Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and characteristics of multi-grating modulation screen for desktop X-ray system

WANG De TAN Zhijie LI Qingyu YU Hong HAN Shensheng

Citation:

Design and characteristics of multi-grating modulation screen for desktop X-ray system

WANG De, TAN Zhijie, LI Qingyu, YU Hong, HAN Shensheng
cstr: 32037.14.aps.74.20250512
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The desktop X-ray system has limitations such as low flux and poor coherence. It faces great challenges in application scenarios such as microscopic imaging and high-precision measurement. Fourier-transform ghost imaging (FGI) has low requirements for the coherence of the light source. Using this principle, multi-angle FGI based on spatial correlation can effectively improve the imaging efficiency and is suitable for desktop X-ray systems. However, this technology is still in the theoretical stage, and there is a lack of effective devices to modulate X-rays and form focused multiple beams. To this end, a multi-grating modulation method is proposed in this work. The partially coherent radiation of the X-ray source is modulated by arranging multiple sub-gratings in a specific direction. The X-ray emitted by a single sub-grating is spatially coherent light, and the X-rays between the sub-gratings are incoherently superimposed at the sample position to form a focused multi-angle beam. This effectively improves the flux utilization of the desktop system. The modulation principle of multi-grating is described theoretically, and the key design parameters and their selection basis are clarified. Through numerical simulation, the modulation characteristics of partially coherent X-rays in the propagation process behind the modulation screen are systematically analyzed. By optimizing the parameters such as the size, material and thickness of the sub-grating, the influences of the sub-grating on the size, uniformity and diffraction efficiency of the focused spot are investigated. The results show that when the sub-grating size matches the spatial coherence size of the X-ray source, the focusing effect of the beam can be significantly improved, and a smaller and uniform focal spot can be obtained. Based on the theoretical and simulation results, a gold multi-grating modulation screen is designed and fabricated for the liquid target X-ray source. The simulation and theoretical predictions will be validated experimentally, once the experimental conditions are met. The design and implementation of the modulation screen provide effective support and a feasible way for multi-angle diffraction imaging and related applications in miniaturized X-ray systems.
      Corresponding author: TAN Zhijie, tanzj@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11627811).
    [1]

    Chien C C, Tseng P Y, Chen H H, Hua T E, Chen S T, Chen Y Y, Leng W H, Wang C H, Hwu Y, Yin G C, Liang K S, Chen F R, Chu Y S, Yeh H I, Yang Y C, Yang CS, Zhang G L, Je J H, Margaritondo J 2013 Biotechnol. Adv. 31 375Google Scholar

    [2]

    Zhang L, Tao F, Du G, Wang J, Gao R Y, Deng B, Xiao T Q 2023 Nucl. Instrum. Methods Phys. Res. Sect. A 1057 168781Google Scholar

    [3]

    Yao S, Fan J, Chen Z, Zong Y, Zhang J, Sun Z, Zhang L, Tai R, Liu Z, Chen C, Jiang H D 2018 IUCrJ 5 141Google Scholar

    [4]

    Foetisch A, Filella M, Watts B, Vinot LH, Bigalke M 2022 J. Hazard. Mater. 426 127804Google Scholar

    [5]

    Miao J, Sandberg R L, Song C 2011 IEEE J. Sel. Top. 18 399

    [6]

    Prosekov P A, Nosik V L, Blagov A E 2021 Crystallogr. Rep. 66 867Google Scholar

    [7]

    Pfeiffer F 2018 Nat. Photonics 12 9Google Scholar

    [8]

    Yuan Q X, Deng B, Guan Y, Zhang K, Liu Y J 2019 Physics 48 205

    [9]

    Withers P J, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen C K, Maire É, Manley M, Plessis A D, Stock S 2021 R Nat. Rev. Methods Primers. 1 18Google Scholar

    [10]

    Pushie M J, Sylvain N J, Hou H, Hackett M J, Kelly M E, Webb S M 2022 Metallomics 14 mfac032Google Scholar

    [11]

    Cheng J, Han S S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [12]

    Yu H, Lu R H, Han S S, Xie H L, Du G H, Xiao T Q, Zhu D M 2016 Phys. Rev. Lett. 117 113901Google Scholar

    [13]

    Tan Z J, Yu H, Zhu R G, Lu R H, Han S S, Xue C F, Yang S M, Wu Y Q 2022 Phys. Rev. A. 106 053521Google Scholar

    [14]

    Zhang A X, He Y H, Wu L A, Chen L M, Wang B B 2018 Optica 5 374Google Scholar

    [15]

    He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A, Chen L M 2020 APL Photonics 5 056102Google Scholar

    [16]

    Zhao C Z, Zhang H P, Tang J, Zhao N X, Li Z L, Xiao T Q 2024 J. Synchrotron Radiat. 31 1525Google Scholar

    [17]

    Li P, Chen X, Qiu X, Chen B L, Chen LX, Sun B Q 2024 Chin. Opt. Lett. 22 112701Google Scholar

    [18]

    Sun M J, Zhang J M 2019 Sensors 19 732Google Scholar

    [19]

    Li H Q, Hou W T, Ye Z Y, Yuan T Y, Shao S K, Xiong J, Sun T X, Sun X F 2023 Appl. Phys. Lett. 123 141101Google Scholar

    [20]

    Wittwer F, Lyubomirskiy M, Koch F, Kahnt M, Seyrich M, Garrevoet J, David C, Schroer C G 2021 Appl. Phys. Lett. 118 171102Google Scholar

    [21]

    Lyubomirskiy M, Wittwer F, Kahnt M, Koch F, Kubec A, Falch K V, Garrevoet J, Seyrich M, David C, Schroer C G 2022 Sci. Rep. 12 6203Google Scholar

    [22]

    Li Q Y, Tan Z J, Wang D, Yu H, Han S S 2025 Phys. Rev. A. 111 033531Google Scholar

    [23]

    Zholudev S I, Terentiev S A, Polyakov S N, Martyushov S Y, Denisov V N, Kornilov N V, Polikarpov M V, Snigirev A A, Snigireva I I, Blank V D 2016 AIP Conf. Proc. 1764 020006

    [24]

    Das A, Heirwegh C M, Gao N, Elam W T, Wade L A, Clark B C, Hurowitz J A, VanBommel S J, Jones M W M, Allwood A C X 2025 X-Ray Spectrom 54 203Google Scholar

    [25]

    Marshall F J, Bahr R E, Goncharov V N, Glebov V Y, Peng B, Regan S P, Sangster T C, Stoeckl C 2017 Rev. Sci. Instrum. 88 093702Google Scholar

    [26]

    Ohba A, Nakano T, Onoda S, Mochizuki T, Nakamoto K 2021 Rev. Sci. Instrum. 92 093704Google Scholar

    [27]

    Chen B Y, Yin G C, Lee C Y, Hsu M Y, Lin B H, Tseng S C, Li X Y, Chen H Y, Wu J X, Chang S H, Tang M T 2018 Synchrotron Radiat. News 31 27Google Scholar

    [28]

    Mohacsi I, Vartiainen I, Rösner B, Guizar-Sicairos M, Guzenko V A, McNulty I, Winarski R, Holt M V, David C 2017 Sci. Rep. 7 43624Google Scholar

    [29]

    Li T, Senesi A J, Lee B 2016 Chem. Rev. 116 11128Google Scholar

    [30]

    Hirose M, Higashino T, Ishiguro N, Takahashi Y 2020 Opt. Express 28 1216Google Scholar

    [31]

    Zhu Z, Ellis R A, Pang S 2018 Optica 5 733Google Scholar

    [32]

    Born M, Wolf E 2013 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier) pp572–577

    [33]

    Moreau P A, Toninelli E, Morris P A, Aspden R S, Gregory T, Spalding G, Boyd R W, Padgett M J 2018 Opt. Express 26 7528Google Scholar

    [34]

    Goodman J W 2005 Introduction to Fourier Optics (Roberts and Company publishers) pp80–82

    [35]

    Palmer C, Loewen E G 2005 Diffraction grating handbook (Newport Corporation) pp21–22

    [36]

    Harvey J E, Pfisterer R N 2019 Opt. Eng. 58 087105

    [37]

    Pascarelli S, Mathon O, Munoz M, Mairs T, Susini J 2006 J. Synchrotron Radiat. 13 351Google Scholar

    [38]

    许成文, 钟理京, 秦应雄, 郭海平, 唐霞辉 2016 中国激光 43 102001Google Scholar

    Xu C W, Zhong L J, Qin Y X, Guo H P, Tang X H 2016 Chin. J. Lasers. 43 102001Google Scholar

    [39]

    谢常青 2022 光学精密工程 30 1815Google Scholar

    Xie C Q 2022 Opt. Precis. Eng. 30 1815Google Scholar

    [40]

    邱克强, 徐向东, 刘颖, 洪义麟, 付绍军 2008 物理学报 57 6329Google Scholar

    Qiu K Q, Xu X D, Liu Y, Hong Y L, Fu S J 2008 Acta Phys. Sin. 57 6329Google Scholar

    [41]

    高雅增, 吴鹿杰, 卢维尔, 刘虹遥, 夏洋, 赵丽莉, 李艳丽, 孔祥东, 韩立 2021 光学学报 41 1111002Google Scholar

    Gao Y Z, Wu L J, Lu W E, Liu H Y, Xia Y, Zhao L L, Li Y L, Kong X D, Han L 2021 Acta Opt. Sin. 41 1111002Google Scholar

    [42]

    杨家敏, 丁耀南, 崔明启, 曹磊峰, 丁永坤, 朱佩平, 赵屹东, 杨国洪, 郑志坚, 王耀梅, 张文海, 黎刚 2000 强激光与粒子束 12 723

    Yang J M, Ding Y N, Cui Q M, Cao L F, Ding Y K, Zhu P P, Zhao Y D, Yang G H, Zheng Y J, Wang Y N, Zhang W H, Ni G 2000 High Power Laser Part. Beams 12 723

    [43]

    Pinzek S J 2023 Ph. D. Dissertation (Munich: Technische Universität München

    [44]

    Burwitz V, Reinsch K, Greiner J, Rauch T, Suleimanov V, Walter F W, Mennickent R E, Predehl P 2007 Adv. Space Res. 40 1294Google Scholar

    [45]

    Morimoto N, Fujino S, Ohshima K, Harada J, Hosoi T, Watanabe H, Shimura T 2014 Opt. Lett. 39 4297Google Scholar

    [46]

    Moore A S, Guymer T M, Kline J L, Morton J, Taccetti M, Lanier N E, Bentley C, Workman J, Peterson B, Mussack K, Cowan J, Prasad R, Richardson M, Burns S, Kalantar D H, Benedetti L R, Bell P, Bradley D, Hsing W, Stevenson M 2012 Rev. Sci. Instrum. 83 10E132

    [47]

    Gross H, Henn M, Heidenreich S, Rathsfeld A, Bär M 2012 Appl. Opt. 51 7384Google Scholar

    [48]

    Wansleben M, Zech C, Streeck C, Weser J, Genzel C, Beckhoff B, Mainz R 2019 J. Anal. At. Spectrom. 34 1497Google Scholar

    [49]

    Tong X, Chen Y F, Mu C Y, Chen Q C, Zhang X Z, Zeng G, Li Y C, Xu Z J, Zhao J, Zhen X J, Mao C W, Lu H L, Tai R Z 2023 Nanotechnology 34 215301Google Scholar

  • 图 1  多光栅调制屏调制原理 (a) 多光栅调制的光路示意图; (b) 多光栅调制屏的二维结构

    Figure 1.  Modulation principle of multi-grating modulation: (a) Optical schematic diagram of multi-grating modulation; (b) two-dimensional structure of multi-grating modulation screen.

    图 2  调制屏后光束传播过程中光斑的强度分布演变的结果 (a) 距离调制屏不同位置$z$处的光斑的强度分布三维图; (b) z = 0.19 m处((a)图)的强度分布二维图; (c) (b)图横截面强度分布曲线

    Figure 2.  Simulation results of the evolution of the intensity distribution of the spot in the process of beam propagation behind the modulation screen: (a) Three-dimensional diagram of the intensity distribution of spot at different positions $z$ from the modulation screen; (b) two-dimensional diagram of the intensity distribution of the pattern in Fig.(a) at z = 0.19 m; (c) cross section curve of the intensity distribution of Fig.(b).

    图 3  不同归一化光栅尺寸${R_{\text{l}}}$下的仿真结果 (a) ${R_{\text{l}}}$ = 0.5时的光斑强度分布; (b) ${R_{\text{l}}}$ = 1时的光斑强度分布; (c) ${R_{\text{l}}}$ = 2.4时的光斑强度分布; (d) 光斑的FWHM随归一化光栅尺寸变化的曲线; (e) 光斑均匀性随归一化光栅尺寸变化的曲线

    Figure 3.  Simulation results under different normalized grating sizes ${R_{\text{l}}}$: (a) The intensity distribution of the spot when ${R_{\text{l}}}$ = 0.5; (b) the intensity distribution of the spot when ${R_{\text{l}}}$ = 1; (c) the intensity distribution of the spot when ${R_{\text{l}}}$ = 2.4; (d) the curve of the FWHM of the spot changing with the normalized grating size; (e) the curve of the uniformity of the spot with the change of the normalized grating size.

    图 4  多光栅调制屏的衍射特性仿真结果 (a) 1 ${\text{nm}}$波长下不同材料的多光栅调制屏衍射效率随厚度变化的曲线; (b) 不同光源波长对应的最大衍射效率及最佳光栅厚度

    Figure 4.  Simulation results of diffraction characteristics of multi-grating modulation screen: (a) Diffraction efficiency curves of multi-grating modulation screens made of different materials as a function of thickness at a wavelength of 1${\text{nm}}$; (b) maximum diffraction efficiency and optimal grating thickness for different source wavelengths.

    图 5  调制屏尺寸与后焦距对最小光栅周期和系统空间分辨率的影响 (a)—(c) 在调制屏前焦距分别为0.2, 0.36和0.5 m时, 最小光栅周期随调制屏尺寸与后焦距的变化关系; (d)—(f) 在最小光栅周期不小于200 nm的约束条件下, 当调制屏前焦距分别为0.2, 0.36和0.5 m时, 系统空间分辨率随调制屏尺寸与后焦距的变化情况

    Figure 5.  Influence of the size of the modulation screen and the back focal length on the minimum grating period and the spatial resolution of the system: (a)–(c) When the focal lengths in front of the modulation screen are 0.2, 0.36 and 0.5 m, respectively, the minimum grating period varies with the size of the modulation screen and the back focal length; (d)–(f) under the constraint that the minimum grating period is not less than 200 nm, when the front focal length of the modulation screen is 0.2, 0.36 and 0.5 m, the spatial resolution of the system varies with the size of the modulation screen and the back focal length.

    图 6  多光栅调制屏 (a) 调制屏实物图; (b) 调制屏的整体分布图像; (c) 单个光栅SEM平面图像; (d) 光栅的部分结构SEM图像

    Figure 6.  Multi-grating modulation screen: (a) Photograph of the modulation screen; (b) overall distribution image of the modulation screen; (c) SEM image of a single grating plane; (d) SEM image of the partial structure of the grating.

  • [1]

    Chien C C, Tseng P Y, Chen H H, Hua T E, Chen S T, Chen Y Y, Leng W H, Wang C H, Hwu Y, Yin G C, Liang K S, Chen F R, Chu Y S, Yeh H I, Yang Y C, Yang CS, Zhang G L, Je J H, Margaritondo J 2013 Biotechnol. Adv. 31 375Google Scholar

    [2]

    Zhang L, Tao F, Du G, Wang J, Gao R Y, Deng B, Xiao T Q 2023 Nucl. Instrum. Methods Phys. Res. Sect. A 1057 168781Google Scholar

    [3]

    Yao S, Fan J, Chen Z, Zong Y, Zhang J, Sun Z, Zhang L, Tai R, Liu Z, Chen C, Jiang H D 2018 IUCrJ 5 141Google Scholar

    [4]

    Foetisch A, Filella M, Watts B, Vinot LH, Bigalke M 2022 J. Hazard. Mater. 426 127804Google Scholar

    [5]

    Miao J, Sandberg R L, Song C 2011 IEEE J. Sel. Top. 18 399

    [6]

    Prosekov P A, Nosik V L, Blagov A E 2021 Crystallogr. Rep. 66 867Google Scholar

    [7]

    Pfeiffer F 2018 Nat. Photonics 12 9Google Scholar

    [8]

    Yuan Q X, Deng B, Guan Y, Zhang K, Liu Y J 2019 Physics 48 205

    [9]

    Withers P J, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen C K, Maire É, Manley M, Plessis A D, Stock S 2021 R Nat. Rev. Methods Primers. 1 18Google Scholar

    [10]

    Pushie M J, Sylvain N J, Hou H, Hackett M J, Kelly M E, Webb S M 2022 Metallomics 14 mfac032Google Scholar

    [11]

    Cheng J, Han S S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [12]

    Yu H, Lu R H, Han S S, Xie H L, Du G H, Xiao T Q, Zhu D M 2016 Phys. Rev. Lett. 117 113901Google Scholar

    [13]

    Tan Z J, Yu H, Zhu R G, Lu R H, Han S S, Xue C F, Yang S M, Wu Y Q 2022 Phys. Rev. A. 106 053521Google Scholar

    [14]

    Zhang A X, He Y H, Wu L A, Chen L M, Wang B B 2018 Optica 5 374Google Scholar

    [15]

    He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A, Chen L M 2020 APL Photonics 5 056102Google Scholar

    [16]

    Zhao C Z, Zhang H P, Tang J, Zhao N X, Li Z L, Xiao T Q 2024 J. Synchrotron Radiat. 31 1525Google Scholar

    [17]

    Li P, Chen X, Qiu X, Chen B L, Chen LX, Sun B Q 2024 Chin. Opt. Lett. 22 112701Google Scholar

    [18]

    Sun M J, Zhang J M 2019 Sensors 19 732Google Scholar

    [19]

    Li H Q, Hou W T, Ye Z Y, Yuan T Y, Shao S K, Xiong J, Sun T X, Sun X F 2023 Appl. Phys. Lett. 123 141101Google Scholar

    [20]

    Wittwer F, Lyubomirskiy M, Koch F, Kahnt M, Seyrich M, Garrevoet J, David C, Schroer C G 2021 Appl. Phys. Lett. 118 171102Google Scholar

    [21]

    Lyubomirskiy M, Wittwer F, Kahnt M, Koch F, Kubec A, Falch K V, Garrevoet J, Seyrich M, David C, Schroer C G 2022 Sci. Rep. 12 6203Google Scholar

    [22]

    Li Q Y, Tan Z J, Wang D, Yu H, Han S S 2025 Phys. Rev. A. 111 033531Google Scholar

    [23]

    Zholudev S I, Terentiev S A, Polyakov S N, Martyushov S Y, Denisov V N, Kornilov N V, Polikarpov M V, Snigirev A A, Snigireva I I, Blank V D 2016 AIP Conf. Proc. 1764 020006

    [24]

    Das A, Heirwegh C M, Gao N, Elam W T, Wade L A, Clark B C, Hurowitz J A, VanBommel S J, Jones M W M, Allwood A C X 2025 X-Ray Spectrom 54 203Google Scholar

    [25]

    Marshall F J, Bahr R E, Goncharov V N, Glebov V Y, Peng B, Regan S P, Sangster T C, Stoeckl C 2017 Rev. Sci. Instrum. 88 093702Google Scholar

    [26]

    Ohba A, Nakano T, Onoda S, Mochizuki T, Nakamoto K 2021 Rev. Sci. Instrum. 92 093704Google Scholar

    [27]

    Chen B Y, Yin G C, Lee C Y, Hsu M Y, Lin B H, Tseng S C, Li X Y, Chen H Y, Wu J X, Chang S H, Tang M T 2018 Synchrotron Radiat. News 31 27Google Scholar

    [28]

    Mohacsi I, Vartiainen I, Rösner B, Guizar-Sicairos M, Guzenko V A, McNulty I, Winarski R, Holt M V, David C 2017 Sci. Rep. 7 43624Google Scholar

    [29]

    Li T, Senesi A J, Lee B 2016 Chem. Rev. 116 11128Google Scholar

    [30]

    Hirose M, Higashino T, Ishiguro N, Takahashi Y 2020 Opt. Express 28 1216Google Scholar

    [31]

    Zhu Z, Ellis R A, Pang S 2018 Optica 5 733Google Scholar

    [32]

    Born M, Wolf E 2013 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier) pp572–577

    [33]

    Moreau P A, Toninelli E, Morris P A, Aspden R S, Gregory T, Spalding G, Boyd R W, Padgett M J 2018 Opt. Express 26 7528Google Scholar

    [34]

    Goodman J W 2005 Introduction to Fourier Optics (Roberts and Company publishers) pp80–82

    [35]

    Palmer C, Loewen E G 2005 Diffraction grating handbook (Newport Corporation) pp21–22

    [36]

    Harvey J E, Pfisterer R N 2019 Opt. Eng. 58 087105

    [37]

    Pascarelli S, Mathon O, Munoz M, Mairs T, Susini J 2006 J. Synchrotron Radiat. 13 351Google Scholar

    [38]

    许成文, 钟理京, 秦应雄, 郭海平, 唐霞辉 2016 中国激光 43 102001Google Scholar

    Xu C W, Zhong L J, Qin Y X, Guo H P, Tang X H 2016 Chin. J. Lasers. 43 102001Google Scholar

    [39]

    谢常青 2022 光学精密工程 30 1815Google Scholar

    Xie C Q 2022 Opt. Precis. Eng. 30 1815Google Scholar

    [40]

    邱克强, 徐向东, 刘颖, 洪义麟, 付绍军 2008 物理学报 57 6329Google Scholar

    Qiu K Q, Xu X D, Liu Y, Hong Y L, Fu S J 2008 Acta Phys. Sin. 57 6329Google Scholar

    [41]

    高雅增, 吴鹿杰, 卢维尔, 刘虹遥, 夏洋, 赵丽莉, 李艳丽, 孔祥东, 韩立 2021 光学学报 41 1111002Google Scholar

    Gao Y Z, Wu L J, Lu W E, Liu H Y, Xia Y, Zhao L L, Li Y L, Kong X D, Han L 2021 Acta Opt. Sin. 41 1111002Google Scholar

    [42]

    杨家敏, 丁耀南, 崔明启, 曹磊峰, 丁永坤, 朱佩平, 赵屹东, 杨国洪, 郑志坚, 王耀梅, 张文海, 黎刚 2000 强激光与粒子束 12 723

    Yang J M, Ding Y N, Cui Q M, Cao L F, Ding Y K, Zhu P P, Zhao Y D, Yang G H, Zheng Y J, Wang Y N, Zhang W H, Ni G 2000 High Power Laser Part. Beams 12 723

    [43]

    Pinzek S J 2023 Ph. D. Dissertation (Munich: Technische Universität München

    [44]

    Burwitz V, Reinsch K, Greiner J, Rauch T, Suleimanov V, Walter F W, Mennickent R E, Predehl P 2007 Adv. Space Res. 40 1294Google Scholar

    [45]

    Morimoto N, Fujino S, Ohshima K, Harada J, Hosoi T, Watanabe H, Shimura T 2014 Opt. Lett. 39 4297Google Scholar

    [46]

    Moore A S, Guymer T M, Kline J L, Morton J, Taccetti M, Lanier N E, Bentley C, Workman J, Peterson B, Mussack K, Cowan J, Prasad R, Richardson M, Burns S, Kalantar D H, Benedetti L R, Bell P, Bradley D, Hsing W, Stevenson M 2012 Rev. Sci. Instrum. 83 10E132

    [47]

    Gross H, Henn M, Heidenreich S, Rathsfeld A, Bär M 2012 Appl. Opt. 51 7384Google Scholar

    [48]

    Wansleben M, Zech C, Streeck C, Weser J, Genzel C, Beckhoff B, Mainz R 2019 J. Anal. At. Spectrom. 34 1497Google Scholar

    [49]

    Tong X, Chen Y F, Mu C Y, Chen Q C, Zhang X Z, Zeng G, Li Y C, Xu Z J, Zhao J, Zhen X J, Mao C W, Lu H L, Tai R Z 2023 Nanotechnology 34 215301Google Scholar

  • [1] Wang Fu-Jie, Cao Xiao-Yu, Gao Chao, Wen Xue-Ke, Lei Bing. Algorithms for calculating polarization direction based on spatial modulation of vector optical field. Acta Physica Sinica, 2023, 72(1): 010201. doi: 10.7498/aps.72.20221745
    [2] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] Cao Qi-Zhi, Tang Jin-Feng, Pan Yang-Liu, Jiang Min, Jiang Si-Yue, Zhang Jing, Jia Chen-Ling, Fan Dong-Xin, Deng Ting, Wang Hua-Hua, Duan Lian. Dynamic calibration of linear shear spatial modulation snapshot imaging polarimeter. Acta Physica Sinica, 2022, 71(15): 154205. doi: 10.7498/aps.71.20220229
    [4] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [5] Wang Hai-Bo, Luo Zhen-Lin, Liu Qing-Qing, Jin Chang-Qing, Gao Chen, Zhang Li. Resonant X-ray diffraction studies on modulation structures of high temperature superconducting sample Sr2CuO3.4. Acta Physica Sinica, 2019, 68(18): 187401. doi: 10.7498/aps.68.20190494
    [6] Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2Graphene-based broadband all-optical spatial modulator. Acta Physica Sinica, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [7] Pan An, Wang Dong, Shi Yi-Shi, Yao Bao-Li, Ma Zhen, Han Yang. Incoherent ptychography in Fresnel domain with simultaneous multi-wavelength illumination. Acta Physica Sinica, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [8] Mou Huan, Li Bao-Quan, Cao Yang. Transmission-type miniature micro-beam modulated X-ray source based on space application. Acta Physica Sinica, 2016, 65(14): 140703. doi: 10.7498/aps.65.140703
    [9] Cao Qi-Zhi, Zhang Jing, Edward DeHoog, Lu Yuang, Hu Bao-Qing, Li Wu-Gang, Li Jian-Ying, Fan Dong-Xin, Deng Ting, Yan Yan. Static subminiature snapshot imaging polarimeter using spatial modulation. Acta Physica Sinica, 2016, 65(5): 050702. doi: 10.7498/aps.65.050702
    [10] Wang Dong, Ma Ying-Jun, Liu Quan, Shi Yi-Shi. Experimental study on multi-wavelength ptychographic imaging in visible light band. Acta Physica Sinica, 2015, 64(8): 084203. doi: 10.7498/aps.64.084203
    [11] Li Na, Jia Di, Zhao Hui-Jie, Su Yun, Li Tuo-Tuo. Error analysis and reconstruction for diffractive optic imaging spectrometer using the multiple iterations. Acta Physica Sinica, 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [12] Liu Hai-Gang, Xu Zi-Jian, Zhang Xiang-Zhi, Guo Zhi, Tai Ren-Zhong. Influence of central beamstop on ptychographic coherent diffractive imaging. Acta Physica Sinica, 2013, 62(15): 150702. doi: 10.7498/aps.62.150702
    [13] Liu Cheng, Pan Xing-Chen, Zhu Jian-Qiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating. Acta Physica Sinica, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [14] Fan Jia-Dong, Jiang Huai-Dong. Coherent X-ray diffraction imaging and its applications in materials science and biology. Acta Physica Sinica, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [15] Zhou Guang-Zhao, Wang Yu-Dan, Ren Yu-Qi, Chen Can, Ye Lin-Lin, Xiao Ti-Qiao. Digital simulation for 3D reconstruction of coherent x-ray diffractive imaging. Acta Physica Sinica, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [16] Zhou Guang-Zhao, Tong Ya-Jun, Chen Can, Ren Yu-Qi, Wang Yu-Dan, Xiao Ti-Qiao. Digital simulation for coherent X-ray diffractive imaging. Acta Physica Sinica, 2011, 60(2): 028701. doi: 10.7498/aps.60.028701
    [17] Wang Bo, Liang Zhong-Zhu, Kong Yan-Mei, Liang Jing-Qiu, Fu Jian-Guo, Zheng Ying, Zhu Wan-Bin, Lü Jin-Guang, Wang Wei-Biao, Pei Shu, Zhang Jun. Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer. Acta Physica Sinica, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [18] Jian Xiao-Hua, Zhang Chun-Min, Zhao Bao-Chang. A new method for spectrum reproduction and interferogram processing. Acta Physica Sinica, 2007, 56(2): 824-829. doi: 10.7498/aps.56.824
    [19] XU ZHENG, ZHAO XIAO-RU, WU WEN-BIN, SUN XUE-FENG, WANG LIANG-BIN, ZHOU GUI-EN, LI XIAO-GUANG, ZHANG YU-HENG. X-RAY DIFFRACTION STUDY OF THE MODULATED STRUCTURE IN Bi2Sr2CaCu2Oy SINGLE CRYSTALS. Acta Physica Sinica, 1996, 45(9): 1578-1585. doi: 10.7498/aps.45.1578
    [20] BAI HAI-YANG, CHEN HONG, ZHANG YUN, WANG WEN-KUI. STUDY ON SOLID STATE REACTION INTERDIFFUSION OF Fe-Ti MULTILAYER MODULATED FILMS WITH DYNAMIC IN SITU X-RAY DIFFRACTION. Acta Physica Sinica, 1993, 42(7): 1134-1140. doi: 10.7498/aps.42.1134
Metrics
  • Abstract views:  879
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2025
  • Accepted Date:  25 June 2025
  • Available Online:  17 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回