Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of film thickness on photoelectric properties of ${\boldsymbol{\beta}} $-Ga2O3 films prepared by radio frequency magnetron sputtering

Li Xiu-Hua Zhang Min Yang Jia Xing Shuang Gao Yue Li Ya-Ze Li Si-Yu Wang Chong-Jie

Citation:

Effect of film thickness on photoelectric properties of ${\boldsymbol{\beta}} $-Ga2O3 films prepared by radio frequency magnetron sputtering

Li Xiu-Hua, Zhang Min, Yang Jia, Xing Shuang, Gao Yue, Li Ya-Ze, Li Si-Yu, Wang Chong-Jie
PDF
HTML
Get Citation
  • In this work, β-Ga2O3 films with different thickness are prepared on (001) sapphire substrates at room temperature by the radio frequency magnetron sputtering technology, then the samples are annealed in an Ar atmosphere at 800 ℃ for 1h. The effects of film thickness on the phase composition, surface morphology, optical property, and photoelectric detection performance are investigated using XRD, SEM, UV-Vis spectrophotometer, PL photoluminescence spectrometer, and Keithley 4200-SCS semiconductor characterization system. The results show that as the film thickness increases, the film crystallinity is improved, films with a thickness of 840 nm exhibit best quality, while those with a thickness of 1050 nm declines a little in quality. The β-Ga2O3 films with different thickness exhibit obvious ultraviolet light absorption in the solar-blind region with wavelengths of 200–300 nm, and the bandgap width increases with the film thickness increasing. All the β-Ga2O3 films show a broad UV-green light emission peaks in a wavelength range of 350–600 nm. As the film thickness increases, the intensities of the emission peaks of ultraviolet, violet, and blue light are greatly reduced, indicating that oxygen vacancy-related defects (VO, VGaVO) are greatly suppressed with film thickness increasing. Solar-blind ultraviolet photodetector is fabricated based on the β-Ga2O3 film. Its photoelectric detection performances (the photo-to-dark current ratio, responsivity, detectivity, and external quantum efficiency) also increase first and decrease then with the increase of film thickness. The β-Ga2O3 ultraviolet photodetector prepared by a thin film with a thickness of 840 nm exhibits a very low dark current (4.9 × 10–12 A) under a 5 V bias voltage and an ultraviolet light with a wavelength of 254 nm (600 μW/cm2). It exhibits a high photo-to-dark current ratio of 3.2 × 105, and a short response time of 0.09/0.80 s (rising time) and 0.06/0.53 s ratio (falling time). Its responsivity (R), detectivity (D *), and the external quantum efficiency (EQE) are 1.19 mA/W, 1.9 × 1011 Jones, and 0.58%, respectively. The prepared device has quantifiable characteristics, and its photocurrent increases almost linearly with the increase of applied voltage and optical power density, and therefore can work in a linear dynamic region, which indicates that it is very suitable for fabricating the solar-blind ultra-violet detectors.
      Corresponding author: Zhang Min, m.zhang@live.com ; Wang Chong-Jie, wang_chongjie@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51101080), the Xingliao Talent Program, China (Grant No. XYLC1807170), the Liaoning BaiQianWan Talents Program, China, and the Science and Technology Innovation Foundation of Dalian, China (Grant No. 2021JJ13FG97).
    [1]

    Chen H Y, Liu K W, Hu L F, Al-Ghamdi A A, Fang X S 2015 Mater. Today 18 493Google Scholar

    [2]

    时浩泽 2018 硕士学位论文 (浙江: 浙江理工大学)

    Shi H Z 2018 M. S. Thesis (Zhejiang: Zhejiang Sci-Tech University) (in Chinese)

    [3]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [4]

    马海林, 苏庆 2014 物理学报 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar

    [5]

    陈彦成 2019 硕士学位论文 (河南: 郑州大学)

    Chen Y C 2019 M. S. Thesis (Henan: Zhengzhou University) (in Chinese)

    [6]

    崔书娟 2018 硕士学位论文 (北京: 中国科学院大学)

    Cui S J 2018 M. S. Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [7]

    Han S, Huang X L, Fang M Z, Zhao W G, Xu S J, Zhu D L, Xu W Y, Fang M, Liu W J, Cao P J, Lu Y M 2019 J. Mater. Chem. C 7 11834Google Scholar

    [8]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [9]

    Shen H, Baskaran K, Yin Y N, Tian K, Duan L B, Zhao X R, Tiwari A 2020 J. Alloys Compd. 822 153419Google Scholar

    [10]

    Yang H, Liu Y, Luo X G, Li Y, Wu D S, He K Y, Feng Z C 2019 Superlattices Microstruct. 131 21Google Scholar

    [11]

    Zhang X Y, Wang L, Wang X D, Chen Y, Shao Q Q, Wu G G, Wang X Y, Lin T, Shen H, Wang J L, Meng X J, Chu J H 2020 Opt. Express 28 4169Google Scholar

    [12]

    An Y H, Zhi Y S, Cui W, Zhao X L, Wu Z P, Guo D Y, Li P G, Tang W H 2017 J. Nanosci. Nanotechnol. 17 9091Google Scholar

    [13]

    李世韦 2021 硕士学位论文 (福建: 厦门理工学院)

    Li S W 2021 M. S. Thesis (Fujian: Xiamen University of Technology) (in Chinese)

    [14]

    郑树文, 范广涵, 何苗, 赵灵智 2014 物理学报 63 057102Google Scholar

    Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102Google Scholar

    [15]

    Shi Q, Wang Q G, Zhang D, Wang Q L, Li S H, Wang W J, Fan Q L, Zhang J Y 2019 J. Lumin. 206 53Google Scholar

    [16]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 物理学报 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

    [17]

    Mi W, Ma J, Luan C N, Xiao H D 2014 J. Lumin. 146 1Google Scholar

    [18]

    马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳 2020 物理学报 69 108102Google Scholar

    Ma T Y, Li W J, He X W, Hu H, Huang L Y, Zhang H, Xiong Y Q, Li H L, Ye L J, Kong C Y 2020 Acta Phys. Sin. 69 108102Google Scholar

    [19]

    Yang Y, Zhang P 2010 Phys. Lett. A 374 4169Google Scholar

    [20]

    Wei J Y, Shi F 2016 J. Mater. Sci. Mater. Electron. 27 942Google Scholar

    [21]

    Vanithakumari S C, Nanda K K 2009 Phosphors. Adv. Mater. 21 3581Google Scholar

    [22]

    祁祺, 陈海峰, 洪梓凡, 刘英英, 过立新, 李立珺, 陆芹, 贾一凡 2020 物理学报 69 168101Google Scholar

    Qi Q, Chen H F, Hong Z F, Liu Y Y, Guo L X, Li L J, Lu Q, Jia Y F 2020 Acta Phys. Sin. 69 168101Google Scholar

    [23]

    Liu L L, Li M K, Yu D Q, Zhang J, Zhang H, Qian C, Yang Z 2010 Appl. Phys. A 9 831

    [24]

    Huan Y W, Sun S M, Gu C J, Ding S J, Yu S Y, Liu W J, Ding S J, Yu H Y, Xia C T, Zhang D W 2018 Nanoscale Res. Lett. 13 246Google Scholar

    [25]

    雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明 2021 物理学报 70 027801Google Scholar

    Lei T, Lü W M, Lü W X, Cui B Y, Hu R, Shi W H, Zeng Z M 2021 Acta Phys. Sin. 70 027801Google Scholar

    [26]

    Tak B R, Garg M, Kumar A, Gupta V, Singh R 2019 ECS J. Solid State Sci. Technol. 8 Q3149Google Scholar

    [27]

    Razeghi M, Rogalski A 1996 J. Appl. Phys. 79 7433Google Scholar

    [28]

    Fang Y, Armin A, Meredith P, Huang J S 2019 Nat. Photonics 13 1Google Scholar

    [29]

    Kaur D, Kumar M 2021 Adv. Opti. Mater. 9 2002160Google Scholar

    [30]

    Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D:Appl. Phys. 53 085105Google Scholar

    [31]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [32]

    Zhi Y S, Jiang W Y, Liu Z, Liu Y Y, Chu X L, Liu J H, Li S, Yan Z Y, Wang Y H, Li P G, Wu Z P, Tang W H 2021 Chin. Phys. B 30 057301Google Scholar

    [33]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [34]

    Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar

    [35]

    Tak B R, Garg M, Dewan S, Torres-Castanedo C G, Li K H, Gupta V, Li X H, Singh R 2019 J. Appl. Phys. 125 144501Google Scholar

    [36]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [37]

    Yu M, Lv C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S G, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar

  • 图 1  β-Ga2O3薄膜的SEM图像 (a)断面; (b)—(d)表面形貌

    Figure 1.  SEM images of the β-Ga2O3 films: (a) Cross-section; (b)–(d) morphology and surface morphology.

    图 2  不同厚度β-Ga2O3薄膜的XRD图谱

    Figure 2.  XRD patterns of β-Ga2O3 films with different thicknesses.

    图 3  (a)不同厚度β-Ga2O3薄膜的UV-Vis吸收光谱; (b)β-Ga2O3薄膜α2的变化曲线; (c)不同厚度β-Ga2O3薄膜的光学带隙(Eg)图

    Figure 3.  (a) UV-Vis absorption spectra of β-Ga2O3 thin films with different thicknesses; (b) plot of absorption coefficient vs. photon energy of the β-Ga2O3 films; (c) dependence of optical band gap (Eg) on thickness of the β-Ga2O3 films.

    图 4  (a)不同薄膜厚度的β-Ga2O3薄膜的PL光谱; (b)薄膜厚度约为840 nm的Ga2O3薄膜的PL高斯拟合峰; (c)—(f)分别显示了不同厚度Ga2O3薄膜在波长约为378, 415, 456和511 nm处的PL拟合峰

    Figure 4.  (a) PL spectrum of the β-Ga2O3 films with different thicknesses; (b) PL Gaussian fitting peak of the β-Ga2O3 film with a thickness of ~840 nm; (c)–(f) respectively shows the PL fitting peaks at ~378, ~415, ~456 and ~511 nm of the β-Ga2O3 films.

    图 5  (a) β-Ga2O3紫外光电探测器层结构示意图; (b)不同薄膜厚度β-Ga2O3 器件的I-t图; (c), (d) A和D器件瞬态响应曲线的局部放大图

    Figure 5.  (a) Schematic diagram of the β-Ga2O3 ultraviolet photodetector layer structure; (b) I-t curves of the devices based on β-Ga2O3 films with different thicknesses; (c), (d) magnification diagrams of the transient response curves of the device A and D.

    图 6  (a), (c), (e)为不同器件的I-V曲线, 其中插图为暗电流与电压关系的放大图; (b), (d), (f)为不同器件的光暗电流对数坐标图

    Figure 6.  (a), (c), (e) I-V curves of device A, D and E, respectively. The insets are the enlarged view of the relationship between dark current and voltage. (b), (d), (f) Logarithmic graphs of photo and dark current of device A, D and E, respectively.

    图 7  器件的薄膜厚度与(a)响应度R的关系曲线以及(b)与探测率D*, EQE的关系曲线

    Figure 7.  (a) Relationship curve between the responsivity (R) and film thickness; (b) relationship curve between the D* & EQE and film thickness.

    图 8  (a) D器件在不同光功率密度光照下I-t图; (b) D器件在不同偏压下的I-t图; (c)光电流与光功率密度的关系; (d)光电流与外加偏压的关系

    Figure 8.  (a) I-t graph of D device under the illumination with different power densities; (b) I-t graph of D device under different bias voltages; (c) relationship between photocurrent and optical power density; (d) relationship between photocurrent and applied bias voltage.

    表 1  β-Ga2O3薄膜的厚度

    Table 1.  Thickness of β-Ga2O3 film.

    沉积时间/min1020304050
    薄膜厚度/nm~210~420~630~840~1050
    DownLoad: CSV

    表 2  不同器件的光响应时间汇总表

    Table 2.  Summary table of photo-response time of the device A to E.

    器件名ABCDE
    上升时间 τr1/τr2 /s0.35/3.140.21/2.570.15/1.690.09/0.800.07/0.69
    下降时间 τd1/τd2 /s0.16/0.680.13/0.610.09/0.580.06/0.530.05/0.48
    DownLoad: CSV

    表 3  国内外Ga2O3薄膜基光电探测器的主要性能指标对比

    Table 3.  Comparison of the representative photoresponse metrics of the photodetectors based on Ga2O3 films.

    SamplesGrowthBias /VIdark /nAτr /sτd/sPDCRR/ (A·W–1)Ref.
    β-Ga2O3Sputtering100.110.31/1.520.05/0.91>103[33]
    β-Ga2O3MOCVD10340.480.18~10426.1[34]
    β-Ga2O3Sputtering50.11.0/1.41.2/1.3[12]
    Ga2O3PLD20~0.00010.0040.104~1080.0003[11]
    β-Ga2O3PLD10~1.20.59/2.40.15/1.6~1030.74[35]
    α-Ga2O3Sputtering100.33860.41/2.040.02/0.3570.26[36]
    α/β-Ga2O3Sol-gel150.1250.04/0.870.02/1.00~1.7×100.0177[37]
    β-Ga2O3Sputtering100.560.51/3.040.07/0.080.028[16]
    β-Ga2O3Sputtering5~0.00490.09/0.800.06/0.53~3.2×1050.00119This work
    DownLoad: CSV
  • [1]

    Chen H Y, Liu K W, Hu L F, Al-Ghamdi A A, Fang X S 2015 Mater. Today 18 493Google Scholar

    [2]

    时浩泽 2018 硕士学位论文 (浙江: 浙江理工大学)

    Shi H Z 2018 M. S. Thesis (Zhejiang: Zhejiang Sci-Tech University) (in Chinese)

    [3]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [4]

    马海林, 苏庆 2014 物理学报 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar

    [5]

    陈彦成 2019 硕士学位论文 (河南: 郑州大学)

    Chen Y C 2019 M. S. Thesis (Henan: Zhengzhou University) (in Chinese)

    [6]

    崔书娟 2018 硕士学位论文 (北京: 中国科学院大学)

    Cui S J 2018 M. S. Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [7]

    Han S, Huang X L, Fang M Z, Zhao W G, Xu S J, Zhu D L, Xu W Y, Fang M, Liu W J, Cao P J, Lu Y M 2019 J. Mater. Chem. C 7 11834Google Scholar

    [8]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [9]

    Shen H, Baskaran K, Yin Y N, Tian K, Duan L B, Zhao X R, Tiwari A 2020 J. Alloys Compd. 822 153419Google Scholar

    [10]

    Yang H, Liu Y, Luo X G, Li Y, Wu D S, He K Y, Feng Z C 2019 Superlattices Microstruct. 131 21Google Scholar

    [11]

    Zhang X Y, Wang L, Wang X D, Chen Y, Shao Q Q, Wu G G, Wang X Y, Lin T, Shen H, Wang J L, Meng X J, Chu J H 2020 Opt. Express 28 4169Google Scholar

    [12]

    An Y H, Zhi Y S, Cui W, Zhao X L, Wu Z P, Guo D Y, Li P G, Tang W H 2017 J. Nanosci. Nanotechnol. 17 9091Google Scholar

    [13]

    李世韦 2021 硕士学位论文 (福建: 厦门理工学院)

    Li S W 2021 M. S. Thesis (Fujian: Xiamen University of Technology) (in Chinese)

    [14]

    郑树文, 范广涵, 何苗, 赵灵智 2014 物理学报 63 057102Google Scholar

    Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102Google Scholar

    [15]

    Shi Q, Wang Q G, Zhang D, Wang Q L, Li S H, Wang W J, Fan Q L, Zhang J Y 2019 J. Lumin. 206 53Google Scholar

    [16]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 物理学报 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

    [17]

    Mi W, Ma J, Luan C N, Xiao H D 2014 J. Lumin. 146 1Google Scholar

    [18]

    马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳 2020 物理学报 69 108102Google Scholar

    Ma T Y, Li W J, He X W, Hu H, Huang L Y, Zhang H, Xiong Y Q, Li H L, Ye L J, Kong C Y 2020 Acta Phys. Sin. 69 108102Google Scholar

    [19]

    Yang Y, Zhang P 2010 Phys. Lett. A 374 4169Google Scholar

    [20]

    Wei J Y, Shi F 2016 J. Mater. Sci. Mater. Electron. 27 942Google Scholar

    [21]

    Vanithakumari S C, Nanda K K 2009 Phosphors. Adv. Mater. 21 3581Google Scholar

    [22]

    祁祺, 陈海峰, 洪梓凡, 刘英英, 过立新, 李立珺, 陆芹, 贾一凡 2020 物理学报 69 168101Google Scholar

    Qi Q, Chen H F, Hong Z F, Liu Y Y, Guo L X, Li L J, Lu Q, Jia Y F 2020 Acta Phys. Sin. 69 168101Google Scholar

    [23]

    Liu L L, Li M K, Yu D Q, Zhang J, Zhang H, Qian C, Yang Z 2010 Appl. Phys. A 9 831

    [24]

    Huan Y W, Sun S M, Gu C J, Ding S J, Yu S Y, Liu W J, Ding S J, Yu H Y, Xia C T, Zhang D W 2018 Nanoscale Res. Lett. 13 246Google Scholar

    [25]

    雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明 2021 物理学报 70 027801Google Scholar

    Lei T, Lü W M, Lü W X, Cui B Y, Hu R, Shi W H, Zeng Z M 2021 Acta Phys. Sin. 70 027801Google Scholar

    [26]

    Tak B R, Garg M, Kumar A, Gupta V, Singh R 2019 ECS J. Solid State Sci. Technol. 8 Q3149Google Scholar

    [27]

    Razeghi M, Rogalski A 1996 J. Appl. Phys. 79 7433Google Scholar

    [28]

    Fang Y, Armin A, Meredith P, Huang J S 2019 Nat. Photonics 13 1Google Scholar

    [29]

    Kaur D, Kumar M 2021 Adv. Opti. Mater. 9 2002160Google Scholar

    [30]

    Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D:Appl. Phys. 53 085105Google Scholar

    [31]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [32]

    Zhi Y S, Jiang W Y, Liu Z, Liu Y Y, Chu X L, Liu J H, Li S, Yan Z Y, Wang Y H, Li P G, Wu Z P, Tang W H 2021 Chin. Phys. B 30 057301Google Scholar

    [33]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [34]

    Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar

    [35]

    Tak B R, Garg M, Dewan S, Torres-Castanedo C G, Li K H, Gupta V, Li X H, Singh R 2019 J. Appl. Phys. 125 144501Google Scholar

    [36]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [37]

    Yu M, Lv C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S G, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar

  • [1] Xu Yi-Hong, Fan Wei-Hang, Wang Chen. Influence of annealing temperature on the performance of RF magnetron sputtered Sn-doped Ga2O3 films and its solar-blind photodetector. Acta Physica Sinica, 2025, 74(2): 028104. doi: 10.7498/aps.74.20240972
    [2] Yi Zi-Qi, Wang Yan-Ming, Wang Shuo, Sui Xue, Shi Jia-Hui, Yang Yi-Han, Wang De-Yu, Feng Qiu-Ju, Sun Jing-Chang, Liang Hong-Wei. Performance of UV photodetector of mechanical exfoliation prepared PEDOT:PSS/β-Ga2O3 microsheet heterojunction. Acta Physica Sinica, 2024, 73(15): 157102. doi: 10.7498/aps.73.20240630
    [3] Zhang Yu, Liu Rui-Wen, Zhang Jing-Yang, Jiao Bin-Bin, Wang Ru-Zhi. Gallium oxide cantilevered thin film-based solar-blind photodetector and its arc detection applications. Acta Physica Sinica, 2024, 73(9): 098501. doi: 10.7498/aps.73.20240186
    [4] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector. Acta Physica Sinica, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [5] Luo Ju-Xin, Gao Hong-Li, Deng Jin-Xiang, Ren Jia-Hui, Zhang Qing, Li Rui-Dong, Meng Xue. Effects of annealing temperature on properties of gallium oxide thin films and ultraviolet detectors. Acta Physica Sinica, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [6] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [7] Liu Wei, Feng Qiu-Ju, Yi Zi-Qi, Yu Chen, Wang Shuo, Wang Yan-Ming, Sui Xue, Liang Hong-Wei. Preparation and ultraviolet detection performance of Cu doped β-Ga2O3 thin films. Acta Physica Sinica, 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [8] Dong Dian-Meng, Wang Cheng, Zhang Qing-Yi, Zhang Tao, Yang Yong-Tao, Xia Han-Chi, Wang Yue-Hui, Wu Zhen-Ping. Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer. Acta Physica Sinica, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [9] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [10] Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua. Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain. Acta Physica Sinica, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [11] Wang Bo, Zhang Ji-Hong, Li Cong-Ying. Enhancement of near-field thermal radiation of semiconductor vanadium dioxide covered by graphene. Acta Physica Sinica, 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [12] Xuan Xin-Miao, Wang Jia-Heng, Mao Yan-Qi, Ye Li-Juan, Zhang Hong, Li Hong-Lin, Xiong Yuan-Qiang, Fan Si-Qiang, Kong Chun-Yang, Li Wan-Jun. Flexible transparent solar blind ultraviolet photodetector based on amorphous Ga2O3 grown on mica substrate. Acta Physica Sinica, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [13] Zhou Shu-Ren, Zhang Hong, Mo Hui-Lan, Liu Hao-Wen, Xiong Yuan-Qiang, Li Hong-Lin, Kong Chun-Yang, Ye Li-Juan, Li Wan-Jun. Effect of N-doping on performance of ${\boldsymbol\beta}$-Ga2O3 thin film solar-blind ultraviolet detector. Acta Physica Sinica, 2021, 70(17): 178503. doi: 10.7498/aps.70.20210434
    [14] Effect of film thickness on photoelectric properties of β-Ga2O3 films by radio frequency magnetron sputtering*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211744
    [15] Guo Dao-You, Li Pei-Gang, Chen Zheng-Wei, Wu Zhen-Ping, Tang Wei-Hua. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector. Acta Physica Sinica, 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [16] Qi Xiao-Meng, Peng Wen-Bo, Zhao Xiao-Long, He Yong-Ning. Photoconductive UV detector based on high-resistance ZnO thin film. Acta Physica Sinica, 2015, 64(19): 198501. doi: 10.7498/aps.64.198501
    [17] Wang Ying-Long, Zhang Peng-Cheng, Liu Hong-Rang, Liu Bao-Ting, Fu Guang-Sheng. Effects of grain size and substrate stress of ferroelectric film on the physical properties. Acta Physica Sinica, 2011, 60(7): 077702. doi: 10.7498/aps.60.077702
    [18] Gu Jian-Jun, Zhang Hai-Feng, Xu Qin, Liu Li-Hu, Sun Hui-Yuan, Qi Yun-Kai. Effects of thickness for Al doped ZnO thin films on their microstructure and magnetic properties. Acta Physica Sinica, 2011, 60(6): 067502. doi: 10.7498/aps.60.067502
    [19] Ma Bing-Xian, Yao Ning, Jia Yu, Yang Shi-E, Lu Zhan-Ling, Fan Zhi-Qin, Zhang Bing-Lin. Influence of structure on adhesion of grains in CVD diamond films. Acta Physica Sinica, 2005, 54(6): 2853-2858. doi: 10.7498/aps.54.2853
    [20] ZHANG GUO-YONG, ZHANG PENG-XIANG. A NOVEL METHOD TO MEASURE THE THICKNESS OF YBCO THIN FILM. Acta Physica Sinica, 2001, 50(8): 1451-1455. doi: 10.7498/aps.50.1451
Metrics
  • Abstract views:  5871
  • PDF Downloads:  143
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2021
  • Accepted Date:  11 November 2021
  • Available Online:  16 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回