-
In this paper, the all-optical spatial modulation of monolayer graphene-coated microfiber is proposed. Graphene is used as a saturable absorber wrapped on the microfiber produced by heating the carbon dioxide laser. When the signal light travels along the microfiber, part of the light will pass along the surface of the microfiber in the form of an evanescent field, and it will be absorbed by the graphene. Simultaneously we shoot the 808 nm pump light into the micro-nanofiber wrapped by the graphene vertically from the space. According to graphene characteristic of preferential absorption, the absorption of the signal light is controlled by the pump light, thus the broadband all-optical space modulation is realized. In a conventional graphene microfiber all-optical modulator, signal light and pump light are generally input into a microfiber via a coupler. However, the mode of operation of pump light and graphene in all-optical spatial modulation are different from those of the traditional modulation, the pump light works on the graphene outside the microfiber, which realizes the separation of the pump light and the signal light. The output signal does not need to be optically filtered for the pump light to obtain the modulated signal. The output signal light of the spatial all-optical modulator has the characteristics of “clean”. We also verify this in experiment. In addition, the pump light is vertically incident from space, the effect of the graphene length on the modulation is not considered and the modulation time is only related to the relaxation time of graphene, which is helpful in improving the response time. Modulation experiments include static spectral modulation and dynamic frequency modulation. In the static spectral modulation, the broad spectrum signal has a maximum modulation depth of 6 dB at 1095 nm when the pump power is 569 mW. The relationship among pump power, wavelength and modulation depth is also analyzed. The higher the pump power, the higher the modulation depth will be; with the same pump power, the modulation depth of long wave length is higher than that of short wave. In the dynamic modulation experiment with the modulation bandwidth~50 nm and the modulation rate~1.5 kHz, the influence of pump light and signal light on output dynamic signal are studied, the feasibility of all-optical space modulation based on graphene is verified experimentally. The composite waveguide of all-optical spatial modulator opens the door to micro-nano ultrafast signal, processing in a more flexible and efficient way.
-
Keywords:
- graphene /
- microfiber /
- all-optical modulation /
- spatial modulation
[1] Avouris P 2010 Nano Lett. 10 4285
[2] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[4] Liu W, Sun C, Liao C, Lin C, Li H, Qu G, Yu W, Song N, Yuan C, Wang Z 2016 J. Agric. Food Chem. 64 5909
[5] Rafiee M A 2011 Graphene-based Composite Materials (New York: Rensselaer Polytechnic Institute)
[6] Bao Q, Han Z, Yu W, Ni Z, Yan Y, Shen Z X, Loh K P, Ding Y T 2009 Adv. Funct. Mater. 19 3077
[7] Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30
[8] Liao Y, Feng G Y, Mo J, Zhou S H 2017 Spectrosc. Spect. Anal. 37 3621 (in Chinese)[廖宇, 冯国英, 莫军, 周寿桓 2017 光谱学与光谱分析 37 3621]
[9] Jiang Y N, Wang Y, Ge D B, Li S M, Cao W P, Gao X, Yu X H 2016 Acta Phys. Sin. 65 054101 (in Chinese)[姜彦南, 王扬, 葛德彪, 李思敏, 曹卫平, 高喜, 于新华 2016 物理学报 65 054101]
[10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197
[11] Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F 2008 Appl. Phys. Lett. 92 042116
[12] Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B 2008 Phys. Rev. Lett. 101 157402
[13] Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese)[陈英良, 冯小波, 侯德东 2013 物理学报 62 187301]
[14] Yu L, Zheng J, Xu Y, Dai D, He S 2014 ACS Nano 8 11386
[15] Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G 2013 Laser Phys. Lett. 10 065901
[16] Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H 2014 Nano Lett. 14 955
[17] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64
[18] Gao Y, Shiue R J, Gan X, Li L, Cheng P, Meric I, Wang L, Szep A, Walker D, Hone J 2015 Nano Lett. 15 2001
[19] Cassidy D T, Johnson D C, Hill K O 1985 Appl. Opt. 25 328
[20] Lacroix S, Bourbonnais R, Gonthier F, Bures J 1986 Appl. Opt. 25 4421
[21] Gonthier F, Bures J, Black R J, Lacroix S 1988 Opt. Lett. 13 395
-
[1] Avouris P 2010 Nano Lett. 10 4285
[2] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[4] Liu W, Sun C, Liao C, Lin C, Li H, Qu G, Yu W, Song N, Yuan C, Wang Z 2016 J. Agric. Food Chem. 64 5909
[5] Rafiee M A 2011 Graphene-based Composite Materials (New York: Rensselaer Polytechnic Institute)
[6] Bao Q, Han Z, Yu W, Ni Z, Yan Y, Shen Z X, Loh K P, Ding Y T 2009 Adv. Funct. Mater. 19 3077
[7] Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30
[8] Liao Y, Feng G Y, Mo J, Zhou S H 2017 Spectrosc. Spect. Anal. 37 3621 (in Chinese)[廖宇, 冯国英, 莫军, 周寿桓 2017 光谱学与光谱分析 37 3621]
[9] Jiang Y N, Wang Y, Ge D B, Li S M, Cao W P, Gao X, Yu X H 2016 Acta Phys. Sin. 65 054101 (in Chinese)[姜彦南, 王扬, 葛德彪, 李思敏, 曹卫平, 高喜, 于新华 2016 物理学报 65 054101]
[10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197
[11] Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F 2008 Appl. Phys. Lett. 92 042116
[12] Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B 2008 Phys. Rev. Lett. 101 157402
[13] Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese)[陈英良, 冯小波, 侯德东 2013 物理学报 62 187301]
[14] Yu L, Zheng J, Xu Y, Dai D, He S 2014 ACS Nano 8 11386
[15] Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G 2013 Laser Phys. Lett. 10 065901
[16] Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H 2014 Nano Lett. 14 955
[17] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64
[18] Gao Y, Shiue R J, Gan X, Li L, Cheng P, Meric I, Wang L, Szep A, Walker D, Hone J 2015 Nano Lett. 15 2001
[19] Cassidy D T, Johnson D C, Hill K O 1985 Appl. Opt. 25 328
[20] Lacroix S, Bourbonnais R, Gonthier F, Bures J 1986 Appl. Opt. 25 4421
[21] Gonthier F, Bures J, Black R J, Lacroix S 1988 Opt. Lett. 13 395
Catalog
Metrics
- Abstract views: 6588
- PDF Downloads: 160
- Cited By: 0