Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Graphene-based broadband all-optical spatial modulator

Mo Jun Feng Guo-Ying Yang Mo-Chou Liao Yu Zhou Hao Zhou Shou-Huan1\2

Citation:

Graphene-based broadband all-optical spatial modulator

Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the all-optical spatial modulation of monolayer graphene-coated microfiber is proposed. Graphene is used as a saturable absorber wrapped on the microfiber produced by heating the carbon dioxide laser. When the signal light travels along the microfiber, part of the light will pass along the surface of the microfiber in the form of an evanescent field, and it will be absorbed by the graphene. Simultaneously we shoot the 808 nm pump light into the micro-nanofiber wrapped by the graphene vertically from the space. According to graphene characteristic of preferential absorption, the absorption of the signal light is controlled by the pump light, thus the broadband all-optical space modulation is realized. In a conventional graphene microfiber all-optical modulator, signal light and pump light are generally input into a microfiber via a coupler. However, the mode of operation of pump light and graphene in all-optical spatial modulation are different from those of the traditional modulation, the pump light works on the graphene outside the microfiber, which realizes the separation of the pump light and the signal light. The output signal does not need to be optically filtered for the pump light to obtain the modulated signal. The output signal light of the spatial all-optical modulator has the characteristics of “clean”. We also verify this in experiment. In addition, the pump light is vertically incident from space, the effect of the graphene length on the modulation is not considered and the modulation time is only related to the relaxation time of graphene, which is helpful in improving the response time. Modulation experiments include static spectral modulation and dynamic frequency modulation. In the static spectral modulation, the broad spectrum signal has a maximum modulation depth of 6 dB at 1095 nm when the pump power is 569 mW. The relationship among pump power, wavelength and modulation depth is also analyzed. The higher the pump power, the higher the modulation depth will be; with the same pump power, the modulation depth of long wave length is higher than that of short wave. In the dynamic modulation experiment with the modulation bandwidth~50 nm and the modulation rate~1.5 kHz, the influence of pump light and signal light on output dynamic signal are studied, the feasibility of all-optical space modulation based on graphene is verified experimentally. The composite waveguide of all-optical spatial modulator opens the door to micro-nano ultrafast signal, processing in a more flexible and efficient way.
      Corresponding author: Feng Guo-Ying, guoing_feng@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574221) and the National High Technology Research and Development Program of China (Grant No. JG2011105).
    [1]

    Avouris P 2010 Nano Lett. 10 4285

    [2]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Liu W, Sun C, Liao C, Lin C, Li H, Qu G, Yu W, Song N, Yuan C, Wang Z 2016 J. Agric. Food Chem. 64 5909

    [5]

    Rafiee M A 2011 Graphene-based Composite Materials (New York: Rensselaer Polytechnic Institute)

    [6]

    Bao Q, Han Z, Yu W, Ni Z, Yan Y, Shen Z X, Loh K P, Ding Y T 2009 Adv. Funct. Mater. 19 3077

    [7]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30

    [8]

    Liao Y, Feng G Y, Mo J, Zhou S H 2017 Spectrosc. Spect. Anal. 37 3621 (in Chinese)[廖宇, 冯国英, 莫军, 周寿桓 2017 光谱学与光谱分析 37 3621]

    [9]

    Jiang Y N, Wang Y, Ge D B, Li S M, Cao W P, Gao X, Yu X H 2016 Acta Phys. Sin. 65 054101 (in Chinese)[姜彦南, 王扬, 葛德彪, 李思敏, 曹卫平, 高喜, 于新华 2016 物理学报 65 054101]

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [11]

    Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F 2008 Appl. Phys. Lett. 92 042116

    [12]

    Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B 2008 Phys. Rev. Lett. 101 157402

    [13]

    Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese)[陈英良, 冯小波, 侯德东 2013 物理学报 62 187301]

    [14]

    Yu L, Zheng J, Xu Y, Dai D, He S 2014 ACS Nano 8 11386

    [15]

    Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G 2013 Laser Phys. Lett. 10 065901

    [16]

    Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H 2014 Nano Lett. 14 955

    [17]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [18]

    Gao Y, Shiue R J, Gan X, Li L, Cheng P, Meric I, Wang L, Szep A, Walker D, Hone J 2015 Nano Lett. 15 2001

    [19]

    Cassidy D T, Johnson D C, Hill K O 1985 Appl. Opt. 25 328

    [20]

    Lacroix S, Bourbonnais R, Gonthier F, Bures J 1986 Appl. Opt. 25 4421

    [21]

    Gonthier F, Bures J, Black R J, Lacroix S 1988 Opt. Lett. 13 395

  • [1]

    Avouris P 2010 Nano Lett. 10 4285

    [2]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Liu W, Sun C, Liao C, Lin C, Li H, Qu G, Yu W, Song N, Yuan C, Wang Z 2016 J. Agric. Food Chem. 64 5909

    [5]

    Rafiee M A 2011 Graphene-based Composite Materials (New York: Rensselaer Polytechnic Institute)

    [6]

    Bao Q, Han Z, Yu W, Ni Z, Yan Y, Shen Z X, Loh K P, Ding Y T 2009 Adv. Funct. Mater. 19 3077

    [7]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30

    [8]

    Liao Y, Feng G Y, Mo J, Zhou S H 2017 Spectrosc. Spect. Anal. 37 3621 (in Chinese)[廖宇, 冯国英, 莫军, 周寿桓 2017 光谱学与光谱分析 37 3621]

    [9]

    Jiang Y N, Wang Y, Ge D B, Li S M, Cao W P, Gao X, Yu X H 2016 Acta Phys. Sin. 65 054101 (in Chinese)[姜彦南, 王扬, 葛德彪, 李思敏, 曹卫平, 高喜, 于新华 2016 物理学报 65 054101]

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [11]

    Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F 2008 Appl. Phys. Lett. 92 042116

    [12]

    Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B 2008 Phys. Rev. Lett. 101 157402

    [13]

    Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese)[陈英良, 冯小波, 侯德东 2013 物理学报 62 187301]

    [14]

    Yu L, Zheng J, Xu Y, Dai D, He S 2014 ACS Nano 8 11386

    [15]

    Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G 2013 Laser Phys. Lett. 10 065901

    [16]

    Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H 2014 Nano Lett. 14 955

    [17]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [18]

    Gao Y, Shiue R J, Gan X, Li L, Cheng P, Meric I, Wang L, Szep A, Walker D, Hone J 2015 Nano Lett. 15 2001

    [19]

    Cassidy D T, Johnson D C, Hill K O 1985 Appl. Opt. 25 328

    [20]

    Lacroix S, Bourbonnais R, Gonthier F, Bures J 1986 Appl. Opt. 25 4421

    [21]

    Gonthier F, Bures J, Black R J, Lacroix S 1988 Opt. Lett. 13 395

  • [1] Liu Hong-Jiang, Liu Yi-Fei, Gu Fu-Xing. Automatic fabrication system of optical micro-nanofiber based on deep learning. Acta Physica Sinica, 2024, 73(10): 104207. doi: 10.7498/aps.73.20240171
    [2] Wu Wan-Ling, Wang Xiang-Ke, Yu Hua-Kang, Li Zhi-Yuan. Sub-wavelength focused light and optical trapping application based on two-mode interference from an optical micro-/nanofiber. Acta Physica Sinica, 2024, 73(10): 100401. doi: 10.7498/aps.73.20240181
    [3] Wang Fu-Jie, Cao Xiao-Yu, Gao Chao, Wen Xue-Ke, Lei Bing. Algorithms for calculating polarization direction based on spatial modulation of vector optical field. Acta Physica Sinica, 2023, 72(1): 010201. doi: 10.7498/aps.72.20221745
    [4] Yao Hai-Yun, Yan Xin, Liang Lan-Ju, Yang Mao-Sheng, Yang Qi-Li, Lü Kai-Kai, Yao Jian-Quan. Terahertz dynamic multidimensional modulation at Dirac point based on patterned graphene/gallium nitride hybridized with metasurfaces. Acta Physica Sinica, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [5] Cao Qi-Zhi, Tang Jin-Feng, Pan Yang-Liu, Jiang Min, Jiang Si-Yue, Zhang Jing, Jia Chen-Ling, Fan Dong-Xin, Deng Ting, Wang Hua-Hua, Duan Lian. Dynamic calibration of linear shear spatial modulation snapshot imaging polarimeter. Acta Physica Sinica, 2022, 71(15): 154205. doi: 10.7498/aps.71.20220229
    [6] Wang Xiao-Yu, Bi Wei-Hong, Cui Yong-Zhao, Fu Guang-Wei, Fu Xing-Hu, Jin Wa, Wang Ying. Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition. Acta Physica Sinica, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [7] Tao Ze-Hua, Dong Hai-Ming, Duan Yi-Feng. Photon-excited carriers and emission of graphene in terahertz radiation fields. Acta Physica Sinica, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [8] Wang Xiao-Fa, Zhang Jun-Hong, Gao Zi-Ye, Xia Guang-Qiong, Wu Zheng-Mao. Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber. Acta Physica Sinica, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [9] Li Jie, Li Meng-Meng, Sun Li-Peng, Fan Peng-Cheng, Ran Yang, Jin Long, Guan Bai-Ou. Polarization-maintaining microfiber-based evanescent-wave sensors. Acta Physica Sinica, 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [10] Li Cheng, Cai Li, Wang Sen, Liu Bao-Jun, Cui Huan-Qing, Wei Bo. Switching characteristics of all-spin logic devices based on graphene interconnects. Acta Physica Sinica, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [11] Cao Qi-Zhi, Zhang Jing, Edward DeHoog, Lu Yuang, Hu Bao-Qing, Li Wu-Gang, Li Jian-Ying, Fan Dong-Xin, Deng Ting, Yan Yan. Static subminiature snapshot imaging polarimeter using spatial modulation. Acta Physica Sinica, 2016, 65(5): 050702. doi: 10.7498/aps.65.050702
    [12] Bi Wei-Hong, Wang Yuan-Yuan, Fu Guang-Wei, Wang Xiao-Yu, Li Cai-Li. Study on the electro-optic modulation properties of graphene-coated hollow optical fiber. Acta Physica Sinica, 2016, 65(4): 047801. doi: 10.7498/aps.65.047801
    [13] Feng Qiu-Yan, Yao Bai-Cheng, Zhou Jin-Hao, Xia Han-Ding, Fan Meng-Qiu, Zhang Li, Wu Yu, Rao Yun-Jiang. Four-wave-mixing generated by femto-second laser pumping based on graphene coated microfiber structure. Acta Physica Sinica, 2015, 64(18): 184214. doi: 10.7498/aps.64.184214
    [14] Fu Kuan, Xu Zhong-Wei, Li Hai-Qing, Peng Jing-Gang, Dai Neng-Li, Li Jin-Yan. Dark pulses and harmonic mode locking in graphene-based passively mode-locked Yb3+-doped fiber laser with all-normal dispersion cavity. Acta Physica Sinica, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [15] Wang Bo, Bai Yong-Lin, Cao Wei-Wei, Xu Peng, Liu Bai-Yu, Gou Yong-Sheng, Zhu Bing-Li, Hou Xun. Picosecond resolving detection method and experiment for ultrafast X-ray by modulation of an optical probe. Acta Physica Sinica, 2015, 64(20): 200701. doi: 10.7498/aps.64.200701
    [16] Feng De-Jun, Hang Wen-Yu, Jiang Shou-Zhen, Ji Wei, Jia Dong-Fang. Few-layer graphene membrane as an ultrafast mode-locker in erbium-doped fiber laser. Acta Physica Sinica, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [17] Liu Ying-Gang, Che Fu-Long, Jia Zhen-An, Fu Hai-Wei, Wang Hong-Liang, Shao Min. Investigation on the characteristics of micro/nanofiber Bragg grating for refractive index sensing. Acta Physica Sinica, 2013, 62(10): 104218. doi: 10.7498/aps.62.104218
    [18] Hou Jian-Ping, Zhao Chen-Yang, Yang Nan, Hao Jian-Ping, Zhao Jian-Lin. Measurement of end-face reflection property of micro-nano fibers. Acta Physica Sinica, 2013, 62(14): 144216. doi: 10.7498/aps.62.144216
    [19] Liang Rui-Bing, Sun Qi-Zhen, Wo Jiang-Hai, Liu De-Ming. Theoretical investigation on refractive index sensor basedon Bragg grating in micro/nanofiber. Acta Physica Sinica, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [20] Wang Bo, Liang Zhong-Zhu, Kong Yan-Mei, Liang Jing-Qiu, Fu Jian-Guo, Zheng Ying, Zhu Wan-Bin, Lü Jin-Guang, Wang Wei-Biao, Pei Shu, Zhang Jun. Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer. Acta Physica Sinica, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
Metrics
  • Abstract views:  6588
  • PDF Downloads:  160
  • Cited By: 0
Publishing process
  • Received Date:  07 February 2018
  • Accepted Date:  04 July 2018
  • Published Online:  05 November 2018

/

返回文章
返回