Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Establishment of analytical model for electrostatic discharge gate-to-source capacitance of power metal-oxide-semiconductor field-effect transistor

Su Le Wang Cai-Lin Tan Zai-Chao Luo Yin Yang Wu-Hua Zhang Chao

Citation:

Establishment of analytical model for electrostatic discharge gate-to-source capacitance of power metal-oxide-semiconductor field-effect transistor

Su Le, Wang Cai-Lin, Tan Zai-Chao, Luo Yin, Yang Wu-Hua, Zhang Chao
PDF
HTML
Get Citation
  • In the actual human body model (HBM) test, it is found that the electrostatic discharge (ESD) test results of various power metal-oxide-semiconductor field-effect transistor (MOSFET) devices show asymmetry between forward withstand voltage and reverse withstand voltage, while the ESD process does not distinguish between positive direction and negative direction. Large differences between forward and reverse withstand voltages are unacceptable for power MOSFETs or as ESD protection devices. The problem of its causing device failure is particularly pronounced. In this work, by establishing the analytical model of gate-to-source capacitance of SGT-MOSFET, VUMOSFET and VDMOS under the forward and reverse voltages, we comparatively analyze the reasons for the asymmetry of the forward and reverse withstand voltages and their different ratios of the three kinds of power MOSFETs, which provides a theoretical basis for testing the device’s ESD and the analyzing their reliability. It is found that the ESD forward and reverse withstand voltage asymmetry phenomena of different power MOSFET structures are related to the variation of gate-to-source capacitance, caused by the reverse-type layer. When a forward voltage is applied across the gate and source, the device gate-to-source capacitance consists of the oxide layer capacitance around the gate in parallel; when a reverse voltage is applied, the gate-to-source capacitance consists of the virtual gate-to-drain capacitance in series with the inverse layer capacitance and then in parallel with the other oxide layer capacitance around the gate. This results in a decrease of the gate-to-source capacitance at the reverse voltage, making the device reverse withstand voltage greater than the forward withstand voltage. The difference in the ratio of ESD reverse withstand voltage to forward withstand voltage among different devices is related to the change of the capacitance of the inverse layer in the gate-to-source capacitor under reverse voltage caused by the difference in device structure.
      Corresponding author: Wang Cai-Lin, wangcailin8511@xaut.edu.cn
    • Funds: Project supported by Shaanxi Province “Two Chain” Integration Key Project of China (Grant No. 2021LLRH-02) and the Natural Science Basic Research Program of Science and Technology Department of Shaanxi Province, China (Grant No. 2023-JC-QN-0764).
    [1]

    Jung D Y, Park K S, Kim S I, Kwon S, Cho D H, Jang H G, Lim J W 2023 ETRI J. 45 543Google Scholar

    [2]

    Mai X C, Chen S L, Chen H W, Lee Y M 2023 Electronics 12 2803Google Scholar

    [3]

    Yan Y, Lan W, Chen Y, Yang D, Zhou Y, Zhu Z, Liou J J 2022 Adv. Electron. Mater. 8 2100886

    [4]

    Anderson N T, Lockledge S P 2022 ASM International Pasadena, USA, October 30–November 3, 2022 pp329–332

    [5]

    Smallwood J M 2023 J. Electrostat. 125 103817Google Scholar

    [6]

    Ker M D, Pommerenke D 2022 IEEE Trans. on Electromagn. Compat. 64 1783Google Scholar

    [7]

    Yang L, Yang C, Tu Y, Wang X, Wang Q 2021 IEEE Access 9 33512Google Scholar

    [8]

    Ji Q, Luo A, Liu Q, Wan B 2023 International Conference on Optoelectronic Information and Functional Materials 2023 12781

    [9]

    Gimenez S P, Galembeck E H S 2023 ECS Trans. 111 161Google Scholar

    [10]

    Ajay 2021 Silicon 13 1325Google Scholar

    [11]

    Hong S Z, Chen S L, Chen H W, Lee Y M 2021 IEEE Electron Device Lett. 42 1512Google Scholar

    [12]

    Lai J Y, Chen S L, Liu Z W, Chen H W, Chen H H, Lee Y M 2022 Sens. Mater. 34 1835

    [13]

    Zhu Z, Yang Z, Fan X, W Fan 2021 Crystals 11 128Google Scholar

    [14]

    Luo X, Xu J, Xu X, Luo H, Dai Z 2022 2022 International EOS/ESD Symposium on Design and System Chengdu China, November 9–11, 2022 p2023-03-22

    [15]

    Arosio M, Boffino C, Morini S, Dirk Priefert, Oezguer Albayrak, Viktor Boguszewicz, Andrea Baschirotto 2021 IEEE Trans Electron. Devices 68 2848Google Scholar

    [16]

    苏乐, 王彩琳, 杨武华, 梁晓刚, 张超 2023 物理学报 72 148501Google Scholar

    Su L, Wang C L, Yang W H, Liang X G, Zhang C 2023 Acta Phys. Sin. 72 148501Google Scholar

    [17]

    Xi J, Wang J, Lu J, Chen J, Xin Y, Li Z, Tu C, Shen Z J 2018 Microelectron. Reliab. 88-90 593Google Scholar

    [18]

    Su L, Wang C L, Yang W H, Zhang C 2023 Microelectron. Reliab. 143 114950Google Scholar

    [19]

    Tian Y, Yang Z, Xu Z, Liu S, Sun W F, Shi L, Zhu Y, Ye P, Zhou J 2018 Superlattices Microstruct. 116 151Google Scholar

    [20]

    Su L, Wang C L, Yang W H, An J 2022 Microelectron. Reliab. 139 114822Google Scholar

    [21]

    Sun J, Zheng Z, Zhang L, Chen K J 2022 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICS Vancouver, Canada, May 22–25, 2022 pp73–76

  • 图 1  SGT-MOSFET, VUMOSFET, VDMOS产品HBM测试的反向耐压与正向耐压比值

    Figure 1.  The positive and negative pass voltage difference multiple of SGT-MOSFET, VUMOSFET, and VDMOS under HBM testing

    图 2  人体放电模型测试电路

    Figure 2.  The HBM testing circuit.

    图 3  SGT-MOSFET在HBM模型下的放电波形 (RHBM1 = 1 MΩ, RHBM2 = 1500 Ω, RHBM3 = 500 Ω, CHBM = 100 pF)

    Figure 3.  The discharge waveform of SGT-MOSFET under the HBM model (RHBM1 = 1 MΩ, RHBM2 = 1500 Ω, RHBM3 = 500 Ω, CHBM = 100 pF).

    图 4  SGT-MOSFET ESD正反向电压下的电子密度、空穴密度、空间电荷及电场强度分布图

    Figure 4.  The e-density, h-density, space charge, and electric field distribution diagram of SGT-MOSFET under forward and reverse voltage of ESD.

    图 5  SGT-MOSFET正向耐压测试下的栅源电容CGS(+) (a)及等效电路(b)示意图

    Figure 5.  Schematic diagram of SGT-MOSFET gate to source capacitor CGS(+) (a) and equivalent circuit (b).

    图 6  SGT-MOSFET正向耐压测试下简化后的栅极与元胞结构间的栅源电容CGS(+)组成示意图

    Figure 6.  The simplified schematic diagram of SGT-MOSFET gate to source capacitor CGS(+) between the gate and the cell structure under forward pass voltage testing.

    图 7  SGT-MOSET反向耐压测试下的栅源电容CGS(–) (a)及等效电路(b)示意图

    Figure 7.  Schematic diagram of SGT-MOSET gate to source capacitor CGS(–) (a) and equivalent circuit (b) under reverse pass voltage testing.

    图 8  SGT-MOSFET反向耐压测试下简化后的栅极与元胞结构间的栅源电容CGS(–)组成示意图

    Figure 8.  The simplified schematic diagram of SGT-MOSFET gate to source capacitor CGS(–) between the gate and the cell structure under reverse pass voltage testing.

    图 9  VUMOSFET正向耐压测试下的栅源电容CGS(+) (a)及等效电路(b)示意图

    Figure 9.  Schematic diagram of VUMOSFET CGS(+) (a) and equivalent circuit (b) under forward pass voltage testing.

    图 10  VUMOSFET正向耐压测试下简化后的栅极与元胞结构间的栅源电容CGS(+)组成示意图

    Figure 10.  The simplified schematic diagram of VUMOSFET gate to source capacitor CGS(+) between the gate and the cell structure under forward pass voltage testing.

    图 11  VUMOSET反向耐压测试下的栅源电容CGS(–) (a)及等效电路(b)示意图

    Figure 11.  Schematic diagram of VUMOSET gate to source capacitor CGS(–) (a) and equivalent circuit (b) under reverse pass voltage testing.

    图 12  VUMOSET反向耐压测试下简化后的栅极与元胞结构间的栅源电容CGS(–)组成示意图

    Figure 12.  The simplified schematic diagram of VUMOSET gate to source capacitor CGS(–) between the gate and the cell structure under reverse pass voltage testing.

    图 13  VDMOS正向耐压测试下的栅源电容CGS(+) (a)及等效电路(b)示意图

    Figure 13.  Schematic diagram of VDMOS gate to source capacitor CGS(+)(a) and equivalent circuit (b).

    图 14  VDMOS正向耐压测试下简化后的栅极与元胞结构间的栅源电容CGS(+)组成示意图

    Figure 14.  The simplified schematic diagram of VDMOS gate to source capacitor CGS(+) between the gate and the cell structure under forward pass voltage testing.

    图 15  VDMOS反向耐压测试下的栅源电容CGS(–) (a)及等效电路(b)示意图

    Figure 15.  Schematic diagram of VDMOS gate to source capacitor CGS(–) (a) and equivalent circuit (b) under reverse pass voltage testing

    图 16  VDMOS反向耐压测试下简化后的栅极与元胞结构间的栅源电容CGS(–)组成示意图

    Figure 16.  The simplified schematic diagram of VDMOS gate to source capacitor CGS(–) between the gate and the cell structure under reverse pass voltage testing.

    图 17  SGT-MOSFET改进结构 (a) 传统结构; (b) NPN-SG结构

    Figure 17.  The improved structure of SGT-MOSFET: (a) Traditional structures; (b) NPN-SG structures.

    图 18  NPN-SG结构在HBM下的放电波形

    Figure 18.  The discharge waveform of NPN-SG structures under HBM

    图 19  VDMOS在HBM模型下的放电波形 (RHBM1 = 1 MΩ, RHBM2 = 1500Ω, RHBM3 = 500Ω, CHBM = 100 pF)

    Figure 19.  The discharge waveform of VDMOS under the HBM model (RHBM1 = 1 MΩ, RHBM2 = 1500Ω, RHBM3 = 500Ω, CHBM = 100 pF)

    表 1  SGT-MOSFET, VUMOSFET, VDMOS不同型号产品HBM测试的正反向耐压数据

    Table 1.  Positive and reverse withstand voltage data for HBM tests of VDMOS, VUMOSFET, SGT-MOSFET.

    器件类型 样品型号 ESD正向
    耐压/V
    ESD反向
    耐压/V
    SGT-MOSFET SW036R10E8S 600 1010
    SW050R10E8S 750 1450
    SW050R85E8S 670 1390
    SW050R95E8S 810 1590
    SW083R06VLS 480 830
    VUMOSFET SW065R68E7T 520 1640
    SW067R68E7T 650 2350
    SW068R68E7T 680 1970
    SW065R03VLT 450 1360
    SW018R03VLT 830 2800
    VDMOS SW7N60D 1350 3140
    SW10N60D 1470 3520
    SW12N65D 1530 3690
    SW20N65D 1560 3510
    SW7N80D 1670 3940
    DownLoad: CSV

    表 2  SGT-MOSFET, VUMOSFET, VDMOS不同型号产品的相关参数

    Table 2.  Related parameters of different products of VDMOS, VUMOSFET, SGT-MOSFET.

    器件类型 样品型号 封装形式 击穿电压/V 阈值电压/V 导通电阻/mΩ
    SGT-MOSFET SW036R10E8S TO-220 100 3 3.8
    SW050R10E8S TO-220 100 3 5.7
    SW050R85E8S TO-263 85 3 5.2
    SW050R95E8S TO-263 95 3 5.9
    SW083R06VLS TO-251 60 2 9.6
    VUMOSFET SW065R68E7T TO-220 68 3 6.3
    SW067R68E7T TO-220 68 3 6.9
    SW068R68E7T TO-252 68 3 7.0
    SW065R03VLT TO-252 30 3 6.6
    SW018R03VLT DFN5*6 30 1.8 1.6
    VDMOS SW7N60D TO-220 600 3.5 1.1
    SW10N60D TO-220F 600 3.5 0.9
    SW12N65D TO-220F 650 3.5 0.6
    SW20N65D TO-220F 650 3.7 0.3
    SW7N80D TO-220F 800 3.5 1.5
    DownLoad: CSV
  • [1]

    Jung D Y, Park K S, Kim S I, Kwon S, Cho D H, Jang H G, Lim J W 2023 ETRI J. 45 543Google Scholar

    [2]

    Mai X C, Chen S L, Chen H W, Lee Y M 2023 Electronics 12 2803Google Scholar

    [3]

    Yan Y, Lan W, Chen Y, Yang D, Zhou Y, Zhu Z, Liou J J 2022 Adv. Electron. Mater. 8 2100886

    [4]

    Anderson N T, Lockledge S P 2022 ASM International Pasadena, USA, October 30–November 3, 2022 pp329–332

    [5]

    Smallwood J M 2023 J. Electrostat. 125 103817Google Scholar

    [6]

    Ker M D, Pommerenke D 2022 IEEE Trans. on Electromagn. Compat. 64 1783Google Scholar

    [7]

    Yang L, Yang C, Tu Y, Wang X, Wang Q 2021 IEEE Access 9 33512Google Scholar

    [8]

    Ji Q, Luo A, Liu Q, Wan B 2023 International Conference on Optoelectronic Information and Functional Materials 2023 12781

    [9]

    Gimenez S P, Galembeck E H S 2023 ECS Trans. 111 161Google Scholar

    [10]

    Ajay 2021 Silicon 13 1325Google Scholar

    [11]

    Hong S Z, Chen S L, Chen H W, Lee Y M 2021 IEEE Electron Device Lett. 42 1512Google Scholar

    [12]

    Lai J Y, Chen S L, Liu Z W, Chen H W, Chen H H, Lee Y M 2022 Sens. Mater. 34 1835

    [13]

    Zhu Z, Yang Z, Fan X, W Fan 2021 Crystals 11 128Google Scholar

    [14]

    Luo X, Xu J, Xu X, Luo H, Dai Z 2022 2022 International EOS/ESD Symposium on Design and System Chengdu China, November 9–11, 2022 p2023-03-22

    [15]

    Arosio M, Boffino C, Morini S, Dirk Priefert, Oezguer Albayrak, Viktor Boguszewicz, Andrea Baschirotto 2021 IEEE Trans Electron. Devices 68 2848Google Scholar

    [16]

    苏乐, 王彩琳, 杨武华, 梁晓刚, 张超 2023 物理学报 72 148501Google Scholar

    Su L, Wang C L, Yang W H, Liang X G, Zhang C 2023 Acta Phys. Sin. 72 148501Google Scholar

    [17]

    Xi J, Wang J, Lu J, Chen J, Xin Y, Li Z, Tu C, Shen Z J 2018 Microelectron. Reliab. 88-90 593Google Scholar

    [18]

    Su L, Wang C L, Yang W H, Zhang C 2023 Microelectron. Reliab. 143 114950Google Scholar

    [19]

    Tian Y, Yang Z, Xu Z, Liu S, Sun W F, Shi L, Zhu Y, Ye P, Zhou J 2018 Superlattices Microstruct. 116 151Google Scholar

    [20]

    Su L, Wang C L, Yang W H, An J 2022 Microelectron. Reliab. 139 114822Google Scholar

    [21]

    Sun J, Zheng Z, Zhang L, Chen K J 2022 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICS Vancouver, Canada, May 22–25, 2022 pp73–76

  • [1] Zhang Zhao-Quan, Shi Peng-Peng, Gou Xiao-Fan. Analytical model of magnetic Barkhausen stress test of ferromagnetic plates. Acta Physica Sinica, 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [2] Ma Qun-Gang, Wang Hai-Hong, Zhang Sheng-Dong, Chen Xu, Wang Ting-Ting. Electro-static discharge protection analysis and design optimization of interlayer Cu interconnection in InGaZnO thin film transistor backplane. Acta Physica Sinica, 2019, 68(15): 158501. doi: 10.7498/aps.68.20190646
    [3] Zhang Qing, Wu Xin-Jun. Analytical modeling for the plate with a flat-bottom hole based on the reflection and transmission theory in pulsed eddy current testing. Acta Physica Sinica, 2017, 66(3): 038102. doi: 10.7498/aps.66.038102
    [4] Qin Ting, Huang Sheng-Xiang, Liao Cong-Wei, Yu Tian-Bao, Deng Lian-Wen. Analytical channel potential model of amorphous InGaZnO thin-film transistors with synchronized symmetric dual-gate. Acta Physica Sinica, 2017, 66(9): 097101. doi: 10.7498/aps.66.097101
    [5] Zhang Na, Cao Meng, Cui Wan-Zhao, Hu Tian-Cun, Wang Rui, Li Yun. Analytical model of secondary electron yield from metal surface with regular structures. Acta Physica Sinica, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [6] Li Shi-Song, Zhang Zhong-Hua, Zhao Wei, Huang Song-Ling, Fu Zhuang. Analytical model of electrostatic force generated by edge effect of a Kelvin capacitor based on conformal transformation. Acta Physica Sinica, 2015, 64(6): 060601. doi: 10.7498/aps.64.060601
    [7] Wu Liang-Hai, Zhang Jun, Fan Zhi-Guo, Gao Jun. An analytical model for skylight polarization pattern with multiple scattering. Acta Physica Sinica, 2014, 63(11): 114201. doi: 10.7498/aps.63.114201
    [8] Liang Jing-Hui, Zhang Xiao-Feng, Qiao Ming-Zhong, Xia Yi-Hui, Li Geng, Chen Jun-Quan. Analytic model of discrete random magnetizing Halbach PM motor. Acta Physica Sinica, 2013, 62(15): 150501. doi: 10.7498/aps.62.150501
    [9] Su Li-Na, Gu Xiao-Feng, Qin Hua, Yan Da-Wei. Analytical I-V model and numerical analysis of single electron transistor. Acta Physica Sinica, 2013, 62(7): 077301. doi: 10.7498/aps.62.077301
    [10] Wu Xiao-Peng, Yang Yin-Tang, Gao Hai-Xia, Dong Gang, Chai Chang-Chun. A compact model of substrate resistance for deep sub-micron gate grounded NMOS electrostatic discharge protection device. Acta Physica Sinica, 2013, 62(4): 047203. doi: 10.7498/aps.62.047203
    [11] Liu Bao-Jun, Cai Li. Analytical model of single event crosstalk in near space. Acta Physica Sinica, 2012, 61(19): 196103. doi: 10.7498/aps.61.196103
    [12] Li Cong, Zhuang Yi-Qi, Han Ru, Zhang Li, Bao Jun-Lin. Analytical modeling of asymmetric HALO-doped surrounding-gate MOSFET with gate overlapped lightly-doped drain. Acta Physica Sinica, 2012, 61(7): 078504. doi: 10.7498/aps.61.078504
    [13] Liu Yu-Dong, Du Lei, Sun Peng, Chen Wen-Hao. The effect of electrostatic discharge on the I-V and low frequency noise characterization of Schottky barrier diodes. Acta Physica Sinica, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [14] Cao Lei, Liu Hong-Xia, Wang Guan-Yu. Study of modeling for hetero-materiel gate fully depleted SSDOI MOSFET. Acta Physica Sinica, 2012, 61(1): 017105. doi: 10.7498/aps.61.017105
    [15] Liu Jing-Wang, Du Zhen-Hui, Li Jin-Yi, Qi Ru-Bin, Xu Ke-Xin. Analytical model for the tuning characteristics of static, dynamic, and transient behaviors in temperature and injection current of DFB laser diodes. Acta Physica Sinica, 2011, 60(7): 074213. doi: 10.7498/aps.60.074213
    [16] Huang Jian-Guo, Han Jian-Wei. Analysis of a typical internal charging induced spacecraft anomaly. Acta Physica Sinica, 2010, 59(4): 2907-2913. doi: 10.7498/aps.59.2907
    [17] Zhang Bing, Chai Chang-Chun, Yang Yin-Tang. Effect of distances from source or drain to the gate on the robustness of sub-micron ggNMOS ESD protection circuit. Acta Physica Sinica, 2010, 59(11): 8063-8070. doi: 10.7498/aps.59.8063
    [18] Luan Su-Zhen, Liu Hong-Xia, Jia Ren-Xu, Cai Nai-Qiong. 2-D analytical modeling of dual material gate fully depleted SOI MOSFET with high-k dielectric. Acta Physica Sinica, 2008, 57(6): 3807-3812. doi: 10.7498/aps.57.3807
    [19] Chen Wei-Bing, Xu Jing-Ping, Zou Xiao, Li Yan-Ping, Xu Sheng-Guo, Hu Zhi-Fu. Analytic tunneling-current model of small-scale MOSFETs. Acta Physica Sinica, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
    [20] Zhu Zhi-Wei, Hao Yue, Zhang Jin-Feng, Fang Jian-Ping, Liu Hong-Xia. A deep sub-micrometer NMOSFET non-local transport model for ESD effect. Acta Physica Sinica, 2006, 55(11): 5878-5884. doi: 10.7498/aps.55.5878
Metrics
  • Abstract views:  745
  • PDF Downloads:  28
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2024
  • Accepted Date:  07 March 2024
  • Available Online:  13 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回