhao J, Wang A, Green M A 1999 Prog. Photovoltaics Res. Appl. 7 471Google Scholar
[18] Kerr M J, Cuevas A 2002 Semicond. Sci. Technol. 17 166Google Scholar
[19] Agostinelli G, Delabie A, Vitanov P, Alexieva Z, Dekkers H F W, Wolf S D, Beaucarne G 2006 Sol. Energy Mater. Sol. Cells 90 3438Google Scholar
[20] Hoex B, Heil S B S, Langereis E, Sanden M C M V D, Kessels W M M 2006 Appl. Phys. Lett. 89 042112Google Scholar
[21] Fuhs W, Niemann K, Stuke J 1974 AIP Conf. Proc. 20 345
[22] Hamakawa Y, Fujimoto K, Okuda K, Kashima Y, Nonomura S, Okamoto H 1983 Appl. Phys. Lett. 43 644Google Scholar
[23] Ren Q S, Li S Z, Zhu S J, Ren H Z, Yao X, Wei C C, Yan B J, Zhao Y, Zhang X D 2018 Sol. Energy Mater. Sol. Cells 185 124Google Scholar
[24] Shockley W, Read Jr W T 1952 Phys. Rev. 87 835Google Scholar
[25] Hall R N 1952 Phys. Rev. 87 387
[26] Sproul A B 1994 J. Appl. Phys. 76 2851Google Scholar
[27] Jensen N, Rau U, Hausner R M, Uppal S, Oberbeck L, Bergman R B, Werner J H 2000 J. Appl. Phys. 87 2639Google Scholar
[28] 杨静, 陈剑辉, 沈艳娇, 陈静伟, 许颖, 麦耀华 2017 太阳能学报 38 201
Yang J, Chen J H, Shen Y J, Chen J W, Xu Y, Mai Y H 2017 Acta Energiae Solaris Sin. 1 201
[29] 沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件(北京: 科学出版社) 第130−208页
Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijin: Science Press) pp130−208 (in Chinese)
[30] Wang T H, Iwaniczko E, Page M R, Wang Q, Levi D H, Yan Y, Xu Y, Branz H M 2005 MRS Online Proceedings Library Archive. 862 183
[31] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovoltaics 4 96Google Scholar
[32] 王奉友 2016 博士学位论文 (天津:南开大学)
Wang F Y 2016 Ph.D. Dissertation (Tianjin: Nankai University)(in Chinese)
[33] Garcia-Belmonte G, García-Cañadas J, Mora-Seró I, Bisquert J, Voz C, Puigdollers J, Alcubilla R 2006 Thin Solid Films 514 254Google Scholar
[34] Ling Z P, Ge J, Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 118Google Scholar
[35] Meng F Y, Shen L L, Shi J H, Zhang L P, Liu J N, Liu Y C, Liu Z X 2015 Appl. Phys. Lett. 107 96
[36] Cuony P, Alexander D T, Perez-Wurfl I, Despeisse M, Bugnon G, Boccard M, Söderström T, Hessler-Wyser A, Hébert C, Ballif C 2012 Adv. Mater. 24 1182Google Scholar
[37] Ding K, Aeberhard U, Smirnov V, Holländer B, Finger F, Rau U 2013 Jpn. J. Appl. Phys. 52 122304Google Scholar
[38] Wang L G, Wang F, Zhang X D, Wang N, Jiang Y J, Hao Q Y, Zhao Y 2014 J. Power Sources 268 619Google Scholar
[39] Sonobe H, Sato A, Shimizu S, Matsui T, Kondo M, Matsuda A 2006 Thin Solid Films 502 306Google Scholar
[40] Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62Google Scholar
[41] Wang F Y, Zhang X D, Wang L G, Jiang Y J, Wei C C, Sun J, Zhao Y 2014 ACS Appl. Mater. Interfaces 6 15098Google Scholar
[42] Wang F Y, Zhang X D, Wang L G, Fang J, Wei C C, Chen X L, Wang G C, Zhao Y 2014 Sol. Energy 108 308Google Scholar
[43] Zhang Q F, Zhu M F, Liu F Z, Zhou Y Q 2007 J. Mater. Sci.- Mater. Electron. 18 33Google Scholar
[44] Zhang X D, Ren Q S, Li S Z, Ren H Z, Wei C C, Hou G F, Xu S Z, Zhao Y 2017 Patent 201710878335.7
[45] Fujiwara H, Kondo M 2007 J. Appl. Phys. 101 054516Google Scholar
[46] Jiang Y J, Zhang X D, Wang F Y, Wei C C, Zhao Y 2014 RSC Adv. 4 29794Google Scholar
[47] Wang F Y, Du R C, Ren Q S, Wei C C, Zhao Y, Zhang X D 2017 J. Mater. Chem.5 1751
[48] Qiao Z, Xie X J, Hao Q Y, Wen D , Xue J M, Liu C C 2015 Appl. Surf. Sci. 324 152Google Scholar
[49] Descoeudres A, Barraud L, de Wolf S, Strahm B, Lachenal D, Guérin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J, Ballif C 2011 Appl. Phys. Lett. 99 123506Google Scholar
[50] Yan B, Yue G, Yang J, Guha S, Williamson D L, Han D X, Jiang C S 2004 Appl. Phys. Lett. 85 1955Google Scholar
[51] Ma J, Ni J, Zhang J J, Liu Q, Hou G F, Chen X L, Zhang X D, Geng X H, Zhao Y 2014 Sol. Energy Mater. Sol. Cells 120 635Google Scholar
-
图 7 不同P型缓冲层及富氢等离子体处理微调下, 对应inip结构样品的少子寿命与iVoc(1# 无P型缓冲层; 2# P型非晶硅作为缓冲层; 3# P型微晶硅作为缓冲层; 4# 增加富氢处理的H2流量, P型微晶硅作为缓冲层)(黄色、白色区域钝化层沉积分别为40 和35 s)
Figure 7. The effective minority carrier lifetime and iVoc of inip samples with different P-type buffer layers and hydrogen-rich plasma treatments (1# without P-type buffer layer; 2# P-type amorphous silicon as the buffer layer; 3# P-type microcrystalline silicon as the buffer layer; 4# increasing the flow of rich hydrogen treatment of H2, P-type microcrystalline silicon as the buffer layer)(The deposition time of passivation layer is 40 and 35 s in yellow and white areas, respectively).
-
[1] 贾旭平 2011 电源技术 35 127Google Scholar
Jia X P 2011 Power Technology 35 127Google Scholar
[2] Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37Google Scholar
[3] Kerr M J, Cuevas A, Campbell P 2003 Prog. Photovoltaics Res. Appl. 11 97Google Scholar
[4] Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovoltaics 3 1184Google Scholar
[5] Kurtz S, Geisz J 2010 Opt. Express 18 A73Google Scholar
[6] Shah A V, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll E, Droz C, Bailat J 2004 Prog. Photovoltaics Res. Appl. 12 113Google Scholar
[7] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S, Lee J, Seo J 2018 Nat. Energy 3 682Google Scholar
[8] Lal N N, Dkhissi Y, Li W, Hou Q C, Cheng Y B, Bach U 2017 Adv. Energy Mater. 7 1602761Google Scholar
[9] Filipič M, Löper P, Niesen B, Wolf S D, Krč J, Ballif C, Topič M 2015 Opt. Express 23 A263Google Scholar
[10] Mailoa J P, Bailie C D, Johlin E C, Johlin, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl. Phys. Lett. 106 121105Google Scholar
[11] Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Grätzel M, Rech B 2016 Energy Environ. Sci. 9 81Google Scholar
[12] Werner J, Weng C H, Walter A, Fesquet L, Seif J P, Wolf S D, Niesen B, Ballif C 2015 J. Phys. Chem. Lett. 7 161
[13] Ding K, Aeberhard U, Finger F, Rau U 2012 Phys. Status Solidi RRL 6 193Google Scholar
[14] Zhang H, Nakada K, Miyajima S, Konagai M 2015 Phys. Status Solidi RRL 9 225Google Scholar
[15] Krajangsang T, Inthisang S, Sritharathikhun J, Hongsingthong A, Limmanee A , Kittisontirak S, Chinnavornrungsee P, Phatthanakun R, Sriprapha K 2017 Thin Solid Films 628 107Google Scholar
[16] 王文静, 李海玲, 周春兰, 赵雷 2014 晶体硅太阳电池制造技术(北京: 机械工业出版社) 第90页
Wang W J, Li H L, Zhou C L, Zhao L 2014 Technology for Manufacturing Crystalline Silicon Solar Cells (Beijing: China Machine Press) p90 (in Chinese)
[17] Zhao J, Wang A, Green M A 1999 Prog. Photovoltaics Res. Appl. 7 471Google Scholar
[18] Kerr M J, Cuevas A 2002 Semicond. Sci. Technol. 17 166Google Scholar
[19] Agostinelli G, Delabie A, Vitanov P, Alexieva Z, Dekkers H F W, Wolf S D, Beaucarne G 2006 Sol. Energy Mater. Sol. Cells 90 3438Google Scholar
[20] Hoex B, Heil S B S, Langereis E, Sanden M C M V D, Kessels W M M 2006 Appl. Phys. Lett. 89 042112Google Scholar
[21] Fuhs W, Niemann K, Stuke J 1974 AIP Conf. Proc. 20 345
[22] Hamakawa Y, Fujimoto K, Okuda K, Kashima Y, Nonomura S, Okamoto H 1983 Appl. Phys. Lett. 43 644Google Scholar
[23] Ren Q S, Li S Z, Zhu S J, Ren H Z, Yao X, Wei C C, Yan B J, Zhao Y, Zhang X D 2018 Sol. Energy Mater. Sol. Cells 185 124Google Scholar
[24] Shockley W, Read Jr W T 1952 Phys. Rev. 87 835Google Scholar
[25] Hall R N 1952 Phys. Rev. 87 387
[26] Sproul A B 1994 J. Appl. Phys. 76 2851Google Scholar
[27] Jensen N, Rau U, Hausner R M, Uppal S, Oberbeck L, Bergman R B, Werner J H 2000 J. Appl. Phys. 87 2639Google Scholar
[28] 杨静, 陈剑辉, 沈艳娇, 陈静伟, 许颖, 麦耀华 2017 太阳能学报 38 201
Yang J, Chen J H, Shen Y J, Chen J W, Xu Y, Mai Y H 2017 Acta Energiae Solaris Sin. 1 201
[29] 沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件(北京: 科学出版社) 第130−208页
Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijin: Science Press) pp130−208 (in Chinese)
[30] Wang T H, Iwaniczko E, Page M R, Wang Q, Levi D H, Yan Y, Xu Y, Branz H M 2005 MRS Online Proceedings Library Archive. 862 183
[31] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovoltaics 4 96Google Scholar
[32] 王奉友 2016 博士学位论文 (天津:南开大学)
Wang F Y 2016 Ph.D. Dissertation (Tianjin: Nankai University)(in Chinese)
[33] Garcia-Belmonte G, García-Cañadas J, Mora-Seró I, Bisquert J, Voz C, Puigdollers J, Alcubilla R 2006 Thin Solid Films 514 254Google Scholar
[34] Ling Z P, Ge J, Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 118Google Scholar
[35] Meng F Y, Shen L L, Shi J H, Zhang L P, Liu J N, Liu Y C, Liu Z X 2015 Appl. Phys. Lett. 107 96
[36] Cuony P, Alexander D T, Perez-Wurfl I, Despeisse M, Bugnon G, Boccard M, Söderström T, Hessler-Wyser A, Hébert C, Ballif C 2012 Adv. Mater. 24 1182Google Scholar
[37] Ding K, Aeberhard U, Smirnov V, Holländer B, Finger F, Rau U 2013 Jpn. J. Appl. Phys. 52 122304Google Scholar
[38] Wang L G, Wang F, Zhang X D, Wang N, Jiang Y J, Hao Q Y, Zhao Y 2014 J. Power Sources 268 619Google Scholar
[39] Sonobe H, Sato A, Shimizu S, Matsui T, Kondo M, Matsuda A 2006 Thin Solid Films 502 306Google Scholar
[40] Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62Google Scholar
[41] Wang F Y, Zhang X D, Wang L G, Jiang Y J, Wei C C, Sun J, Zhao Y 2014 ACS Appl. Mater. Interfaces 6 15098Google Scholar
[42] Wang F Y, Zhang X D, Wang L G, Fang J, Wei C C, Chen X L, Wang G C, Zhao Y 2014 Sol. Energy 108 308Google Scholar
[43] Zhang Q F, Zhu M F, Liu F Z, Zhou Y Q 2007 J. Mater. Sci.- Mater. Electron. 18 33Google Scholar
[44] Zhang X D, Ren Q S, Li S Z, Ren H Z, Wei C C, Hou G F, Xu S Z, Zhao Y 2017 Patent 201710878335.7
[45] Fujiwara H, Kondo M 2007 J. Appl. Phys. 101 054516Google Scholar
[46] Jiang Y J, Zhang X D, Wang F Y, Wei C C, Zhao Y 2014 RSC Adv. 4 29794Google Scholar
[47] Wang F Y, Du R C, Ren Q S, Wei C C, Zhao Y, Zhang X D 2017 J. Mater. Chem.5 1751
[48] Qiao Z, Xie X J, Hao Q Y, Wen D , Xue J M, Liu C C 2015 Appl. Surf. Sci. 324 152Google Scholar
[49] Descoeudres A, Barraud L, de Wolf S, Strahm B, Lachenal D, Guérin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J, Ballif C 2011 Appl. Phys. Lett. 99 123506Google Scholar
[50] Yan B, Yue G, Yang J, Guha S, Williamson D L, Han D X, Jiang C S 2004 Appl. Phys. Lett. 85 1955Google Scholar
[51] Ma J, Ni J, Zhang J J, Liu Q, Hou G F, Chen X L, Zhang X D, Geng X H, Zhao Y 2014 Sol. Energy Mater. Sol. Cells 120 635Google Scholar
Catalog
Metrics
- Abstract views: 10933
- PDF Downloads: 194
- Cited By: 0