Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anomalous Hall effect in Pt/La0.67Sr0.33MnO3 heterojunctions

Hu Shi-Lin Liu Jun-Hua Deng Zhi-Xiong Xiao Wen Yang Zhan Chen Kai Liao Zhao-Liang

Citation:

Anomalous Hall effect in Pt/La0.67Sr0.33MnO3 heterojunctions

Hu Shi-Lin, Liu Jun-Hua, Deng Zhi-Xiong, Xiao Wen, Yang Zhan, Chen Kai, Liao Zhao-Liang
PDF
HTML
Get Citation
  • Many emergent and novel phenomena occur in nonmagnetic/ferromagnet heterostructures. In particular, Pt/ferromagnet heterostructures where the Pt has strong spin-orbit coupling and thus can convert spin current into charge current, has attracted a great attention recently. The anomalous Hall effect (AHE) has been found in many Pt/ferromagnet heterostructures. However, the underlying physics remains elusive, so it is necessary to find more heterostructures in order to provide more experimental data. In this work, we investigate anomalous Hall resistances (AHRs) in Pt thin films sputtered on epitaxial La0.67Sr0.33MnO3 (LSMO) ferromagnetic films. High-quality Pt/LSMO heterojunctions are fabricated by pulsed laser deposition and RF-magnetron sputtering. The physical properties of LSMO films are characterized by the measurements of magnetic and transport properties. The AHR mainly contributed by Pt in the Pt/LSMO heterojunction increases sharply with temperature decreasing and changes its sign below 40 K. Furthermore, the AHR decreases sharply with the increase of Pt thickness. Those facts suggest that the ferromagnetism of Pt originates from interface due to magnetic proximity effect. Interestingly, this heterojunction can exhibit possible signal of topological Hall effect under low applied magnetic field. The above results provide an experimental basis for further understanding the interactions between electron spin and charge transport in nonmagnetic/ferromagnetic heterostructures.
      Corresponding author: Liao Zhao-Liang, zliao@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974325) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. WK2030000035).
    [1]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar

    [2]

    Jedema F J, Filip A T, Wees B J V 2001 Nature 410 345Google Scholar

    [3]

    Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R, Bauer G E W 2003 Phys. Rev. Lett. 90 187601Google Scholar

    [4]

    Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E 2010 Nature 464 262Google Scholar

    [5]

    Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y Y, Wu M Z 2011 Phys. Rev. Lett. 107 066604Google Scholar

    [6]

    Rezende S M, Rodriguez S R L, Soares M M, Vilela L L H, Ley D D, Azevedo A 2013 Appl. Phys. Lett. 102 012402Google Scholar

    [7]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [8]

    Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S, Saitoh E 2010 Nat. Mater. 9 894Google Scholar

    [9]

    Weng H M, Yu R, Hu X, Dai X, Fang Z 2015 Adv. Phys. 64 03227Google Scholar

    [10]

    Takahashi S, Maekawa S 2008 Sci. Technol. Adv. Mater. 9 014105Google Scholar

    [11]

    Miao B F, Huang S Y, Qu D, Chien C L 2014 Phys. Rev. Lett. 112 236601Google Scholar

    [12]

    Althammer M, Meyer S, Nakayama H, Schreier M, Altmannshofer S, Weiler M, Huebl H, Geprags S, Opel M, Gross R, Meier D, Klewe C, Kuschel T, Schmalhorst J M, Reiss G, Shen L M, Gupta A, Chen Y T, Bauer G E W, Saitoh E, Goennenwein S T B 2013 Phys. Rev. B 87 224401Google Scholar

    [13]

    Lu Y M, Choi Y, Ortega C M, Cheng X M, Cai J W, Huang S Y, Sun L, Chien C L 2013 Phys. Rev. Lett. 110 147207Google Scholar

    [14]

    Isasa M, Pinto A B, Velez S, Golmar F, Sanchez F, Hueso L E, Fontcuberta J, Casanova F 2014 Appl. Phys. Lett. 105 142402Google Scholar

    [15]

    Shang T, Zhan Q F, Yang H L, Zuo Z H, Xie Y L, Zhang Y, Liu L P, Wang B M, Wu Y H, Zhang S, Li R W 2015 Phys. Rev. B 92 165114Google Scholar

    [16]

    Liao Z L, Li F M, Gao P, Li L, Guo J D, Pan X Q, Jin R, Plummer E W, Zhang J D 2015 Phys. Rev. B 92 125123Google Scholar

    [17]

    Uchida K, Qiu Z Y, Kikkawa T, Lguchi R L, Saitoh E 2015 Appl. Phys. Lett. 106 052405Google Scholar

    [18]

    Putter S, Geprags S, Schlitz R, Althammer M, Erb A, Gross R, Goennenwein S T B 2017 Appl. Phys. Lett. 110 012403Google Scholar

    [19]

    Biswas A, Yang C H, Ramesh R, Jeong M H 2017 Prog. Surf. Sci. 92 02117Google Scholar

    [20]

    Peng R, Xu H C, Xia M, Zhao J F, Xie X, Xu D F, Xie B P, Feng D L 2014 Appl. Phys. Lett. 104 081606Google Scholar

    [21]

    Snyder G J, Hiskes R, DiCarolis S, Beasley M R, Geballe T H 1996 Phys. Rev. B 53 14434Google Scholar

    [22]

    Huang S Y, Fan X, Qu D, Chen Y P, Wang W G, Wu J, Chen T Y, Xiao J Q, Chien C L 2012 Phys. Rev. Lett. 109 107204Google Scholar

    [23]

    Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovi A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898Google Scholar

    [24]

    Zhang S, Zhang S S L 2009 Phys. Rev. Lett. 102 086601Google Scholar

    [25]

    Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F, Tokura Y 2013 Phys. Rev. Lett. 110 117202Google Scholar

    [26]

    Belabbes A, Bihlmayer G, Bechstedt F, Blügel S, Manchon A 2016 Phys. Rev. Lett. 117 247202Google Scholar

    [27]

    Meng K K, Zhao X P, Liu P F, Liu Q, Wu Y, Li Z P, Chen J K, Miao J, Xu X G, Zhao J H, Jiang Y 2018 Phys. Rev. B 97 060407Google Scholar

  • 图 1  LSMO薄膜生长 (a) RHEED周期振荡; (b) 薄膜生长前的RHEED衍射图; (c) 薄膜生长后的RHEED衍射图

    Figure 1.  The LSMO thin film growth: (a) RHEED oscillation; (b) RHEED pattern before film growth; (c) RHEED pattern after film growth.

    图 2  形貌表征 (a) STO (001)衬底AFM图; (b) LSMO (40 u.c.)薄膜AFM图; (c) Pt(2 nm)/LSMO(40 u.c.)薄膜AFM图; (d)和(e)分别为(b)和(c)中薄膜表面线扫描图

    Figure 2.  Morphology characterization: (a) AFM image of STO (001) substrate; (b) AFM image of LSMO (40 u.c.) film; (c) AFM image of Pt(2 nm)/LSMO(40 u.c.) film; (d) line-scan of the LSMO film in (b); (e) line-scan of the Pt/LSMO film in (c).

    图 3  结构表征 (a) Pt(6 nm)/LSMO(40 u.c.)薄膜的2θ-ω扫描; (b)为(a)中(002)衍射峰的放大图, 插图为LSMO薄膜(002)衍射峰的摇摆曲线; (c) Pt/LSMO薄膜在(103)衍射峰附近的倒易空间图; (d) Pt/LSMO薄膜的XRR谱, 拟合的红线与实验数据相符

    Figure 3.  Structure characterization: (a) 2θ-ω scan of Pt(6 nm)/LSMO(40 u.c.) thin films; (b) enlarged view of the (002) diffraction peak in panel (a), and the inset is a rocking curve of LSMO film around (002) diffraction peak; (c) reciprocal space map of Pt/ LSMO film around (103) diffraction peak; (d) XRR spectrum of Pt/LSMO film, and the red line is a fit to the experimental data

    图 4  (a) LSMO (40 u.c.)薄膜的磁化强度的温度依赖性, 插图为磁化强度对温度的一阶微分; (b) LSMO (40 u.c.)薄膜不同温度下的磁化强度的场依赖性, 插图为3 K时曲线的中心放大图

    Figure 4.  (a) Temperature dependence of magnetization of LSMO (40 u.c.) films, the inset is the first derivative of magnetization versus temperature; (b) field dependence of the magnetization of LSMO (40 u.c.) films at different temperatures, and the inset is an enlarged view of the curve at 3 K.

    图 5  LSMO(40 u.c.)薄膜与Pt(2 nm)/LSMO(40 u.c.)薄膜电阻的温度依赖性

    Figure 5.  Temperature dependence of resistance of LSMO (40 u.c.) film and Pt(2 nm)/LSMO(40 u.c.) film.

    图 6  (a) LSMO(40 u.c.)薄膜和(b) Pt(2 nm)/LSMO(40 u.c.)薄膜在不同温度下的RAHR, 图(a)插图为2 K时测量的LSMO薄膜的Rxy

    Figure 6.  RAHR of (a) LSMO (40 u.c.) film and (b) Pt(2 nm)/LSMO(40 u.c.) film at different temperatures. The inset in panel (a) is Rxy of the LSMO film measured at 2 K.

    图 7  (a) 在2 K时不同Pt厚度的Pt/LSMO(40 u.c.)薄膜的RAHR, 其中4和6 nm曲线的RAHR分别扩大了4倍和5倍; (b) Pt(6 nm)/LSMO(40 u.c.)薄膜在不同温度下的RAHR

    Figure 7.  (a) RAHR of Pt/LSMO(40 u.c.) film with different Pt thickness, which were measured at 2 K. RAHR of the 4 and 6 nm curves are enlarged by a factor of four and five, respectively; (b) RAHR of Pt(6 nm)/LSMO(40 u.c.) films at different temperatures.

  • [1]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar

    [2]

    Jedema F J, Filip A T, Wees B J V 2001 Nature 410 345Google Scholar

    [3]

    Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R, Bauer G E W 2003 Phys. Rev. Lett. 90 187601Google Scholar

    [4]

    Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E 2010 Nature 464 262Google Scholar

    [5]

    Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y Y, Wu M Z 2011 Phys. Rev. Lett. 107 066604Google Scholar

    [6]

    Rezende S M, Rodriguez S R L, Soares M M, Vilela L L H, Ley D D, Azevedo A 2013 Appl. Phys. Lett. 102 012402Google Scholar

    [7]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [8]

    Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S, Saitoh E 2010 Nat. Mater. 9 894Google Scholar

    [9]

    Weng H M, Yu R, Hu X, Dai X, Fang Z 2015 Adv. Phys. 64 03227Google Scholar

    [10]

    Takahashi S, Maekawa S 2008 Sci. Technol. Adv. Mater. 9 014105Google Scholar

    [11]

    Miao B F, Huang S Y, Qu D, Chien C L 2014 Phys. Rev. Lett. 112 236601Google Scholar

    [12]

    Althammer M, Meyer S, Nakayama H, Schreier M, Altmannshofer S, Weiler M, Huebl H, Geprags S, Opel M, Gross R, Meier D, Klewe C, Kuschel T, Schmalhorst J M, Reiss G, Shen L M, Gupta A, Chen Y T, Bauer G E W, Saitoh E, Goennenwein S T B 2013 Phys. Rev. B 87 224401Google Scholar

    [13]

    Lu Y M, Choi Y, Ortega C M, Cheng X M, Cai J W, Huang S Y, Sun L, Chien C L 2013 Phys. Rev. Lett. 110 147207Google Scholar

    [14]

    Isasa M, Pinto A B, Velez S, Golmar F, Sanchez F, Hueso L E, Fontcuberta J, Casanova F 2014 Appl. Phys. Lett. 105 142402Google Scholar

    [15]

    Shang T, Zhan Q F, Yang H L, Zuo Z H, Xie Y L, Zhang Y, Liu L P, Wang B M, Wu Y H, Zhang S, Li R W 2015 Phys. Rev. B 92 165114Google Scholar

    [16]

    Liao Z L, Li F M, Gao P, Li L, Guo J D, Pan X Q, Jin R, Plummer E W, Zhang J D 2015 Phys. Rev. B 92 125123Google Scholar

    [17]

    Uchida K, Qiu Z Y, Kikkawa T, Lguchi R L, Saitoh E 2015 Appl. Phys. Lett. 106 052405Google Scholar

    [18]

    Putter S, Geprags S, Schlitz R, Althammer M, Erb A, Gross R, Goennenwein S T B 2017 Appl. Phys. Lett. 110 012403Google Scholar

    [19]

    Biswas A, Yang C H, Ramesh R, Jeong M H 2017 Prog. Surf. Sci. 92 02117Google Scholar

    [20]

    Peng R, Xu H C, Xia M, Zhao J F, Xie X, Xu D F, Xie B P, Feng D L 2014 Appl. Phys. Lett. 104 081606Google Scholar

    [21]

    Snyder G J, Hiskes R, DiCarolis S, Beasley M R, Geballe T H 1996 Phys. Rev. B 53 14434Google Scholar

    [22]

    Huang S Y, Fan X, Qu D, Chen Y P, Wang W G, Wu J, Chen T Y, Xiao J Q, Chien C L 2012 Phys. Rev. Lett. 109 107204Google Scholar

    [23]

    Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovi A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898Google Scholar

    [24]

    Zhang S, Zhang S S L 2009 Phys. Rev. Lett. 102 086601Google Scholar

    [25]

    Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F, Tokura Y 2013 Phys. Rev. Lett. 110 117202Google Scholar

    [26]

    Belabbes A, Bihlmayer G, Bechstedt F, Blügel S, Manchon A 2016 Phys. Rev. Lett. 117 247202Google Scholar

    [27]

    Meng K K, Zhao X P, Liu P F, Liu Q, Wu Y, Li Z P, Chen J K, Miao J, Xu X G, Zhao J H, Jiang Y 2018 Phys. Rev. B 97 060407Google Scholar

  • [1] Zhang Jing-Xian, Bao Ming-Rui, Ye Fei, Liu Jia, Cheng Long, Zhai Xiao-Fang. Correlation of preparation conditions of SrRuO3 ultrathin films with topological Hall effect. Acta Physica Sinica, 2023, 72(9): 096802. doi: 10.7498/aps.72.20221854
    [2] Yang Meng, Bai He, Li Gang, Zhu Zhao-Zhao, Zhu Yun, Su Jian, Cai Jian-Wang. Epitaxial growth of Ho3Fe5O12 films with perpendicular magnetic anisotropy and spin transport properties in Ho3Fe5O12/Pt heterostructures. Acta Physica Sinica, 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [3] Ju Hai-Lang, Wang Hong-Xin, Cheng Peng, Li Bao-He, Chen Xiao-Bai, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy study of CoFeB/Ni multilayers by anomalous Hall effect. Acta Physica Sinica, 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [4] Ju Hai-Lang, Xiang Ping-Ping, Wang Wei, Li Bao-He. Enhancement of perpendicular magnetic anisotropy and thermal stability in Co/Ni multilayers by MgO/Pt interfaces. Acta Physica Sinica, 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [5] Ju Hai-Lang, Li Bao-He, Wu Zhi-Fang, Zhang Fan, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect. Acta Physica Sinica, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [6] Chen Cheng-Zhao, Zheng Yuan-Yu, Huang Shi-Hao, Li Cheng, Lai Hong-Kai, Chen Song-Yan. Epitaxial growth of thick Ge layers with low dislocation density on silicon substrate by UHV/CVD. Acta Physica Sinica, 2012, 61(7): 078104. doi: 10.7498/aps.61.078104
    [7] Liu Na, Wang Hai, Zhu Tao. Perpendicular magnetic anisotropy in the CoFeB/Pt multilayers by anomalous Hall effect. Acta Physica Sinica, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [8] Su Shao-Jian, Wang Wei, Zhang Guang-Ze, Hu Wei-Xuan, Bai An-Qi, Xue Chun-Lai, Zuo Yu-Hua, Cheng Bu-Wen, Wang Qi-Ming. Epitaxial growth of Ge0.975Sn0.025alloy films on Si(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [9] Wu Xiao-Yan, Kong Ming, Li Ge-Yang, Zhao Wen-Ji. Crystallization of Si3N4 on h-AlN and superhardness effect of AlN/Si3N4 nanomultilayers. Acta Physica Sinica, 2009, 58(4): 2654-2659. doi: 10.7498/aps.58.2654
    [10] He Meng, Liu Guo-Zhen, Qiu Jie, Xing Jie, Lü Hui-Bin. Epitaxial growth of high quality TiN thin film on Si by laser molecular beam epitaxy. Acta Physica Sinica, 2008, 57(2): 1236-1240. doi: 10.7498/aps.57.1236
    [11] Li Mei-Ya, Wang Jing, Liu Jun, Yu Ben-Fang, Guo Dong-Yun, Zhao Xing-Zhong. Dependence of growth and property of YBa2Cu3O7-x coated conductors on the thickness of CeO2 buffer layer. Acta Physica Sinica, 2008, 57(5): 3132-3137. doi: 10.7498/aps.57.3132
    [12] Yu Li-Hua, Dong Song-Tao, Dong Shi-Run, Xu Jun-Hua. Epitaxial growth and mechanical properties of AlN/Si3N4 nanostructured multilayers. Acta Physica Sinica, 2008, 57(8): 5151-5158. doi: 10.7498/aps.57.5151
    [13] Yu Li-Hua, Dong Shi-Run, Xu Jun-Hua, Li Ge-Yang. Superhardness effect of TaN/TiN and NbN/TiN nanostructure multilayers and its mechanism. Acta Physica Sinica, 2008, 57(11): 7063-7068. doi: 10.7498/aps.57.7063
    [14] Zhao Wen-Ji, Dong Yun-Shan, Yue Jian-Ling, Li Ge-Yang. Crystallization of Si3N4 and superhardness effect of ZrN/Si3N4 nano-multilayers. Acta Physica Sinica, 2007, 56(1): 459-464. doi: 10.7498/aps.56.459
    [15] Zhou Nai-Gen, Zhou Lang, Du Dan-Xu. Structure and formation of misfit dislocations in an epitaxial fcc film. Acta Physica Sinica, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [16] Liu Yan, Dong Yun-Shan, Yue Jian-Ling, Li Ge-Yang. Crystal growth and superhardness effects of ZrN/AlON nanomultilayers synthesized by reactive magnetron sputtering. Acta Physica Sinica, 2006, 55(11): 6013-6019. doi: 10.7498/aps.55.6013
    [17] Kong Ming, Wei Lun, Dong Yun-Shan, Li Ge-Yang. Epitaxial growth and superhardness effect in TiN/Al2O3 nanomultilayers. Acta Physica Sinica, 2006, 55(2): 770-775. doi: 10.7498/aps.55.770
    [18] Wei Lun, Mei Fang-Hua, Shao Nan, Li Ge-Yang, Li Jian-Guo. Study on the growth and superhardness of TiN/SiO22 nanomultilayers. Acta Physica Sinica, 2005, 54(4): 1742-1748. doi: 10.7498/aps.54.1742
    [19] Wang Jian-Ping, Hao Yue, Peng Jun, Zhu Zuo-Yun, Zhang Yong-Hua. . Acta Physica Sinica, 2002, 51(8): 1793-1797. doi: 10.7498/aps.51.1793
    [20] Ye Jian-Song, Hu Xiao-Jun. . Acta Physica Sinica, 2002, 51(5): 1108-1112. doi: 10.7498/aps.51.1108
Metrics
  • Abstract views:  4216
  • PDF Downloads:  150
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2022
  • Accepted Date:  17 October 2022
  • Available Online:  27 October 2022
  • Published Online:  05 May 2023

/

返回文章
返回