Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer

Dong Dian-Meng Wang Cheng Zhang Qing-Yi Zhang Tao Yang Yong-Tao Xia Han-Chi Wang Yue-Hui Wu Zhen-Ping

Citation:

Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer

Dong Dian-Meng, Wang Cheng, Zhang Qing-Yi, Zhang Tao, Yang Yong-Tao, Xia Han-Chi, Wang Yue-Hui, Wu Zhen-Ping
PDF
HTML
Get Citation
  • Solar-blind photodetector (PD) converts 200–280 nm ultraviolet (UV) light into electrical signals, thereby expanding application range from security communication to missile or fire alarms detections. As an emerging ultra-wide bandgap semiconductor, gallium oxide (Ga2O3) has sprung to the forefront of solar blind detection activity due to its key attributes, including suitable optical bandgap, convenient growth procedure, highly temperture/chemical/radiation tolerance, and thus becoming a promising candidate to break the current bottleneck of photomultiplier tubes. The Ga2O3-based solar blind PDs based on various architectures have been realized in the past decade, including photoconductive PDs, Schottky barrier PDs, and avalanche PDs. Till now, the metal-semiconductor-metal (MSM) structure has been widely used in developing photoconductive Ga2O3 solar-blind PDs because of its simple preparation method and large light collection area. Unfortunately, despite unremitting efforts, the performance metric of reported MSM-type Ga2O3 solar-blind PDs still lags behind the benchmark of commercial PMTs. Apparently, lack of solution to the problem has greatly hindered further research and practical applications in this field. One effective strategy for further enhancing the device performance such as detectivity, external quantum efficiency (EQE), and light-to-dark ratio heavily relies on blocking the dark current. In this work, high-quality single crystalline β-Ga2O3 with a uniform thickness of 700 nm is grown by using a metal organic chemical vapor deposition (MOCVD) technique. Then atomic layer deposition (ALD) fabricated ultrathin hafnium oxide (HfO2) films ( $ \sim $10 nm) are introduced as inserted insulators and passivation layers. The 30 nm/100 nm Ti/Au interdigital electrodes (length: 2800 μm, width: 200 μm, spacing: 200 μm, 4 pairs) are fabricated by sputtering on the top of the film as the Ohmic contacts. Taking advantage of its novel dielectric and insulating properties, the leakage current on Ga2O3 thin film can be effectively inhibited by the inserted ultrathin HfO2 layer, and thus further improving the performance of PDs. Compared with simple MSM structured Ga2O3 PD, the resulting metal-insulator-semiconductor (MIS) device significantly reduces dark current, and thus improving specific detectivity, enhancing light-to-dark current ratio, and increasing response speed. These findings advance a significant step toward the suppressing of dark current in MSM structured photoconductive PDs and provide great opportunities for developing high-performance weak UV signal sensing in the future.
      Corresponding author: Wang Yue-Hui, yuehuiwang@bupt.edu.cn ; Wu Zhen-Ping, zhenpingwu@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074044) and the Open Fund of State Key Laboratory of Information Photonics and Optical Communications, China (Grant No. IPOC2021ZT05).
    [1]

    Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar

    [2]

    Kan H, Zheng W, Fu C, Lin R, Luo J, Huang F 2020 ACS Appl. Mater. Interfaces 12 6030Google Scholar

    [3]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [4]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [5]

    Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S, Liu M 2020 ACS Photonics 7 812Google Scholar

    [6]

    Qin Y, Sun H, Long S, Tompa G S, Salagaj T, Dong H, He Q, Jian G, Liu Q, Lü H, Liu M 2019 IEEE Electron Device Lett. 40 1475Google Scholar

    [7]

    Wang Y H, Tang Y Q, Li H R, Yang Z B, Zhang Q Y, He Z B, Huang X, Wei X H, Tang W H, Huang W, Wu Z P 2021 ACS Photonics 8 2256Google Scholar

    [8]

    Hu D, Wang Y, Wang Y, Huan W, Dong X, Yin J 2022 Mater. Lett. 312 131653Google Scholar

    [9]

    Liu S, Jiao S, Lu H, Nie Y, Gao S, Wang D, Wang J, Zhao L 2022 J. Alloys Compd. 890 161827Google Scholar

    [10]

    Wang Y, Li H, Cao J, Shen J, Zhang Q, Yang Y, Dong Z, Zhou T, Zhang Y, Tang W, Wu Z 2021 ACS Nano 15 16654Google Scholar

    [11]

    Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923Google Scholar

    [12]

    Cui S, Mei Z, Zhang Y, Liang H, Du X 2017 Adv. Opt. Mater. 5 1700454Google Scholar

    [13]

    Zhou H, Cong L, Ma J, Chen M, Song D, Wang H, Li P, Li B, Xu H, Liu Y 2020 J. Alloys Compd. 847 156536Google Scholar

    [14]

    Han Z, Liang H, Huo W, Zhu X, Du X, Mei Z 2020 Adv. Opt. Mater. 8 1901833Google Scholar

    [15]

    Chen C H 2013 Jpn. J. Appl. Phys. 52 08JF08Google Scholar

    [16]

    Sheoran H, Kumar V, Singh R 2022 ACS Appl. Electron. Mater. 4 2589Google Scholar

    [17]

    Arora K, Goel N, Kumar M, Kumar M 2018 ACS Photonics 5 2391Google Scholar

    [18]

    Qian L X, Gu Z, Huang X, Liu H, Lü Y, Feng Z, Zhang W 2021 ACS Appl. Mater. Interfaces 13 40837Google Scholar

    [19]

    Ma J, Lee O, Yoo G 2019 IEEE J. Electron Devices Society 7 512Google Scholar

    [20]

    Young S J, Ji L W, Chang S J, Liang S H, Lam K T, Fang T H, Chen K J, Du X L, Xue Q K 2008 Sens. Actuators, A 141 225Google Scholar

    [21]

    Wang W J, Shan C X, Zhu H, Ma F Y, Shen D Z, Fan X W, Choy K L 2010 J. Phys. D:Appl. Phys. 43 045102Google Scholar

    [22]

    Seol J H, Lee G H, Hahm S H 2018 IEEE Sens. J. 18 4477Google Scholar

    [23]

    Yin J, Liu L, Zang Y, Ying A, Hui W, Jiang S, Zhang C, Yang T, Chueh Y L, Li J, Kang J 2021 Light:Sci. Appl. 10 113Google Scholar

    [24]

    Oshima T, Hashikawa M, Tomizawa S, Miki K, Oishi T, Sasaki K, Kuramata A 2018 Appl. Phys. Exp. 11 112202Google Scholar

    [25]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [26]

    Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [27]

    Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W, Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714Google Scholar

    [28]

    Dou L T, Yang Y (Micheal), You J B, Hong Z R, Chang W H, Li Ga, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [29]

    雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明 2021 物理学报 70 027801Google Scholar

    Lei T, Lü W M, Lü W X, Cui B Y, Hu R, Shi W H, Zeng Z M 2021 Acta Phys. Sin. 70 027801Google Scholar

    [30]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [31]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 物理学报 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

  • 图 1  光电探测器结构示意图 (a) MSM结构S1; (b) MIS结构S2; (c) MIS-Passivation结构S3

    Figure 1.  Schematic diagrams of the photodetector structure: (a) MSM structure S1; (b) MIS structure S2; (c) MIS-passivation structure S3.

    图 2  Al2O3衬底上异质外延的β-Ga2O3薄膜的XRD谱图

    Figure 2.  XRD patterns of epitaxial growth of β-Ga2O3 film on Al2O3 substrate.

    图 3  所制备薄膜的紫外-可见吸收谱图 (a) 不同薄膜的光学吸收特性曲线; (b) (αhν)2关系曲线

    Figure 3.  UV-vis absorbance spectrum: (a) Optical absorption characteristics curves of different thin films; (b) the relationship of (αhν)2 and .

    图 4  在黑暗和254 nm紫外光照条件下, 不同结构β-Ga2O3紫外光电探测器的I-V特性曲线(对数坐标)(插图为引入氧化铪后器件等效电路图)

    Figure 4.  I-V curves (logarithmic coordinate) of different devices with and without 254 nm UV light irradiation (Inset is the equivalent circuit of the device after the insertion of HfO2).

    图 5  三个器件的光谱响应

    Figure 5.  Spectral response of three devices.

    图 6  (a) 50 V偏压下, 光电流与入射光功率强度的对应关系; (b) 1000 μW/cm2的254 nm紫外光照射下, 线性动态范围与外部偏置电压的对应关系

    Figure 6.  (a) Relationship of photocurrent and light intensity at 50 V bias; (b) linear dynamic range vs. external bias voltage under 254 nm light illumination with an intensity of 1000 μW/cm2.

    图 7  在50 V偏置电压下, 三种不同结构器件的性能参数 (a) PDCR, (b) R, (c) EQE和(d) D*随入射光强的变化曲线

    Figure 7.  (a) PDCR and (b) R and (c) EQE and (d) D* of the photodetectors replying on the light intensity under 50 V bias voltage.

    图 8  入射光强固定在500 μW/cm, 三种不同结构器件的性能参数(a) PDCR, (b) R, (c) EQE和(d) D*随偏置电压的变化

    Figure 8.  (a) PDCR, (b) R, (c) EQE, and (d) D* of the photodetector varies with the bias voltage under 500 μW/cm2 illumination.

    图 9  (a)三种不同结构器件S1, S2, S3在20 V偏压下对254 nm紫外光的光响应I-t特征曲线; (b) S1, (c) S2和(d) S3器件上升及下降沿I-t拟合曲线

    Figure 9.  (a) Photoresponse of three different structural devices (S1, S2, and S3) under 254 nm light at a 20 V bias; Rise and decay I-t fitting curves of (b) S1, (c) S2, and (d) S3 photodetectors.

    图 10  光电探测器在外加偏置电压下的能带结构及载流子转移过程 (a) 黑暗条件下的MSM结构探测器; (b) 254 nm紫外光照下的MSM结构探测器; (c) 黑暗条件下的MIS结构探测器; (d) 254 nm紫外光照下的MIS结构探测器. (e) 钝化前β-Ga2O3薄膜表面状态示意图; (f) 钝化后β-Ga2O3薄膜表面状态示意图

    Figure 10.  Band structures and carriers transfer processes of photodetectors under applied bias voltage: (a) MSM photodetector in the dark; (b) MSM photodetector under 254 nm light; (c) MIS photodetector in the dark; (d) MIS photodetector under 254 nm light. The schematic diagrams in (e) and (f) show the surface states of a β-Ga2O3 film before and after passivation, respectively.

  • [1]

    Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar

    [2]

    Kan H, Zheng W, Fu C, Lin R, Luo J, Huang F 2020 ACS Appl. Mater. Interfaces 12 6030Google Scholar

    [3]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [4]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [5]

    Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S, Liu M 2020 ACS Photonics 7 812Google Scholar

    [6]

    Qin Y, Sun H, Long S, Tompa G S, Salagaj T, Dong H, He Q, Jian G, Liu Q, Lü H, Liu M 2019 IEEE Electron Device Lett. 40 1475Google Scholar

    [7]

    Wang Y H, Tang Y Q, Li H R, Yang Z B, Zhang Q Y, He Z B, Huang X, Wei X H, Tang W H, Huang W, Wu Z P 2021 ACS Photonics 8 2256Google Scholar

    [8]

    Hu D, Wang Y, Wang Y, Huan W, Dong X, Yin J 2022 Mater. Lett. 312 131653Google Scholar

    [9]

    Liu S, Jiao S, Lu H, Nie Y, Gao S, Wang D, Wang J, Zhao L 2022 J. Alloys Compd. 890 161827Google Scholar

    [10]

    Wang Y, Li H, Cao J, Shen J, Zhang Q, Yang Y, Dong Z, Zhou T, Zhang Y, Tang W, Wu Z 2021 ACS Nano 15 16654Google Scholar

    [11]

    Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923Google Scholar

    [12]

    Cui S, Mei Z, Zhang Y, Liang H, Du X 2017 Adv. Opt. Mater. 5 1700454Google Scholar

    [13]

    Zhou H, Cong L, Ma J, Chen M, Song D, Wang H, Li P, Li B, Xu H, Liu Y 2020 J. Alloys Compd. 847 156536Google Scholar

    [14]

    Han Z, Liang H, Huo W, Zhu X, Du X, Mei Z 2020 Adv. Opt. Mater. 8 1901833Google Scholar

    [15]

    Chen C H 2013 Jpn. J. Appl. Phys. 52 08JF08Google Scholar

    [16]

    Sheoran H, Kumar V, Singh R 2022 ACS Appl. Electron. Mater. 4 2589Google Scholar

    [17]

    Arora K, Goel N, Kumar M, Kumar M 2018 ACS Photonics 5 2391Google Scholar

    [18]

    Qian L X, Gu Z, Huang X, Liu H, Lü Y, Feng Z, Zhang W 2021 ACS Appl. Mater. Interfaces 13 40837Google Scholar

    [19]

    Ma J, Lee O, Yoo G 2019 IEEE J. Electron Devices Society 7 512Google Scholar

    [20]

    Young S J, Ji L W, Chang S J, Liang S H, Lam K T, Fang T H, Chen K J, Du X L, Xue Q K 2008 Sens. Actuators, A 141 225Google Scholar

    [21]

    Wang W J, Shan C X, Zhu H, Ma F Y, Shen D Z, Fan X W, Choy K L 2010 J. Phys. D:Appl. Phys. 43 045102Google Scholar

    [22]

    Seol J H, Lee G H, Hahm S H 2018 IEEE Sens. J. 18 4477Google Scholar

    [23]

    Yin J, Liu L, Zang Y, Ying A, Hui W, Jiang S, Zhang C, Yang T, Chueh Y L, Li J, Kang J 2021 Light:Sci. Appl. 10 113Google Scholar

    [24]

    Oshima T, Hashikawa M, Tomizawa S, Miki K, Oishi T, Sasaki K, Kuramata A 2018 Appl. Phys. Exp. 11 112202Google Scholar

    [25]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [26]

    Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [27]

    Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W, Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714Google Scholar

    [28]

    Dou L T, Yang Y (Micheal), You J B, Hong Z R, Chang W H, Li Ga, Yang Y 2014 Nat. Commun. 5 5404Google Scholar

    [29]

    雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明 2021 物理学报 70 027801Google Scholar

    Lei T, Lü W M, Lü W X, Cui B Y, Hu R, Shi W H, Zeng Z M 2021 Acta Phys. Sin. 70 027801Google Scholar

    [30]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [31]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 物理学报 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

  • [1] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector. Acta Physica Sinica, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [2] Zhang Yu, Liu Rui-Wen, Zhang Jing-Yang, Jiao Bin-Bin, Wang Ru-Zhi. Gallium oxide cantilevered thin film-based solar-blind photodetector and its arc detection applications. Acta Physica Sinica, 2024, 73(9): 098501. doi: 10.7498/aps.73.20240186
    [3] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [4] Luo Ju-Xin, Gao Hong-Li, Deng Jin-Xiang, Ren Jia-Hui, Zhang Qing, Li Rui-Dong, Meng Xue. Effects of annealing temperature on properties of gallium oxide thin films and ultraviolet detectors. Acta Physica Sinica, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [5] Wang Hai-Bo, Wan Li-Juan, Fan Min, Yang Jin, Lu Shi-Bin, Zhang Zhong-Xiang. Barrier-tunable gallium oxide Schottky diode. Acta Physica Sinica, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [6] Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua. Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain. Acta Physica Sinica, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [7] Barrier Tunable Gallium oxide Schottky diode. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211536
    [8] Long Ze, Xia Xiao-Chuan, Shi Jian-Jun, Liu Jun, Geng Xin-Lei, Zhang He-Zhi, Liang Hong-Wei. Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal. Acta Physica Sinica, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [9] Peng Chao1\2, En Yun-Fei, Li Bin, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Huang Yun. Radiation induced parasitic effect in silicon-on-insulator metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [10] Liu Hu-Lin, Wang Xing, Tian Jin-Shou, Sai Xiao-Feng, Wei Yong-Lin, Wen Wen-Long, Wang Jun-Feng, Xu Xiang-Yan, Wang Chao, Lu Yu, He Kai, Chen Ping, Xin Li-Wei. High resolution electron bombareded complementary metal oxide semiconductor sensor for ultraviolet detection. Acta Physica Sinica, 2018, 67(1): 014209. doi: 10.7498/aps.67.20171729
    [11] Tan Man-Lin, Zhou Dan-Dan, Fu Dong-Ju, Zhang Wei-Li, Ma Qing, Li Dong-Shuang, Chen Jian-Jun, Zhang Hua-Yu, Wang Gen-Ping. Performance investigation of black silicon solar cells with surface passivated by BiFeO3/ITO composite film. Acta Physica Sinica, 2017, 66(16): 167701. doi: 10.7498/aps.66.167701
    [12] Zhang Yong, Shi Yi-Min, Bao You-Zhen, Yu Xia, Xie Zhong-Xiang, Ning Feng. Effect of surface passivation on the electronic properties of GaAs nanowire:A first-principle study. Acta Physica Sinica, 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [13] Zhao Xing, Mei Bo, Bi Jin-Shun, Zheng Zhong-Shan, Gao Lin-Chun, Zeng Chuan-Bin, Luo Jia-Jun, Yu Fang, Han Zheng-Sheng. Single event transients in a 0.18 m partially-depleted silicon-on-insulator complementary metal oxide semiconductor circuit. Acta Physica Sinica, 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [14] Qi Xiao-Meng, Peng Wen-Bo, Zhao Xiao-Long, He Yong-Ning. Photoconductive UV detector based on high-resistance ZnO thin film. Acta Physica Sinica, 2015, 64(19): 198501. doi: 10.7498/aps.64.198501
    [15] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [16] Chen Wei-Chao, Tang Hui-Li, Luo Ping, Ma Wei-Wei, Xu Xiao-Dong, Qian Xiao-Bo, Jiang Da-Peng, Wu Feng, Wang Jing-Ya, Xu Jun. Research progress of substrate materials used for GaN-Based light emitting diodes. Acta Physica Sinica, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [17] Ma Hai-Lin, Su Qing. Effect of oxygen pressure on structure and optical band gap of gallium oxide thin films prepared by sputtering. Acta Physica Sinica, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [18] Pan Hui-Ping, Cheng Feng-Feng, Li Lin, Horng Ray-Hua, Yao Shu-De. Structrual analyses of Ga2+xO3-x thin films grown on sapphire substrates. Acta Physica Sinica, 2013, 62(4): 048801. doi: 10.7498/aps.62.048801
    [19] He Yue, Dou Ya-Nan, Ma Xiao-Guang, Chen Shao-Bin, Chu Jun-Hao. Passivation and stability of thermal atomic layer deposited Al2O3 on CZ-Si. Acta Physica Sinica, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [20] Liu Kun, Zhu Jun-Hao, Chen Shi-Wei, Zhao Jun, Tang Ding-Yuan. . Acta Physica Sinica, 1995, 44(7): 1137-1140. doi: 10.7498/aps.44.1137
Metrics
  • Abstract views:  5008
  • PDF Downloads:  213
  • Cited By: 0
Publishing process
  • Received Date:  20 November 2022
  • Accepted Date:  14 December 2022
  • Available Online:  12 January 2023
  • Published Online:  05 May 2023

/

返回文章
返回