Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on the design and characteristics of multi-grating modulation screen for tabletop Xray system

Wang De Tan Zhi-Jie Li Qing-Yu Yu Hong Han Shen-Sheng

Citation:

Research on the design and characteristics of multi-grating modulation screen for tabletop Xray system

Wang De, Tan Zhi-Jie, Li Qing-Yu, Yu Hong, Han Shen-Sheng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The desktop X-ray system has the limitations of low flux and poor coherence. It faces great challenges in application scenarios such as microscopic imaging and high-precision measurement. Fourier-transform ghost imaging (FGI) has low requirements on the coherence of the light source. Based on this principle, multi-angle FGI based on spatial correlation can effectively improve the imaging efficiency and is suitable for desktop X-ray systems. However, this technology is still in the theoretical stage, and there is a lack of effective devices to modulate Xrays and form focused multiple beams. To this end, a multi-grating modulation method is proposed in this paper. The partially coherent radiation of the X-ray source is modulated by arranging multiple subgratings in a specific direction. The X-ray emitted by a single sub-grating is spatially coherent light, and the X-rays between the sub-gratings are incoherently superimposed at the sample position to form a focused multiangle beam. This effectively improves the flux utilization of the desktop system. The modulation principle of multi-grating is described theoretically, and the key design parameters and their selection basis are clarified. Through numerical simulation, the modulation characteristics of partially coherent X-rays in the propagation process behind the modulation screen are systematically analyzed. By optimizing the parameters such as the size, material and thickness of the sub-grating, the influence of the sub-grating on the size, uniformity and diffraction efficiency of the focused spot is studied. The results show that when the sub-grating size matches the spatial coherence size of the X-ray source, the focusing effect of the beam can be significantly improved, and a smaller and uniform focal spot can be obtained. Based on the theoretical and simulation results, a gold multi-grating modulation screen is designed and fabricated for the liquid target X-ray source. Experimental validation of the simulation and theoretical predictions will be conducted once the experimental conditions are met. Once the experimental conditions are fulfilled, the focusing performance of the modulation screen will be further verified. The design and implementation of the modulation screen provide effective support and feasible path for multi-angle diffraction imaging and related applications in miniaturized X-ray systems.
  • [1]

    Chien C C, Tseng P Y, Chen H H, Hua T E, Chen S T, Chen Y Y, Leng W H, Wang C H, Hwu Y, Yin G C, Liang K S, Chen F R, Chu Y S,Yeh H I, Yang Y C, Yang CS, Zhang G L, Je J H, Margaritondo J 2013 Biotechnol. Adv. 31 375

    [2]

    Zhang L, Tao F, Du G, Wang J, Gao R Y, Deng B, Xiao T Q 2023 Nucl. Instrum. Methods Phys. Res. Sect. A 1057 168781

    [3]

    Yao S, Fan J, Chen Z, Zong Y, Zhang J, Sun Z, Zhang L, Tai R, Liu Z, Chen C, Jiang H D 2018 IUCrJ 5 141

    [4]

    Foetisch A, Filella M, Watts B,Vinot LH, Bigalke M 2022 J. Hazard. Mater. 426 12780

    [5]

    Miao J, Sandberg R L, Song C 2011 IEEE J. Sel. Top. 18 399

    [6]

    Prosekov P A, Nosik V L, Blagov A E 2021 Crystallogr. Rep. 66 867

    [7]

    Pfeiffer F 2018 Nat. Photonics 12 9

    [8]

    Yuan Q X, Deng B, Guan Y, Zhang K, Liu Y J 2019 Physics 48 205

    [9]

    Withers P J, Bouman C, Carmignato S, Cnudde V, Grimaldi D,Hagen C K,Maire É,Manley M,Plessis A D,Stock S 2021 R Nat. Rev. Methods Primers. 1 18

    [10]

    Pushie M J, Sylvain N J, Hou H, Hackett M J,Kelly M E,Webb S M 2022 Metallomics 14 mfac032

    [11]

    Cheng J, Han S S 2004 Phys. Rev. Lett. 92 093903

    [12]

    Yu H, Lu R H, Han S S, Xie H L, Du G H, Xiao T Q, Zhu D M 2016 Phys. Rev. Lett. 117 113901

    [13]

    Tan Z J, Yu H, Zhu R G, Lu R H, Han S S, Xue C F,Yang S M, Wu Y Q 2022 Phys. Rev. A. 106 053521

    [14]

    Zhang A X, He Y H, Wu L A, Chen L M, Wang B B 2018 Optica 5 374

    [15]

    He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A, Chen L M 2020 APL Photonics 5

    [16]

    Zhao C Z, Zhang H P, Tang J, Zhao N X, Li Z L, Xiao T Q 2024 J. Synchrotron Radiat. 31

    [17]

    Li P, Chen X, Qiu X, Chen B L, Chen LX, Sun B Q 2024 Chin. Opt. Lett. 22 112701

    [18]

    Sun M J, Zhang J M 2019 Sensors 19 732

    [19]

    Li H Q, Hou W T, Ye Z Y, Yuan T Y, Shao S K, Xiong J, Sun T X, Sun X F 2023 Appl. Phys. Lett. 123

    [20]

    Wittwer F, Lyubomirskiy M, Koch F, Kahnt M, Seyrich M, Garrevoet J, David C, Schroer C G 2021 Appl. Phys. Lett. 118

    [21]

    Lyubomirskiy M, Wittwer F, Kahnt M, Koch F, Kubec A, Falch K V, Garrevoet J, Seyrich M, David C, Schroer C G 2022 Sci. Rep. 12 6203

    [22]

    Li Q Y, Tan Z J, Wang D, Yu H, Han S S 2025 Phys. Rev. A. 111 033531

    [23]

    Zholudev S I, Terentiev S A, Polyakov S N, Martyushov S Y, Denisov V N, Kornilov N V, Polikarpov M V, Snigirev A A, Snigireva I I, Blank V D 2016 AIP Conference Proceedings p1764

    [24]

    Das A, Heirwegh C M, Gao N, Elam W T, Wade L A, Clark B C, Hurowitz J A, VanBommel S J, Jones M W M, Allwood A C X 2025 X-Ray Spectrom 54 203

    [25]

    Marshall F J, Bahr R E, Goncharov V N, Glebov V Y, Peng B, Regan S P, Sangster T C, Stoeckl C 2017 Rev. Sci. Instrum. 88

    [26]

    Ohba A, Nakano T, Onoda S, Mochizuki T, Nakamoto K 2021 Rev. Sci. Instrum. 92

    [27]

    Chen B Y, Yin G C, Lee C Y, Hsu M Y, Lin B H, Tseng S C, Li X Y, Chen H Y, Wu J X, Chang S H, Tang M T 2018 Synchrotron Radiat. News. 31 27

    [28]

    Mohacsi I, Vartiainen I, Rösner B, Guizar-Sicairos M, Guzenko V A, McNulty I, Winarski R, Holt M V, David C 2017 Sci. Rep. 7 43624

    [29]

    Li T, Senesi A J, Lee B 2016 Chem. Rev. 116 11128

    [30]

    Lyubomirskiy M, Wittwer F, Kahnt M, Koch F, Kubec A, Falch K V, Garrevoet J, Seyrich M, David C, Schroer C G 2022 Sci. Rep. 12 6203

    [31]

    Hirose M, Higashino T, Ishiguro N, Takahashi Y 2020 Opt. Express 28 1216

    [32]

    Zhu Z, Ellis R A, Pang S 2018 Optica 5 733

    [33]

    Born M, Wolf E 2013 Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier) pp572-577

    [34]

    Moreau P A, Toninelli E, Morris P A, Aspden R S, Gregory T, Spalding G, Boyd R W, Padgett M J 2018 Opt. Express 26 7528

    [35]

    Goodman J W. 2005 Introduction to Fourier optics (Roberts and Company publishers) pp80-82

    [36]

    Palmer C, Loewen E G 2005 Diffraction grating handbook (Newport Corporation) pp21-22

    [37]

    Harvey J E, Pfisterer R N 2019 Opt. Eng. 58 087105

    [38]

    Pascarelli S, Mathon O, Munoz M, Mairs T, Susini J 2006 J. Synchrotron Radiat. 13 351

    [39]

    Xu C W,Zhong L J, Qin Y X, Guo H P, Tang X H 2016 Chin. J. Lasers. 43 102001(in Chinese)[许成文,钟理京,秦应雄,郭海平,唐霞辉 2016 中国激光 43 102001]

    [40]

    Xie C Q 2022 Opt. Precis. Eng. 30 1815(in Chinese)[谢常青 2022 光学精密工程 30 1815]

    [41]

    Qiu K Q, Xu X D, Liu Y, Hong Y L, Fu S J 2008 Acta Phys. Sin. 57 6329 (in Chinese)[邱克强,徐向东,刘颖,洪义麟,付绍军 2008 物理学报 57 6329]

    [42]

    Gao Y Z, Wu L J, Lu W E, Liu H Y, Xia Y, Zhao L L, Li Y L, Kong X D, Han L 2021 Acta Opt. Sin. 41 1111002(in Chinese)[高雅增,吴鹿杰,卢维尔,刘虹遥,夏洋,赵丽莉,李艳丽,孔祥东,韩立 2021 光学学报 41 1111002]

    [43]

    Yang J M, Ding Y N, Cui Q M, Cao L F, Ding Y K, Zhu P P, Zhao Y D, Yang G H, Zheng Y J, Wang Y N, Zhang W H, Ni G 2000 High Power Laser Part. Beams. 12 0(in Chinese)[杨家敏,丁耀南,崔明启,曹磊峰,丁永坤,朱佩平,赵屹东,杨国洪,郑志坚,王耀梅,张文海,黎刚 2000 强激光与粒子束 12 0]

    [44]

    Pinzek S J 2023 Ph. D. Dissertation (Munich: Technische Universität München)

    [45]

    Burwitz V, Reinsch K, Greiner J, Rauch T, Suleimanov V, Walter F W, Mennickent R E, Predehl P 2007 Adv. Space Res. 40 1294

    [46]

    Morimoto N, Fujino S, Ohshima K, Harada J, Hosoi T, Watanabe H, Shimura T 2014 Opt. Lett. 39 4297

    [47]

    Moore A S, Guymer T M, Kline J L, Morton J, Taccetti M, Lanier N E, Bentley C, Workman J, Peterson B, Mussack K, Cowan J, Prasad R, Richardson M, Burns S, Kalantar D H, Benedetti L R, Bell P, Bradley D, Hsing W, Stevenson M 2012 Rev. Sci. Instrum. 83

    [48]

    Gross H, Henn M, Heidenreich S, Rathsfeld A, Bär M 2012 Appl. Opt. 51 7384

    [49]

    Wansleben M, Zech C, Streeck C, Weser J, Genzel C, Beckhoff B, Mainz R 2019 J. Anal. At. Spectrom. 34 1497

    [50]

    Tong X, Chen Y F, Mu C Y, Chen Q C, Zhang X Z, Zeng G, Li Y C, Xu Z J, Zhao J, Zhen X J, Mao C W, Lu H L, Tai R Z 2023 Nanotechnology 34 215301

  • [1] Wang Fu-Jie, Cao Xiao-Yu, Gao Chao, Wen Xue-Ke, Lei Bing. Algorithms for calculating polarization direction based on spatial modulation of vector optical field. Acta Physica Sinica, doi: 10.7498/aps.72.20221745
    [2] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, doi: 10.7498/aps.71.20220976
    [3] Cao Qi-Zhi, Tang Jin-Feng, Pan Yang-Liu, Jiang Min, Jiang Si-Yue, Zhang Jing, Jia Chen-Ling, Fan Dong-Xin, Deng Ting, Wang Hua-Hua, Duan Lian. Dynamic calibration of linear shear spatial modulation snapshot imaging polarimeter. Acta Physica Sinica, doi: 10.7498/aps.71.20220229
    [4] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, doi: 10.7498/aps.69.20191586
    [5] Wang Hai-Bo, Luo Zhen-Lin, Liu Qing-Qing, Jin Chang-Qing, Gao Chen, Zhang Li. Resonant X-ray diffraction studies on modulation structures of high temperature superconducting sample Sr2CuO3.4. Acta Physica Sinica, doi: 10.7498/aps.68.20190494
    [6] Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2Graphene-based broadband all-optical spatial modulator. Acta Physica Sinica, doi: 10.7498/aps.67.20180307
    [7] Pan An, Wang Dong, Shi Yi-Shi, Yao Bao-Li, Ma Zhen, Han Yang. Incoherent ptychography in Fresnel domain with simultaneous multi-wavelength illumination. Acta Physica Sinica, doi: 10.7498/aps.65.124201
    [8] Mou Huan, Li Bao-Quan, Cao Yang. Transmission-type miniature micro-beam modulated X-ray source based on space application. Acta Physica Sinica, doi: 10.7498/aps.65.140703
    [9] Cao Qi-Zhi, Zhang Jing, Edward DeHoog, Lu Yuang, Hu Bao-Qing, Li Wu-Gang, Li Jian-Ying, Fan Dong-Xin, Deng Ting, Yan Yan. Static subminiature snapshot imaging polarimeter using spatial modulation. Acta Physica Sinica, doi: 10.7498/aps.65.050702
    [10] Wang Dong, Ma Ying-Jun, Liu Quan, Shi Yi-Shi. Experimental study on multi-wavelength ptychographic imaging in visible light band. Acta Physica Sinica, doi: 10.7498/aps.64.084203
    [11] Li Na, Jia Di, Zhao Hui-Jie, Su Yun, Li Tuo-Tuo. Error analysis and reconstruction for diffractive optic imaging spectrometer using the multiple iterations. Acta Physica Sinica, doi: 10.7498/aps.63.177801
    [12] Liu Hai-Gang, Xu Zi-Jian, Zhang Xiang-Zhi, Guo Zhi, Tai Ren-Zhong. Influence of central beamstop on ptychographic coherent diffractive imaging. Acta Physica Sinica, doi: 10.7498/aps.62.150702
    [13] Liu Cheng, Pan Xing-Chen, Zhu Jian-Qiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating. Acta Physica Sinica, doi: 10.7498/aps.62.184204
    [14] Fan Jia-Dong, Jiang Huai-Dong. Coherent X-ray diffraction imaging and its applications in materials science and biology. Acta Physica Sinica, doi: 10.7498/aps.61.218702
    [15] Zhou Guang-Zhao, Wang Yu-Dan, Ren Yu-Qi, Chen Can, Ye Lin-Lin, Xiao Ti-Qiao. Digital simulation for 3D reconstruction of coherent x-ray diffractive imaging. Acta Physica Sinica, doi: 10.7498/aps.61.018701
    [16] Zhou Guang-Zhao, Tong Ya-Jun, Chen Can, Ren Yu-Qi, Wang Yu-Dan, Xiao Ti-Qiao. Digital simulation for coherent X-ray diffractive imaging. Acta Physica Sinica, doi: 10.7498/aps.60.028701
    [17] Wang Bo, Liang Zhong-Zhu, Kong Yan-Mei, Liang Jing-Qiu, Fu Jian-Guo, Zheng Ying, Zhu Wan-Bin, Lü Jin-Guang, Wang Wei-Biao, Pei Shu, Zhang Jun. Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer. Acta Physica Sinica, doi: 10.7498/aps.59.907
    [18] Jian Xiao-Hua, Zhang Chun-Min, Zhao Bao-Chang. A new method for spectrum reproduction and interferogram processing. Acta Physica Sinica, doi: 10.7498/aps.56.824
    [19] XU ZHENG, ZHAO XIAO-RU, WU WEN-BIN, SUN XUE-FENG, WANG LIANG-BIN, ZHOU GUI-EN, LI XIAO-GUANG, ZHANG YU-HENG. X-RAY DIFFRACTION STUDY OF THE MODULATED STRUCTURE IN Bi2Sr2CaCu2Oy SINGLE CRYSTALS. Acta Physica Sinica, doi: 10.7498/aps.45.1578
    [20] BAI HAI-YANG, CHEN HONG, ZHANG YUN, WANG WEN-KUI. STUDY ON SOLID STATE REACTION INTERDIFFUSION OF Fe-Ti MULTILAYER MODULATED FILMS WITH DYNAMIC IN SITU X-RAY DIFFRACTION. Acta Physica Sinica, doi: 10.7498/aps.42.1134
Metrics
  • Abstract views:  25
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  17 July 2025
  • /

    返回文章
    返回