Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector

Su Ran Xi Zhao-Ying Li Shan Zhang Jia-Han Jiang Ming-Ming Liu Zeng Tang Wei-Hua

Citation:

GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector

Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua
PDF
HTML
Get Citation
  • UV photodetectors have the advantages of high sensitivity and fast response speed. As an ultra-wide bandgap semiconductor, gallium oxide (Ga2O3) plays an extremely important role in detecting deep ultraviolet. It can form a typical type-II heterostructure with GaSe, promoting carrier separation and transport. In this work, Ga2O3 epitaxial films are grown on sapphire substrates by plasma-assisted chemical vapor deposition (PECVD). The GaSe films and GaSe/β-Ga2O3 heterojunction photodetectors are grown on gallium oxide films by Bridgeman technology. The detector has a good response to deep ultraviolet light, the dark current of the device is only 1.83 pA at 8 V, and the photocurrent reaches 6.5 nA at 254 nm. The UVC/Visible (254 nm/600 nm) has a high rejection ratio of about 354. At very small light intensities, the responsivity and detection can reach 1.49 mA/W and 6.65 × 1011 Jones, respectively. At the same time, due to the photovoltaic effect formed by the space charge region at the junction interface, the detector exhibits self-powered supply performance at zero bias voltage, and the open-circuit voltage is 0.2 V. In addition, the detector has a very good sensitivity. The device can respond quickly, whether it is irradiated with different light intensities under constant voltage, or with different voltages under constant light intensity. It can respond within milliseconds under a bias voltage of 10 V. This work demonstrates the enormous potential of heterojunctions in photoelectric detection by analyzing the photophysical and interface physical issues involved in heterojunction photodetectors, and provides a possibility for detecting the deep ultraviolet of gallium oxide.
      Corresponding author: Liu Zeng, zengliu_imu@163.com ; Tang Wei-Hua, whtang@njupt.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 62204125, 62305171), the National Key Research and Development Program of China (Grant No. 2022YFB3605404), and the Joint Funds of the National Natural Science Foundation of China (Grant No. U23A20349).
    [1]

    Xi Z Y, Liu Z, Yang L L, Tang K, Li L, Shen G H, Zhang M L, Li S, Guo Y F, Tang W H 2023 ACS Appl. Mater. Interfaces 15 40744Google Scholar

    [2]

    Lee S H, Kim S B, Moon Y J, Kim S M, Jung H J, Seo M S, Lee K M, Kim S K, Lee S W 2017 ACS Photon. 4 2937Google Scholar

    [3]

    Tang X, Li K H, Zhao Y, Sui Y, Liang H, Liu Z, Liao C H, Babatain W, Lin R, Wang C, Lu Y, Alqatari F S, Mei Z, Tang W, Li X 2021 ACS Appl. Mater. Interfaces 14 1304

    [4]

    Wang Y H, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W H, Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714Google Scholar

    [5]

    Imura S, Mineo K, Miyakawa K, Nanba M, Ohtake H, Kubota M 2018 IEEE Sensors J. 18 3108Google Scholar

    [6]

    Sorifi S, Kaushik S, Sheoran H, Singh R 2022 J. Phys. D: Appl. Phys. 55 365105Google Scholar

    [7]

    Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang X, Shan C 2019 Adv. Funct. Mater. 29 1906040Google Scholar

    [8]

    Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D, Fang X 2017 Adv. Funct. Mater. 27 1700264Google Scholar

    [9]

    Ozbay E, Biyikli N, Kimukin I, Kartaloglu T, Tut T, Aytur O 2004 IEEE J. Select. Topics Quantum Electron. 10 742Google Scholar

    [10]

    Xu Z, Zang J, Yang X, Chen Y, Lou Q, Li K, Lin C, Zhang Z, Shan C 2021 Semicond. Sci. Technol. 36 065007Google Scholar

    [11]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [12]

    Li L, Liao F, Hu X 2020 Superlattices Microstruct. 141 106502Google Scholar

    [13]

    Jing L, Ai C, Guo X, Cao J, Jing D, Luo B, Ma L 2023 Ind. Eng. Chem. Res. 62 6103Google Scholar

    [14]

    Moon S, Bae J, Kim J 2022 J. Mater. Chem. C 10 6281Google Scholar

    [15]

    Lu C, Gao L, Meng F, Zhang Q, Yang L, Liu Z, Zhu M, Chen X, Lyu X, Wang Y, Liu J, Ji A, Li P, Gu L, Cao Z, Lu N 2023 J. Appl. Phys. 133 045306Google Scholar

    [16]

    Han Y, Jiao S, Jing J, Chen L, Rong P, Ren S, Wang D, Gao S, Wang J 2023 Nano Res. 17 2960Google Scholar

    [17]

    Li X, Dong J, Idrobo J C, Puretzky A A, Rouleau C M, Geohegan D B, Ding F, Xiao K 2016 J. Am. Chem. Soc. 139 482Google Scholar

    [18]

    Qasrawi A F 2005 Cryst. Res. Technol. 40 610Google Scholar

    [19]

    Lei S, Ge L, Liu Z, Najmaei S, Shi G, You G, Lou J, Vajtai R, Ajayan P M 2013 Nano Lett. 13 2777Google Scholar

    [20]

    Yuan X, Tang L, Liu S, Wang P, Chen Z, Zhang C, Liu Y, Wang W, Zou Y, Liu C, Guo N, Zou J, Zhou P, Hu W, Xiu F 2015 Nano Lett. 15 3571Google Scholar

    [21]

    Ben Aziza Z, Henck H, Pierucci D, Silly M G, Lhuillier E, Patriarche G, Sirotti F, Eddrief M, Ouerghi A 2016 ACS Nano 10 9679Google Scholar

    [22]

    Parlak M, Qasrawi A F, Ercelebi C 2003 Mater. Sci. 38 1507Google Scholar

    [23]

    Yan Z, Li S, Liu Z, Zhi Y, Dai J, Sun X, Sun S, Guo D, Wang X, Li P, Wu Z, Li L, Tang W 2020 J. Mater. Chem. C 8 4502Google Scholar

    [24]

    Mudiyanselage D H, Wang D, Fu H 2022 IEEE J. Electron Devices Soc. 10 89Google Scholar

    [25]

    Lin R, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar

    [26]

    Abdullah M M, Bhagavannarayana G, Wahab M A 2010 J. Cryst. Growth 312 1534Google Scholar

    [27]

    Jubu P R, Yam F K, Igba V M, Beh K P 2020 J. Solid State Chem. 290 121576Google Scholar

    [28]

    张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋 2023 物理学报 72 160201Google Scholar

    Zhang M L, Ma W Y, Wang L, Liu Z, Yang L L, Li S, Tang W H, Guo Y F 2023 Acta Phys. Sin. 72 160201Google Scholar

    [29]

    Li Z, Xu Y, Zhang J, Cheng Y, Chen D, Feng Q, Xu S, Zhang Y, Zhang J, Hao Y, Zhang C 2019 IEEE Photon. J. 11 1Google Scholar

    [30]

    He T, Li C, Zhang X, Ma Y, Cao X, Shi X, Sun C, Li J, Song L, Zeng C, Zhang K, Zhang X, Zhang B 2019 Phys. Status Solidi. (a) 217 1900861Google Scholar

    [31]

    Yakimov E B, Polyakov A Y, Shchemerov I V, Smirnov N B, Vasilev A A, Vergeles P S, Yakimov E E, Chernykh A V, Shikoh A S, Ren F, Pearton S J 2020 APL Mater. 8 111105Google Scholar

    [32]

    Bae J, Park J H, Jeon D W, Kim J 2021 APL Mater. 9 101108Google Scholar

    [33]

    Qian L X, Liu H Y, Zhang H F, Wu Z H, Zhang W L 2019 Appl. Phys. Lett. 114 113506Google Scholar

    [34]

    Chen M, Zhang Z, Lv Z, Zhan R, Chen H, Jiang H, Chen J 2022 ACS Appl. Nano Mater. 5 351Google Scholar

    [35]

    Ricci F, Boschi F, Baraldi A, Filippetti A, Higashiwaki M, Kuramata A, Fiorentini V, Fornari R 2016 J. Phys. : Condens. Matter 28 224005Google Scholar

    [36]

    Filippo E, Tepore M, Baldassarre F, Siciliano T, Micocci G, Quarta G, Calcagnile L, Tepore A 2015 Appl. Surf. Sci. 338 69Google Scholar

    [37]

    Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B 2016 Adv. Mater. 28 10725Google Scholar

    [38]

    Liang S J, Cheng B, Cui X, Miao F 2019 Adv. Mater. 32 1903800Google Scholar

    [39]

    Kumar N, Kumail M, Lee J, Park H G, Kim J 2023 Mater. Res. Bull. 168 112466Google Scholar

    [40]

    Zhuo R, Wu D, Wang Y, Wu E, Jia C, Shi Z, Xu T, Tian Y, Li X 2018 J. Mater. Chem. C 6 10982Google Scholar

    [41]

    Ma Y, Chen T, Zhang X, Tang W, Feng B, Hu Y, Zhang L, Zhou X, Wei X, Xu K, Mudiyanselage D, Fu H, Zhang B 2022 ACS Appl. Mater. Interfaces 14 35194Google Scholar

    [42]

    Tan P, Zhao X, Hou X, Yu Y, Yu S, Ma X, Zhang Z, Ding M, Xu G, Hu Q, Gao N, Sun H, Mu W, Jia Z, Tao X, Long S 2021 Adv. Opt. Mater. 9 2100173Google Scholar

    [43]

    Park S, Park T, Park J H, Min J Y, Jung Y, Kyoung S, Kang T Y, Kim K H, Rim Y S, Hong J 2022 ACS Appl. Mater. Interfaces 14 25648Google Scholar

    [44]

    Wu C, Qiu L, Li S, Guo D, Li P, Wang S, Du P, Chen Z, Liu A, Wang X, Wu H, Wu F, Tang W 2021 Mater. Today Phys. 17 100335Google Scholar

    [45]

    Nguyen T M H, Tran M H, Bark C W 2023 ACS Appl. Electronic Mater. 5 6459Google Scholar

    [46]

    Wang Y, Tang Y, Li H, Yang Z, Zhang Q, He Z, Huang X, Wei X, Tang W, Huang W, Wu Z 2021 ACS Photon. 8 2256Google Scholar

  • 图 1  (a)实验装置示意图; (b) GaSe/β-Ga2O3异质结光电探测器示意图

    Figure 1.  (a) Schematic diagram of the experimental setup; (b) schematic diagram of the GaSe/β-Ga2O3 heterojunction photodetector.

    图 2  (a) GaSe薄膜XRD图; (b) Ga2O3薄膜XRD图; (c) Ga2O3薄膜表面SEM图; (d) GaSe表面SEM图; (e) Ga2O3上生长GaSe的断面SEM图; (f) 蓝宝石上生长Ga2O3而未生长GaSe的断面SEM图; (g) GaSe, β-Ga2O3薄膜和GaSe/β-Ga2O3异质结的吸收光谱曲线图; (h) GaSe薄膜的(αhυ) 2-曲线图; (i) Ga2O3薄膜的(αhυ) 2-曲线图

    Figure 2.  (a) XRD of GaSe films; (b) XRD of Ga2O3 films; (c) SEM images of Ga2O3 films; (d) SEM images of GaSe surfaces; (e) cross-sectional SEM images of GaSe grown on Ga2O3; (f) cross-sectional SEM images of Ga2O3 grown without GaSe on sapphire; (g) absorption spectra of GaSe, β-Ga2O3 films and GaSe/β-Ga2O3 heterojunctions; (h) (αhυ)2- curves of GaSe films; (i) (αhυ)2- curves of Ga2O3 films.

    图 3  (a) 基于异质结的PD在具有不同光强度的254 nm光的黑暗和照明下的半对数I-V曲线图; (b) 光电探测器在黑暗和光照下的响应曲线图; (c) Ga2O3薄膜在黑暗和光照下的响应曲线图; (d) GaSe在黑暗和光照下的响应曲线图; (e) 0 V电压下光电探测器在不同光强的I-t曲线图; (f) 强度为365.3 μW/cm2的254 nm光照下的不同偏置电压下光开关I-t曲线图; (g) 在10 V、强度为365.3 μW/cm2的254 nm光照下拟合响应时间图; (h) 在10 V、强度为348.3 μW/cm2的365 nm光照下拟合响应时间图

    Figure 3.  (a)The semi log I-V curves of the heterojunction-based PD under dark and illumination of 254 nm light with various light intensities; the semi log I-V curves under darkness and light of (b) photodetector, (c) Ga2O3 film, (d) GaSe; I-t curves with light on/off switching at (e) 0 V under various light intensities and (f) various bias voltages under 254 nm light illumination with an intensity of 365.3 μW/cm2; fitting response times under (g) 254 nm light illumination with an intensity of 365.3 μW/cm2 at 10 V, (h) 365 nm light illumination with an intensity of 348.3 μW/cm2 at 10 V.

    图 4  (a) GaSe/β-Ga2O3异质结光电探测器的响应光谱图; (b) 响应度和探测率与光照强度的线性关系图

    Figure 4.  (a) Spectrum responsivity of the GaSe/β-Ga2O3 photodetector; (b) linear relationship between responsivity and detectivity as a function of light intensity.

    图 5  (a) GaSe和Ga2O3的能带排列图; (b) 异质结零偏压下的能带传输机制图; (c)异质结正偏压下的能带传输机制和等效电路模型图

    Figure 5.  (a) Band arrangement of GaSe and Ga2O3; (b) band transport mechanism of heterojunction at zero bias; (c) band transport mechanism and equivalent circuit model of heterojunction under positive bias.

    表 1  氧化镓基光电探测器性能比较

    Table 1.  Comparison of the performances of Ga2O3-based photodetectors

    photodetector Wavelength/nm Idark/pA PDCR R/(mA·W–1) D*/Jones Reference
    GaSe/β-Ga2O3 254 1.83 5.5×103 1.49 6.65×1011 This work
    MoS2/Ga2O3 254 0.9 670 2.05 1.2×1011 [40]
    p-GaN/β-Ga2O3 254 3.08 4.1×103 3800 1.12×1014 [41]
    AgNW-Ga2O3 254 <10 1.2×105 14.8 5.1×1012 [42]
    Ag2O/β-Ga2O3 254 92.8 3.4×108 25.65 6.1×1011 [43]
    CuGaO2/Ga2O3 254 100 2.3×104 0.03 0.9×1011 [44]
    CuCrO2/Ga2O3 254 18 3.5×104 0.12 4.6×1011 [44]
    FTO/TiO2/Si-doped Ga2O3/TFB/PEDOT:PSS 254 390 242.56 1.02 0.46×1011 [45]
    DownLoad: CSV
  • [1]

    Xi Z Y, Liu Z, Yang L L, Tang K, Li L, Shen G H, Zhang M L, Li S, Guo Y F, Tang W H 2023 ACS Appl. Mater. Interfaces 15 40744Google Scholar

    [2]

    Lee S H, Kim S B, Moon Y J, Kim S M, Jung H J, Seo M S, Lee K M, Kim S K, Lee S W 2017 ACS Photon. 4 2937Google Scholar

    [3]

    Tang X, Li K H, Zhao Y, Sui Y, Liang H, Liu Z, Liao C H, Babatain W, Lin R, Wang C, Lu Y, Alqatari F S, Mei Z, Tang W, Li X 2021 ACS Appl. Mater. Interfaces 14 1304

    [4]

    Wang Y H, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W H, Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714Google Scholar

    [5]

    Imura S, Mineo K, Miyakawa K, Nanba M, Ohtake H, Kubota M 2018 IEEE Sensors J. 18 3108Google Scholar

    [6]

    Sorifi S, Kaushik S, Sheoran H, Singh R 2022 J. Phys. D: Appl. Phys. 55 365105Google Scholar

    [7]

    Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang X, Shan C 2019 Adv. Funct. Mater. 29 1906040Google Scholar

    [8]

    Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D, Fang X 2017 Adv. Funct. Mater. 27 1700264Google Scholar

    [9]

    Ozbay E, Biyikli N, Kimukin I, Kartaloglu T, Tut T, Aytur O 2004 IEEE J. Select. Topics Quantum Electron. 10 742Google Scholar

    [10]

    Xu Z, Zang J, Yang X, Chen Y, Lou Q, Li K, Lin C, Zhang Z, Shan C 2021 Semicond. Sci. Technol. 36 065007Google Scholar

    [11]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [12]

    Li L, Liao F, Hu X 2020 Superlattices Microstruct. 141 106502Google Scholar

    [13]

    Jing L, Ai C, Guo X, Cao J, Jing D, Luo B, Ma L 2023 Ind. Eng. Chem. Res. 62 6103Google Scholar

    [14]

    Moon S, Bae J, Kim J 2022 J. Mater. Chem. C 10 6281Google Scholar

    [15]

    Lu C, Gao L, Meng F, Zhang Q, Yang L, Liu Z, Zhu M, Chen X, Lyu X, Wang Y, Liu J, Ji A, Li P, Gu L, Cao Z, Lu N 2023 J. Appl. Phys. 133 045306Google Scholar

    [16]

    Han Y, Jiao S, Jing J, Chen L, Rong P, Ren S, Wang D, Gao S, Wang J 2023 Nano Res. 17 2960Google Scholar

    [17]

    Li X, Dong J, Idrobo J C, Puretzky A A, Rouleau C M, Geohegan D B, Ding F, Xiao K 2016 J. Am. Chem. Soc. 139 482Google Scholar

    [18]

    Qasrawi A F 2005 Cryst. Res. Technol. 40 610Google Scholar

    [19]

    Lei S, Ge L, Liu Z, Najmaei S, Shi G, You G, Lou J, Vajtai R, Ajayan P M 2013 Nano Lett. 13 2777Google Scholar

    [20]

    Yuan X, Tang L, Liu S, Wang P, Chen Z, Zhang C, Liu Y, Wang W, Zou Y, Liu C, Guo N, Zou J, Zhou P, Hu W, Xiu F 2015 Nano Lett. 15 3571Google Scholar

    [21]

    Ben Aziza Z, Henck H, Pierucci D, Silly M G, Lhuillier E, Patriarche G, Sirotti F, Eddrief M, Ouerghi A 2016 ACS Nano 10 9679Google Scholar

    [22]

    Parlak M, Qasrawi A F, Ercelebi C 2003 Mater. Sci. 38 1507Google Scholar

    [23]

    Yan Z, Li S, Liu Z, Zhi Y, Dai J, Sun X, Sun S, Guo D, Wang X, Li P, Wu Z, Li L, Tang W 2020 J. Mater. Chem. C 8 4502Google Scholar

    [24]

    Mudiyanselage D H, Wang D, Fu H 2022 IEEE J. Electron Devices Soc. 10 89Google Scholar

    [25]

    Lin R, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar

    [26]

    Abdullah M M, Bhagavannarayana G, Wahab M A 2010 J. Cryst. Growth 312 1534Google Scholar

    [27]

    Jubu P R, Yam F K, Igba V M, Beh K P 2020 J. Solid State Chem. 290 121576Google Scholar

    [28]

    张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋 2023 物理学报 72 160201Google Scholar

    Zhang M L, Ma W Y, Wang L, Liu Z, Yang L L, Li S, Tang W H, Guo Y F 2023 Acta Phys. Sin. 72 160201Google Scholar

    [29]

    Li Z, Xu Y, Zhang J, Cheng Y, Chen D, Feng Q, Xu S, Zhang Y, Zhang J, Hao Y, Zhang C 2019 IEEE Photon. J. 11 1Google Scholar

    [30]

    He T, Li C, Zhang X, Ma Y, Cao X, Shi X, Sun C, Li J, Song L, Zeng C, Zhang K, Zhang X, Zhang B 2019 Phys. Status Solidi. (a) 217 1900861Google Scholar

    [31]

    Yakimov E B, Polyakov A Y, Shchemerov I V, Smirnov N B, Vasilev A A, Vergeles P S, Yakimov E E, Chernykh A V, Shikoh A S, Ren F, Pearton S J 2020 APL Mater. 8 111105Google Scholar

    [32]

    Bae J, Park J H, Jeon D W, Kim J 2021 APL Mater. 9 101108Google Scholar

    [33]

    Qian L X, Liu H Y, Zhang H F, Wu Z H, Zhang W L 2019 Appl. Phys. Lett. 114 113506Google Scholar

    [34]

    Chen M, Zhang Z, Lv Z, Zhan R, Chen H, Jiang H, Chen J 2022 ACS Appl. Nano Mater. 5 351Google Scholar

    [35]

    Ricci F, Boschi F, Baraldi A, Filippetti A, Higashiwaki M, Kuramata A, Fiorentini V, Fornari R 2016 J. Phys. : Condens. Matter 28 224005Google Scholar

    [36]

    Filippo E, Tepore M, Baldassarre F, Siciliano T, Micocci G, Quarta G, Calcagnile L, Tepore A 2015 Appl. Surf. Sci. 338 69Google Scholar

    [37]

    Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B 2016 Adv. Mater. 28 10725Google Scholar

    [38]

    Liang S J, Cheng B, Cui X, Miao F 2019 Adv. Mater. 32 1903800Google Scholar

    [39]

    Kumar N, Kumail M, Lee J, Park H G, Kim J 2023 Mater. Res. Bull. 168 112466Google Scholar

    [40]

    Zhuo R, Wu D, Wang Y, Wu E, Jia C, Shi Z, Xu T, Tian Y, Li X 2018 J. Mater. Chem. C 6 10982Google Scholar

    [41]

    Ma Y, Chen T, Zhang X, Tang W, Feng B, Hu Y, Zhang L, Zhou X, Wei X, Xu K, Mudiyanselage D, Fu H, Zhang B 2022 ACS Appl. Mater. Interfaces 14 35194Google Scholar

    [42]

    Tan P, Zhao X, Hou X, Yu Y, Yu S, Ma X, Zhang Z, Ding M, Xu G, Hu Q, Gao N, Sun H, Mu W, Jia Z, Tao X, Long S 2021 Adv. Opt. Mater. 9 2100173Google Scholar

    [43]

    Park S, Park T, Park J H, Min J Y, Jung Y, Kyoung S, Kang T Y, Kim K H, Rim Y S, Hong J 2022 ACS Appl. Mater. Interfaces 14 25648Google Scholar

    [44]

    Wu C, Qiu L, Li S, Guo D, Li P, Wang S, Du P, Chen Z, Liu A, Wang X, Wu H, Wu F, Tang W 2021 Mater. Today Phys. 17 100335Google Scholar

    [45]

    Nguyen T M H, Tran M H, Bark C W 2023 ACS Appl. Electronic Mater. 5 6459Google Scholar

    [46]

    Wang Y, Tang Y, Li H, Yang Z, Zhang Q, He Z, Huang X, Wei X, Tang W, Huang W, Wu Z 2021 ACS Photon. 8 2256Google Scholar

  • [1] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [2] Cheng Xue-Ming, Cui Wen-Yu, Zhu Lu-Ping, Wang Xia, Liu Zong-Ming, Cao Bing-Qiang. Vertical MSM-type CsPbBr3 thin film photodetectors with fast response speed and low dark current. Acta Physica Sinica, 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [3] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [4] Zhang Yu, Liu Rui-Wen, Zhang Jing-Yang, Jiao Bin-Bin, Wang Ru-Zhi. Gallium oxide cantilevered thin film-based solar-blind photodetector and its arc detection applications. Acta Physica Sinica, 2024, 73(9): 098501. doi: 10.7498/aps.73.20240186
    [5] Zhao Ji-Yu, Tan Qiu-Hong, Liu Lei, Yang Wei-Ye, Wang Qian-Jin, Liu Ying-Kai. High-performance photodetectors based on Au nanoislands decorated CdSSe nanobelt. Acta Physica Sinica, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [6] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [7] Dong Dian-Meng, Wang Cheng, Zhang Qing-Yi, Zhang Tao, Yang Yong-Tao, Xia Han-Chi, Wang Yue-Hui, Wu Zhen-Ping. Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer. Acta Physica Sinica, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [8] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [9] Luo Ju-Xin, Gao Hong-Li, Deng Jin-Xiang, Ren Jia-Hui, Zhang Qing, Li Rui-Dong, Meng Xue. Effects of annealing temperature on properties of gallium oxide thin films and ultraviolet detectors. Acta Physica Sinica, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [10] Wang Hai-Bo, Wan Li-Juan, Fan Min, Yang Jin, Lu Shi-Bin, Zhang Zhong-Xiang. Barrier-tunable gallium oxide Schottky diode. Acta Physica Sinica, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [11] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [12] Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua. Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain. Acta Physica Sinica, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [13] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [14] Barrier Tunable Gallium oxide Schottky diode. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211536
    [15] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [16] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [17] An Tao, Tu Chuan-Bao, Gong Wei. Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication. Acta Physica Sinica, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [18] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [19] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun. Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector. Acta Physica Sinica, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [20] Ma Hai-Lin, Su Qing. Effect of oxygen pressure on structure and optical band gap of gallium oxide thin films prepared by sputtering. Acta Physica Sinica, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
Metrics
  • Abstract views:  2246
  • PDF Downloads:  164
  • Cited By: 0
Publishing process
  • Received Date:  16 February 2024
  • Accepted Date:  14 April 2024
  • Available Online:  17 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回