Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector

Zhang Yi-Fei Liu Yuan Mei Jia-Dong Wang Jun-Zhuan Wang Xiao-Mu Shi Yi

Citation:

Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector

Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi
PDF
HTML
Get Citation
  • Infrared imaging chips are crucial for a broad range of military, medicine and biology applications. Although silicon detectors’ on-chip integration technology is matured, their low absorption in near-infrared light results in poor infrared photocurrent response. To increase the photodetector absorption efficiency, antenna-like metal nanoparticles have been widely adopted due to their plasmon resonance effects. Oligomer nanoparticles, including quaternary nanoparticles, exhibit plasmon resonance effects that localize and enhance the light field in a sub-wavelength range. Furthermore, they can interfere with each other to achieve Fano resonance and bound state in continuity, resulting in a stronger localization and enhancement of the electromagnetic field. In this study an array of gold quaternary nanoparticle oligomers is used as the antenna for a graphene/SOI (with 1 μm silicon) heterojunction near-infrared detector. Each oligomer consists of four gold squares, each with a size of 250 nm, forming two pairs of dipoles similar to the orbital hybridization of hydrogen atoms. This thus results in a multi-body coupling structure with bonding state and anti-bonding state. The antenna array parameters, such as the periodic constant, gap between nanoparticles, and angle (θ) between the oligomers, are meticulously adjusted. The optimized device is characterized by using photocurrent and photocurrent mapping, achieving a 2-fold enhancement in photoresponsivity with the maximum value at θ ~ 40°. Notably, a consistent dip in photocurrents is observed for different periods or gap arrays when the angle theta is 20°. The simulation is conducted by using finite-difference time-domain (FDTD), revealing the emergence of Fano-like resonance in the transmittance spectra of the array at approximately 850 nm. The interference caused by the strongly coupling system to the plane coupled leakage field and the nanoparticle plasmon mode results in the formation of a new discrete leakage mode, i.e. the Fano-like resonance. The antenna helps to concentrate and emit the light field energy directionally to the detector, while there is a trade-off between the loss caused by nanoparticles absorption and the leakage energy. The photocurrent reaches a minimal point at a theta angle of 20° angle. At this point, the energy is localized in the oligomers, and the metal absorption loss weakens the plasmon enhancement effect. These findings are further supported by the simulation results of electric field and Poynting vector distribution. These findings indicate an important and promising way to enhance the photo detection efficiency via nanostructured plasmonic antenna.
      Corresponding author: Wang Jun-Zhuan, wangjz@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974064, 61934004).
    [1]

    Ijaz S, Rana A S, Ahmad Z, Zubair M, Massoud Y, Mehmood M Q 2022 Adv. Devices Instrument. 2022 9861078Google Scholar

    [2]

    Zhang L, Cui T J 2021 Research 2021 9802673Google Scholar

    [3]

    Xing H, Fan J, Lu D, Gao Z, Shum P P, Cong L 2022 Adv. Devices Instrument. 2022 9852503Google Scholar

    [4]

    Fang M, Tan X, Liu Z, Hu B, Wang X 2021 Research 2021 9794329Google Scholar

    [5]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (Berlin, Heideberg: Springer) pp5–19

    [6]

    Mirin N A, Bao K, Nordlander P 2009 J. Phys. Chem. A 113 4028Google Scholar

    [7]

    Gallinet B, Martin O J F 2011 ACS Nano 5 8999Google Scholar

    [8]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T, 2010 Nat. Mater. 9 707Google Scholar

    [9]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 16048Google Scholar

    [10]

    Liang Y, Koshelev K, Zhang F, Lin H, Lin S, Wu J, Jia B, Kivshar Y 2020 Nano Lett. 20 635Google Scholar

    [11]

    闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕 2023 物理学报 72 044202Google Scholar

    Yan M, Sun K, Ning T Y, Zhao L N, Ren Y Y, Huo Y Y 2023 Acta Phys. Sin. 72 044202Google Scholar

    [12]

    Wu N X, Ma H B, Chen H S, Qian H L 2021 Prog. Electromagn. Res. 172 23Google Scholar

    [13]

    Liu L L, Zhuo L 2022 Prog. Electromagn. Res. 173 93Google Scholar

    [14]

    Rogers C, Piggott A Y, Thomson D J, Wiser R F, Opris I E, Fortune S A , Compston A J, Gondarenko A, Meng F, Che X, Reed G T, Nicolaescu R 2021 Nature 590 256Google Scholar

    [15]

    Fossum E R 1997 IEEE T. Electron Dev. 44 1689Google Scholar

    [16]

    李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰 2014 物理学报 63 224201Google Scholar

    Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201Google Scholar

    [17]

    吴国安, 罗林保 2018 物理 47 137Google Scholar

    Wu G A, Luo L B 2018 Physics 47 137Google Scholar

    [18]

    陈浩, 张晓霞, 王鸿, 姬月华 2018 物理学报 67 118101Google Scholar

    Chen H, Zhang X X, Wang H, Ji Y H 2018 Acta Phys. Sin. 67 118101Google Scholar

    [19]

    龙弯, 许中杰 2015 激光与光电子学进展 52 26Google Scholar

    Long W, Xu Z J 2015 Laser Optoelectron. Prog. 52 26Google Scholar

    [20]

    Nordlander P, Oubre C, Prodan E, Li K, Stockman M I 2004 Nano Lett. 4 899Google Scholar

    [21]

    Wang H, Brandl D W, Nordlander P, Halas N J 2007 Accounts Chem. Res. 40 53Google Scholar

    [22]

    Tang B, Jia Z, Huang L, Su J, Jiang C 2021 IEEE J. Sel. Top. Quant. 27 1Google Scholar

    [23]

    Li L F, Wang J Z, Kang L, Liu W, Yu L, Zheng B J, Brongersma M L, Werner D H, Lan S F, Shi Y, Xu Y, Wang X M 2020 ACS Nano 14 16634Google Scholar

    [24]

    Goykhman I, Sassi U, Desiatov B, Mazurski N, Milana S, Fazio D, Eiden A, Khurgin J, Shappir J, Levy U, Ferrari A C 2016 Nano Lett. 16 3005Google Scholar

    [25]

    Wang X, Cheng Z, Xu K, Tsang H K, Xu J B 2013 Nat. Photonics 7 888Google Scholar

    [26]

    Xu S, Sayanskiy A, Kupriianov, Tuz V R, Kapitanova P, Sun H B, Han W, Kivshar Y S 2019 Adv. Opt. Mater. 7 1801166Google Scholar

    [27]

    Zhang G, Lan C, Gao R, Wen Y, Zhou J 2019 Adv. Theory Simulat. 2 1900123Google Scholar

    [28]

    Russell K J, Hu E L 2010 Appl. Phys. Lett. 97 163115Google Scholar

    [29]

    Wu Z Q, Yang J L, Manjunath N K, Zhang Y J, Feng S R, Lu Y H, Wu J H, Zhao W W, Qiu C Y, Li J F, Lin S S 2018 Adv. Mater. 30 1706527Google Scholar

  • 图 1  纳米天线器件制备流程示意图 (a) SOI上刻蚀出硅岛; (b)蒸镀金属接触电极; (c)硅岛上制备纳米天线阵列; (d)转移石墨烯薄膜; (e)器件显微镜照片

    Figure 1.  Device with antenna fabrication process: (a) Si island fabrication from SOI substrate; (b) electrodes deposition with EBE technique; (c) nano-antenna fabrication by EBL and EBE; (d) transferring of graphene film; (e) optical photo of the device.

    图 2  纳米天线阵列SEM表征图 (a)纳米天线结构示意图; (b)一个周期单元结构和参数示意图; (c), (d)纳米天线SEM 表征图, 阵列的周期d = 1750 nm, 同一周期中每个纳米颗粒之间的间距为100 nm, θ分别为0°和40°

    Figure 2.  SEM photos of antenna array: (a), (b) Schematic of the antenna array and the related parameters of one unit; (c), (d) SEM images of the gold nano-antenna array, with the values of θ angle are 0° and 40°, respectively, the period d of the array is 1750 nm and the gap between two nanoparticle is 100 nm.

    图 3  具有纳米天线结构的器件光电流表征 (a), (b)分别为光电流测试光路图和测试平台实物图; (c)有无纳米线天线的石墨烯/硅器件暗电流特性; (d)具有纳米天线区域与没有纳米天线的区域光电流随850 nm激光功率的变化

    Figure 3.  Photocurrent characterization of the device: (a), (b) Diagram of the optical path and the real measurement setup; (c) the dark current of the device with and without nano-antenna array; (d) photocurrent vs. laser power with 850 nm line of devices with and without nano-antenna array.

    图 4  不同夹角纳米天线阵列的光电流表征 (a) 20倍物镜显微镜下纳米天线阵列的暗场图, 从右到左分为3个区域I, II和III, d为阵列周期常数, gap为纳米颗粒间距, 每一个区域的阵列θ角从0°到90°; (b) 1 mW波长为850 nm激光辐照下纳米天线阵列的光电流mapping图; (c) 不同区域光电流大小随夹角的变化

    Figure 4.  Photocurrent characterization of nano-antenna arrays with different parameters as d, gap and θ. (a) The dark field image of the nanoantenna array under a 20× objective lens microscope is divided into three areas I, II and III from right to left. d is the array periodic constant, gap is the distance between nanoparticles, and the θ angle of each area is from 0° to 90°. (b) The photocurrent mapping of the arrays with 1 mW 850 nm laser. (c) The photocurrent vs. θcurves of the device with different periodic parameters

    图 5  纳米天线透射光谱和夹角的关系 (a) FDTD仿真计算的纳米天线阵列的透射光谱随θ角的变化图; (b) θ = 16°, 20°时的透射全谱

    Figure 5.  Transmission spectra with the different θ: (a) Transmission spectra of the nano-antenna array with θ; (b) the typical transmission spectra of θ = 16° and 20° simulated by FDTD method.

    图 6  透射尖峰波长处探测器表面电场和坡印亭矢量分布图, 其中夹角θ分别为(a), (b) 0°; (c), (d) 20°; (e), (f) 40°

    Figure 6.  Electric field and Poynting vector distribution at the transmission peak wavelength, θ equals to (a), (b) 0°, (c), (d) 20°, (e), (f) 40°.

    图 7  FDTD仿真计算的纳米天线阵列的吸收光谱随θ角变化的mapping图

    Figure 7.  Simulation results of the extinction coefficient of the antenna with θ.

  • [1]

    Ijaz S, Rana A S, Ahmad Z, Zubair M, Massoud Y, Mehmood M Q 2022 Adv. Devices Instrument. 2022 9861078Google Scholar

    [2]

    Zhang L, Cui T J 2021 Research 2021 9802673Google Scholar

    [3]

    Xing H, Fan J, Lu D, Gao Z, Shum P P, Cong L 2022 Adv. Devices Instrument. 2022 9852503Google Scholar

    [4]

    Fang M, Tan X, Liu Z, Hu B, Wang X 2021 Research 2021 9794329Google Scholar

    [5]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (Berlin, Heideberg: Springer) pp5–19

    [6]

    Mirin N A, Bao K, Nordlander P 2009 J. Phys. Chem. A 113 4028Google Scholar

    [7]

    Gallinet B, Martin O J F 2011 ACS Nano 5 8999Google Scholar

    [8]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T, 2010 Nat. Mater. 9 707Google Scholar

    [9]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 16048Google Scholar

    [10]

    Liang Y, Koshelev K, Zhang F, Lin H, Lin S, Wu J, Jia B, Kivshar Y 2020 Nano Lett. 20 635Google Scholar

    [11]

    闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕 2023 物理学报 72 044202Google Scholar

    Yan M, Sun K, Ning T Y, Zhao L N, Ren Y Y, Huo Y Y 2023 Acta Phys. Sin. 72 044202Google Scholar

    [12]

    Wu N X, Ma H B, Chen H S, Qian H L 2021 Prog. Electromagn. Res. 172 23Google Scholar

    [13]

    Liu L L, Zhuo L 2022 Prog. Electromagn. Res. 173 93Google Scholar

    [14]

    Rogers C, Piggott A Y, Thomson D J, Wiser R F, Opris I E, Fortune S A , Compston A J, Gondarenko A, Meng F, Che X, Reed G T, Nicolaescu R 2021 Nature 590 256Google Scholar

    [15]

    Fossum E R 1997 IEEE T. Electron Dev. 44 1689Google Scholar

    [16]

    李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰 2014 物理学报 63 224201Google Scholar

    Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201Google Scholar

    [17]

    吴国安, 罗林保 2018 物理 47 137Google Scholar

    Wu G A, Luo L B 2018 Physics 47 137Google Scholar

    [18]

    陈浩, 张晓霞, 王鸿, 姬月华 2018 物理学报 67 118101Google Scholar

    Chen H, Zhang X X, Wang H, Ji Y H 2018 Acta Phys. Sin. 67 118101Google Scholar

    [19]

    龙弯, 许中杰 2015 激光与光电子学进展 52 26Google Scholar

    Long W, Xu Z J 2015 Laser Optoelectron. Prog. 52 26Google Scholar

    [20]

    Nordlander P, Oubre C, Prodan E, Li K, Stockman M I 2004 Nano Lett. 4 899Google Scholar

    [21]

    Wang H, Brandl D W, Nordlander P, Halas N J 2007 Accounts Chem. Res. 40 53Google Scholar

    [22]

    Tang B, Jia Z, Huang L, Su J, Jiang C 2021 IEEE J. Sel. Top. Quant. 27 1Google Scholar

    [23]

    Li L F, Wang J Z, Kang L, Liu W, Yu L, Zheng B J, Brongersma M L, Werner D H, Lan S F, Shi Y, Xu Y, Wang X M 2020 ACS Nano 14 16634Google Scholar

    [24]

    Goykhman I, Sassi U, Desiatov B, Mazurski N, Milana S, Fazio D, Eiden A, Khurgin J, Shappir J, Levy U, Ferrari A C 2016 Nano Lett. 16 3005Google Scholar

    [25]

    Wang X, Cheng Z, Xu K, Tsang H K, Xu J B 2013 Nat. Photonics 7 888Google Scholar

    [26]

    Xu S, Sayanskiy A, Kupriianov, Tuz V R, Kapitanova P, Sun H B, Han W, Kivshar Y S 2019 Adv. Opt. Mater. 7 1801166Google Scholar

    [27]

    Zhang G, Lan C, Gao R, Wen Y, Zhou J 2019 Adv. Theory Simulat. 2 1900123Google Scholar

    [28]

    Russell K J, Hu E L 2010 Appl. Phys. Lett. 97 163115Google Scholar

    [29]

    Wu Z Q, Yang J L, Manjunath N K, Zhang Y J, Feng S R, Lu Y H, Wu J H, Zhao W W, Qiu C Y, Li J F, Lin S S 2018 Adv. Mater. 30 1706527Google Scholar

  • [1] Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan. Sensing and slow light applications of graphene plasmonic terahertz structure. Acta Physica Sinica, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [3] Wang Wei-Hua. Study of magnetoplasmons in graphene rings with two-dimensional finite element method. Acta Physica Sinica, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [4] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [5] Li Ze-Yu, Jiang Qu-Han, Ma Teng-Zhou, Yuan Ying-Hao, Chen Lin. Multi-parameter tunable phase transition based terahertz graphene plasmons and its application. Acta Physica Sinica, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [6] Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing. Multiband plasmon-induced transparency based on nanometals-graphene hybrid model. Acta Physica Sinica, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [7] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [8] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [9] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [10] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [11] Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2Graphene-based broadband all-optical spatial modulator. Acta Physica Sinica, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [12] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [13] Huang Le, Zhang Zhi-Yong, Peng Lian-Mao. High performance graphene Hall sensors. Acta Physica Sinica, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [14] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [15] Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua. Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons. Acta Physica Sinica, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [16] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [18] Zeng Ting-Ting, Li Peng-Cheng, Zhou Xiao-Xin. Single isolated attosecond pulse generated by helium atom exposed to the two laser pulses with the same color and midinfrared intense laser pulse in the plasmon. Acta Physica Sinica, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [19] Yin Hai-Feng, Zhang Hong, Yue Li. Plasmon excitation in C60 fullerene dimers. Acta Physica Sinica, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [20] Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun. First-principles study on the Li-storage performance of silicon clusters and graphene composite structure. Acta Physica Sinica, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
Metrics
  • Abstract views:  2349
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2023
  • Accepted Date:  11 December 2023
  • Available Online:  22 December 2023
  • Published Online:  20 March 2024

/

返回文章
返回