- 
				Gallium oxide (Ga2O3) has the natural advantages in deep ultraviolet absorbance for performing deep ultraviolet photodetection. Owing to the vital application of photodetector array in optical imaging, in this work, we introduce a 4×4 Ga2O3-based photodetector array with five-finger interdigital electrodes, in which the high-quality and uniform Ga2O3 thin film is grown by using metal-organic chemical vapor deposition technique, and the device is fabricated by using the following methods: ultraviolet photolithography, lift-off, and ion beam sputtering . The photodetector cell possesses a responsivity of 2.65×103 A/W, a detectivity of 2.76×1016 Jones, an external quantum efficiency of (1.29×106)%, and a photoconductive gain as high as 12900. The 16-cells in this array show good uniformity. In this work the great application potential of gallium oxide deep ultraviolet detector array is illustrated from the perspective of optoelectronic performance and application prospect.- 
										Keywords:
										
- gallium oxide /
- photodetector array /
- deep ultraviolet detection
 [1] McClintock R, Mayes K, Yasan A, Shiell D, Kung P, Razeghi M 2005 Appl. Phys. Lett. 86 011117  Google Scholar Google Scholar[2] 葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达 2022 物理学报 71 110703  Google Scholar Google ScholarGe H N, Xie R Z, Guo J X, Li Q, Yu Y Y, He J L, Wang F, Wang P, Hu W D 2022 Acta Phys. Sin. 71 110703  Google Scholar Google Scholar[3] Li L, Ye S, Qu J, Zhou F, Song J, Shen G 2021 Small 17 2005606  Google Scholar Google Scholar[4] Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, Zang J, Yang X, Dong L, Shan C 2021 Carbon 173 427  Google Scholar Google Scholar[5] Konstantatos G, Sargent E H 2010 Nat. Nanotechnol. 5 391  Google Scholar Google Scholar[6] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501  Google Scholar Google ScholarGuo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501  Google Scholar Google Scholar[7] Chen X, Ren F, Gu S, Ye J 2019 Photon. Res. 7 381  Google Scholar Google Scholar[8] Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753  Google Scholar Google Scholar[9] 刘增 2021 博士学位论文 (北京: 北京邮电大学) Liu Z 2021 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese) [10] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L, Tang W H 2019 Chin. Phys. B 28 017105  Google Scholar Google Scholar[11] Yuan Y, Hao W, Mu W, Wang Z, Chen X, Liu Q, Xu G, Wang C, Zhou H, Zou Y, Zhao X, Jia Z, Ye J, Zhang J, Long S, Tao X, Zhang R, Hao Y 2021 Fundam. Res. 1 697  Google Scholar Google Scholar[12] 陆海, 张荣 2021 宽禁带半导体紫外光电探测器 (西安: 西安电子科技大学出版社) 第164页 Lu H, Zhang R 2021 Wide Band Gap Semiconductor UV Photodetector (Xi’an: Xidian University Press) p164 (in Chinese) [13] Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z, Tang W 2018 IEEE Photon. Technol. Lett. 30 993  Google Scholar Google Scholar[14] Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G, Tang W H 2021 IEEE Trans. Electron Devices 68 3435  Google Scholar Google Scholar[15] Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145  Google Scholar Google Scholar[16] Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F, Tang W H 2022 Chin. Phys. B 31 088503  Google Scholar Google Scholar[17] Pratiyush A S, Muazzam U U, Kumar S, Vijayakumar P, Ganesamoorthy S, Subramanian N, Muralidharan R, Nath D N 2019 IEEE Photon. Technol. Lett. 31 923  Google Scholar Google Scholar[18] Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang C, Shan C 2019 Adv. Funct. Mater. 29 1906040  Google Scholar Google Scholar[19] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557  Google Scholar Google Scholar[20] Qin Y, Li L H, Yu Z, Wu F, Dong D, Guo W, Zhang Z, Yuan J H, Xue K H, Miao X, Long S 2021 Adv. Sci. 80 2101106  Google Scholar Google Scholar[21] Qin Y, Long S, He Q, Dong H, Jian G, Zhang Y, Hou X, Tan P, Zhang Z, Lu Y, Shan C, Wang J, Hu W, Lv H, Liu Q, Liu M 2019 Adv. Electron. Mater. 5 1900389  Google Scholar Google Scholar[22] Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923  Google Scholar Google Scholar[23] Tong L, Huang X, Wang P, Ye L, Peng M, An L, Sun Q, Zhang Y, Yang G, Li Z, Zhong F, Wang F, Wang Y, Motlag M, Wu W, Cheng G J, Hu W 2020 Nat. Commun. 11 2308  Google Scholar Google Scholar[24] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105  Google Scholar Google Scholar[25] Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071  Google Scholar Google Scholar[26] Li Z, Jiao T, Hu D, Lv Y, Li W, Dong X, Zhang Y, Feng Z, Zhang B 2019 Coatings 9 281  Google Scholar Google Scholar[27] 马海林, 苏庆 2014 物理学报 63 116701  Google Scholar Google ScholarMa H L, Su Q 2014 Acta Phys. Sin. 63 116701  Google Scholar Google Scholar[28] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101  Google Scholar Google ScholarFeng Q J, Li F, Li T T, Li Y Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101  Google Scholar Google Scholar[29] Wager J F 2003 Science 300 1245  Google Scholar Google Scholar[30] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 物理学报 70 178503  Google Scholar Google ScholarZhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503  Google Scholar Google Scholar[31] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501  Google Scholar Google ScholarLi X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501  Google Scholar Google Scholar[32] 欧阳晓平, 王兰, 范如玉, 张忠兵, 王伟, 吕反修, 唐伟忠, 陈广超 2006 物理学报 55 2170  Google Scholar Google ScholarOuyang X P, Wang L, Fan R Y, Zhang Z B, Wang W, Lv F X, Tang W Z, Chen G C 2006 Acta Phys. Sin. 55 2170  Google Scholar Google Scholar[33] Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105  Google Scholar Google Scholar[34] Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920  Google Scholar Google Scholar[35] Li S, Yan Z Y, Tang J C, Yue J Y, Liu Z, Li P G, Guo Y F, Tang W H 2022 IEEE Trans. Electron Devices 69 2443  Google Scholar Google Scholar[36] Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L, Shen D 2021 J. Mater. Chem. C 9 4039  Google Scholar Google Scholar
- 
				
    
    
- 
				
[1] McClintock R, Mayes K, Yasan A, Shiell D, Kung P, Razeghi M 2005 Appl. Phys. Lett. 86 011117  Google Scholar Google Scholar[2] 葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达 2022 物理学报 71 110703  Google Scholar Google ScholarGe H N, Xie R Z, Guo J X, Li Q, Yu Y Y, He J L, Wang F, Wang P, Hu W D 2022 Acta Phys. Sin. 71 110703  Google Scholar Google Scholar[3] Li L, Ye S, Qu J, Zhou F, Song J, Shen G 2021 Small 17 2005606  Google Scholar Google Scholar[4] Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, Zang J, Yang X, Dong L, Shan C 2021 Carbon 173 427  Google Scholar Google Scholar[5] Konstantatos G, Sargent E H 2010 Nat. Nanotechnol. 5 391  Google Scholar Google Scholar[6] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501  Google Scholar Google ScholarGuo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501  Google Scholar Google Scholar[7] Chen X, Ren F, Gu S, Ye J 2019 Photon. Res. 7 381  Google Scholar Google Scholar[8] Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753  Google Scholar Google Scholar[9] 刘增 2021 博士学位论文 (北京: 北京邮电大学) Liu Z 2021 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese) [10] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L, Tang W H 2019 Chin. Phys. B 28 017105  Google Scholar Google Scholar[11] Yuan Y, Hao W, Mu W, Wang Z, Chen X, Liu Q, Xu G, Wang C, Zhou H, Zou Y, Zhao X, Jia Z, Ye J, Zhang J, Long S, Tao X, Zhang R, Hao Y 2021 Fundam. Res. 1 697  Google Scholar Google Scholar[12] 陆海, 张荣 2021 宽禁带半导体紫外光电探测器 (西安: 西安电子科技大学出版社) 第164页 Lu H, Zhang R 2021 Wide Band Gap Semiconductor UV Photodetector (Xi’an: Xidian University Press) p164 (in Chinese) [13] Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z, Tang W 2018 IEEE Photon. Technol. Lett. 30 993  Google Scholar Google Scholar[14] Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G, Tang W H 2021 IEEE Trans. Electron Devices 68 3435  Google Scholar Google Scholar[15] Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145  Google Scholar Google Scholar[16] Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F, Tang W H 2022 Chin. Phys. B 31 088503  Google Scholar Google Scholar[17] Pratiyush A S, Muazzam U U, Kumar S, Vijayakumar P, Ganesamoorthy S, Subramanian N, Muralidharan R, Nath D N 2019 IEEE Photon. Technol. Lett. 31 923  Google Scholar Google Scholar[18] Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang C, Shan C 2019 Adv. Funct. Mater. 29 1906040  Google Scholar Google Scholar[19] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557  Google Scholar Google Scholar[20] Qin Y, Li L H, Yu Z, Wu F, Dong D, Guo W, Zhang Z, Yuan J H, Xue K H, Miao X, Long S 2021 Adv. Sci. 80 2101106  Google Scholar Google Scholar[21] Qin Y, Long S, He Q, Dong H, Jian G, Zhang Y, Hou X, Tan P, Zhang Z, Lu Y, Shan C, Wang J, Hu W, Lv H, Liu Q, Liu M 2019 Adv. Electron. Mater. 5 1900389  Google Scholar Google Scholar[22] Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923  Google Scholar Google Scholar[23] Tong L, Huang X, Wang P, Ye L, Peng M, An L, Sun Q, Zhang Y, Yang G, Li Z, Zhong F, Wang F, Wang Y, Motlag M, Wu W, Cheng G J, Hu W 2020 Nat. Commun. 11 2308  Google Scholar Google Scholar[24] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105  Google Scholar Google Scholar[25] Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071  Google Scholar Google Scholar[26] Li Z, Jiao T, Hu D, Lv Y, Li W, Dong X, Zhang Y, Feng Z, Zhang B 2019 Coatings 9 281  Google Scholar Google Scholar[27] 马海林, 苏庆 2014 物理学报 63 116701  Google Scholar Google ScholarMa H L, Su Q 2014 Acta Phys. Sin. 63 116701  Google Scholar Google Scholar[28] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101  Google Scholar Google ScholarFeng Q J, Li F, Li T T, Li Y Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101  Google Scholar Google Scholar[29] Wager J F 2003 Science 300 1245  Google Scholar Google Scholar[30] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 物理学报 70 178503  Google Scholar Google ScholarZhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503  Google Scholar Google Scholar[31] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501  Google Scholar Google ScholarLi X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501  Google Scholar Google Scholar[32] 欧阳晓平, 王兰, 范如玉, 张忠兵, 王伟, 吕反修, 唐伟忠, 陈广超 2006 物理学报 55 2170  Google Scholar Google ScholarOuyang X P, Wang L, Fan R Y, Zhang Z B, Wang W, Lv F X, Tang W Z, Chen G C 2006 Acta Phys. Sin. 55 2170  Google Scholar Google Scholar[33] Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105  Google Scholar Google Scholar[34] Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920  Google Scholar Google Scholar[35] Li S, Yan Z Y, Tang J C, Yue J Y, Liu Z, Li P G, Guo Y F, Tang W H 2022 IEEE Trans. Electron Devices 69 2443  Google Scholar Google Scholar[36] Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L, Shen D 2021 J. Mater. Chem. C 9 4039  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 9893
- PDF Downloads: 216
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							