Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polarization structures generated through Metalenses with vectorial foci for high-security optical encryption

ZHAO Shuaifu ZHONG Facheng YU Qunxing YANG Tian SHAO Li YU Zhanjun LI Yan

Citation:

Polarization structures generated through Metalenses with vectorial foci for high-security optical encryption

ZHAO Shuaifu, ZHONG Facheng, YU Qunxing, YANG Tian, SHAO Li, YU Zhanjun, LI Yan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Optical encryption technologies show significant application potential in information security due to their advantages of parallel processing, large capacity, and low power consumption. Polarization, as an important degree of freedom of light, has attracted extensive research interest in optical encryption through polarization manipulation and multiplexing. However, current polarization control methods based on pixelated or interleaved metasurfaces still face significant challenges, including fabrication complexity and inevitable crosstalk resulting from coupling between the neighboring structures, which limit the number of achievable multiplexing channels. In this work, we propose a novel encryption approach based on longitudinally tunable, and cascaded polarization structures enabled by metalenses with vectorial foci. The intensity distributions on different observation planes are simulated using the Fresnel–Kirchhoff diffraction integral. Based on the geometric phase principle, the designed metalens consisting of TiO2 nanopillars with identical dimensions but spatially variant orientation angles, can generate multiple vectorial foci at distinct observation planes and reconstructs cascaded polarization structures. Here, any two cascaded polarization structures are encoded with mutually orthogonal polarization rotation angles. As the polarization direction of incident linearly polarized light changes, the polarization distribution encoded on the polarization structures can be dynamically modulated, consequently enabling ten-channel information encryption through polarizationdependent intensity redistribution. The encrypted information can only be decoded using the correct keys (incident wavelength, incident polarization state, output light polarization state, and observation position). This method integrates polarization rotation, polarization structure design, and longitudinal/cascaded control, significantly enhancing information capacity and security. It holds promising applications across diverse domains including optical display, encryption, and anti-counterfeiting.
  • [1]

    Matoba O, Nomura T, Perez C E, Millan M S, Javidi B 2009 Proc. IEEE 971128

    [2]

    Chen W, Javidi B, Chen X D 2014 Adv. Opt. Photonics 6120

    [3]

    Liu S, Guo C L, Sheridan J T 2014 Opt. Laser Technol. 57327

    [4]

    Jiao S M, Zhou C Y, Shi Y S, Zou W B, Li X 2019 Opt. Laser Technol. 109370

    [5]

    Liu S, Liu X, Yuan J, Bao J 2021 Res. (Wash D C) 20217897849

    [6]

    Yue F, Zhang C, Zang X, Wen D, Gerardot B, Zhang S, Chen X 2018 Light Sci. Appl. 717129

    [7]

    Zhang C, Dong F, Intaravanne Y, Zang X, Xu L, Song Z, Zheng G, Wang W, Chu W, Chen X 2019 Phys. Rev. Appl. 12034028

    [8]

    Intaravanne Y, Chen X Z 2020 Nanophotonics 91003

    [9]

    Zhao R Z, Li X, Geng G Z, Li X W, Li J J, Wang Y T, Huang L L 2023 Nanophotonics 12155

    [10]

    Yu N F, Patrice G, Mikhail A K,,Aieta F,Tetienne J P, Capasso F, and Gaburro Zeno 2011 Science 334333

    [11]

    Yu N F, Capasso F 2014 Nat. Rev. Mater. 13139

    [12]

    Chen W T, Alexander Y Zhu, Capasso F 2020 Nat. Rev. Mater. 5604-620

    [13]

    Yang R, Yu Q Q, Pan Y, Chen S, Li Z Y 2022 Opto-Electronic Engineering 49220177

    [14]

    Zheludev N I, Kivshar Y S 2012 Nature Materials 11917

    [15]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonic Rev. 9195

    [16]

    Yu N F, Genevet P, Kats M A, Nanfang Yu, Patrice Genevet, Mikhail A. Kats, Francesco Aieta 2011 Science 334333

    [17]

    Zhao R Z, Li X, Geng G Z, Li X W, Li J J, Wang Y T, Huang L L 2023 Nanophotonics 12155

    [18]

    Fan Q B,Mingze L, Cheng Z, Zhu W, Wang Y l, Lin P, Yan F, Chen L, Lezec H  J 2020 Phys. Rev. Lett. 125267402

    [19]

    Li Z, Liu W, Cheng H, Choi D Y, Chen S, Tian J 2019 Adv. Opt. Mater. 71900260

    [20]

    Bao Y, Yu Y, Xu H, Guo C, Li J, Sun S, Zhou Z K, Qiu C W, Wang X H 2019 Light. Sci. Appl. 895

    [21]

    Li Z F, Premaratne M, Zhu W R 2020 Nanophotonics 93687

    [22]

    Overvig A,Yu N, Alù A 2021 Adv. Photonics 3026002

    [23]

    Schlickriede C, Waterman N, Reineke B, Georgi P, Li G, Zhang S, Zentgraf 2018 Adv. Mater. 301703843

    [24]

    Mueller J B, Rubin N A, Devlin R C, Devlin, Groever B和Capasso Federico 2017 Phys. Rev. Lett. 118113901

    [25]

    Ding F, Chang B, Wei Q, Huang L L, Guan X,Sergey B I 2020 Laser Photon. Rev. 142000116

    [26]

    Intaravanne Y, Ansari M A, Ahmed H, Chen X Z 2023 Optical Mater. 122203097

    [27]

    Song Q, Khadir S, Vézian S, Vézian X, Damilano B, Mierry P D, Chenot S, Brandli V, Genevet P 2021 Sci. Adv. 71112

    [28]

    Fan Q, Liu M, Zhang C, Zhu W, Wang Y, Lin P, Yan F, Chen L, Lezec H J, Lu Y, Agrawal A, Xu T 2020 Phys. Rev. Lett. 125267402

    [29]

    Zang X, Ding H, Intaravanne Y, Chen L, Peng Y, Xie J, Ke Q H, Balakin A V, Shkurinov A P, Chen X, Zhu Y, Zhuang S 2019 Laser Photon. Rev. 131900182

    [30]

    Ansari M A, Ahmed H, Li Y, Wang G, Callaghan J E, Wang R, Downing J, Chen X 2024 Light. Sci. Appl. 13224

    [31]

    Sun P, Liu B, Liu X, Zhang S, Shen D, Zhang Z 2023 Opt. Lett. 483083

    [32]

    Kim I, Jang J, Kim G, Lee J, Badloe T, Mun J, Rho J 2021 Nat. Commun. 123614

    [33]

    Wang G, Ahmed H, Ansari M A, Li Y, Zhang C, Tian H, Li L, Chen X 2024 Laser Photonics Rev. 182400323

    [34]

    Ahmed H, Ansari M A, Li Y, Zentgraf T, Mehmood M Q, Chen X 2023 Nat. Commun. 143915

    [35]

    Lin D, Fan P, Hasman E, Brongersma M L, Bron G 2014 Science 345298

    [36]

    Li H, Xu W, Xu H, Song C, Tan Q, Yao J 2024 J. Opt. 26035102

    [37]

    Xu Y, Xu Q, Zhang X, Feng X, Lu Y, Zhang X, Kang M, Han J, Zhang W 2022 Adv. Funct. Mater. 322207269

    [38]

    Yan L, Zhu W, Karim M F, Cai H, Gu A Y, Shen Z, Chong P H J, Tsai D P, Kwong D L, Qiu C W, Liu A Q 2018 Adv. Opt. Mater. 61800728

    [39]

    Ren R Y, Li Z L, Deng L G, Shan X, Dai Q, Guan Z Q, Zheng G X, Yu S H 2021 Nanophotonics 102903

    [40]

    Cao Y, Tang L L, Li J Q, Lee C K, Dong Z G 2022 Nanophotonics 113365

    [41]

    Zang X, Ding H, Intaravanne Y, Chen L, Peng Y, Xie J, Ke Q, Balakin A V, Shkurinov A P, Chen X, Zhu Y, Zhuang S 2019 Laser Photonics Rev. 131900182

    [42]

    Wang R, Han J, Liu J, Tian H, Sun W, Li L, Chen X 2020 Opt. Lett. 453506

    [43]

    Wang R, Intaravanne Y, Li S, Han J, Chen S, Liu J, Zhang S, Li L, Chen X 2021 Nano Lett. 212081

    [44]

    Intaravanne Y, Wang R, Ahmed H, Ming Y, Zheng Y, Zhou Z K, Li Z, Chen S, Zhang S, Chen X 2022 Light Sci. Appl. 11302

    [45]

    Li Y, Muhammad A A, Hammad A, Wang R, Wang G C, and Chen X Z 2023 Sci. Adv. 9 eadj6675

    [46]

    Zhao R, Sain B, Wei Q, Tang C C, Li X W, Thomas Weiss, Huang L L, Wang Y T, Zentgraf T 2018 Light Sci. Appl. 795

    [47]

    Song Q H, Baroni A, Sawant R, Peinan N, Brandli V, Chenot S, Vézian S, Damilano B, Mierry P, Khadi S, Ferrand P 2020 Nat. Commun. 112651

    [48]

    Song Q H, Baroni A, Sawant R, Peinan N, Brandli V, Chenot S, Vézian S, Damilano B, Mierry P, Khadi S, Ferrand P 2020. Adv. Mater. 34 e2103192

    [49]

    Wen D D, Cadusch J J, Meng J, Crozier K B 2021 Nano Lett. 211735

    [50]

    Zang X, Ding H, Intaravanne Y, Chen L, Peng Y, Xie J, Ke Q H, Balaki n A V, Alexander P S, Chen X Z, Zhu Y M, Zhuang S L 2019 Laser P hotonics Rev. 131900182

    [51]

    Wang R, Intaravanne Y, Li S, Han J, Chen S, Liu J, Zhang S, Li L, Chen X 2021 Nano Lett. 212081

    [52]

    Li Y, Muhammad A A, Hammad A, Wang R X, Wang G C, Chen X Z 2023 Sci. Adv. 9 eadj6675

    [53]

    Ning M H, Zhong H Z, Gu Z, Zhang L E, Qu N, Jun D, Li T, Li L 2025 Nanophotonics 14495

    [54]

    Cao Y, Tang L, Li J, Lee C k, Dong Z G 2023 Small 192206319

    [55]

    Kim H, Jung J, Shin J 2024 Adv. Mater. 362406717

    [56]

    Wang R, Han J, Liu J, Tian H, Sun W M, Li Li, Chen X Z 2020 Opt. Express 453506

    [57]

    Zhang Y, Liu W, Gao J, Yang X 2018 Adv. Opt. Mater. 61701228.

    [58]

    Xia T, Xie Z W, Yuan X C J 2023 Chin. J. Lasers 50212(in Chinese) [夏天, 谢振威, 袁小聪2023中国激光50212]

  • [1] ZHANG Shenglan, TIAN Ximin, XU Junwei, XU Yaning, LI Liang, LIU Jielong. Generation and independent-manipulation of multi-channel high-capacity perfect vector vortex beams based on geometric metasurfaces. Acta Physica Sinica, doi: 10.7498/aps.74.20241725
    [2] XU Yifan, DENG Ye, TONG Wanting, WANG Haifeng, WANG Xueyun, ZHAO Junming, JIANG Tian, ZHANG Shengkang, CHEN Ke, FENG Yijun. Reconfigurable metasurface achieved dynamic beam control and information modulation of L-band beams. Acta Physica Sinica, doi: 10.7498/aps.74.20241668
    [3] Liu Hui-Gang, Zhang Xiang-Yu, Nan Xue-Ying, Zhao Er-Gang, Liu Hai-Tao. All-dielectric metasurface two-parameter sensor based on quasi-bound states in continuum. Acta Physica Sinica, doi: 10.7498/aps.73.20231514
    [4] Li Hao, Pang Yong-Qiang, Qu Bing-Yue, Zheng Jiang-Shan, Xu Zhuo. Optical transparent metasurface lenses and their wireless communication efficiency enhancement. Acta Physica Sinica, doi: 10.7498/aps.73.20240464
    [5] Gao Yue, Yu Bo-Cheng, Guo Rui, Cao Yan-Yan, Xu Ya-Dong. Optical meta-cage based on phase gradient metagrating. Acta Physica Sinica, doi: 10.7498/aps.72.20221696
    [6] Liu You-Hai, Qin Tian-Xiang, Wang Ying-Ce, Kang Xing-Wang, Liu Jun, Wu Jia-Chen, Cao Liang-Cai. Research advances in simple and compact optical imaging techniques. Acta Physica Sinica, doi: 10.7498/aps.72.20230092
    [7] Song Rui-Rui, Deng Qin-Ling, Zhou Shao-Lin. Photonic meta-switch based on phase change and catenary-enabled continuous phase regulation. Acta Physica Sinica, doi: 10.7498/aps.71.20211538
    [8] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, doi: 10.7498/aps.71.20220801
    [9] Xu Zhao, Zhou Xin, Bai Xing, Li Cong, Chen Jie, Ni Yang. Attacking asymmetric cryptosystem based on phase truncated Fourier fransform by deep learning. Acta Physica Sinica, doi: 10.7498/aps.70.20202075
    [10] Li Jun-Yi, Ye Yu-Er, Ling Chen, Li Lin, Liu Yang, Xia Yong. Generation of focusing ring of metalens and its application in optical trapping of cold molecules. Acta Physica Sinica, doi: 10.7498/aps.70.20210443
    [11] Sheng Chong, Liu Hui, Zhu Shi-Ning. Research progress of analogical gravitation on optical metamaterial chips. Acta Physica Sinica, doi: 10.7498/aps.69.20200183
    [12] Wu Feng, Guo Zhi-Wei, Wu Jia-Ju, Jiang Hai-Tao, Du Gui-Qiang. Band gap engineering and applications in compound periodic structure containing hyperbolic metamaterials. Acta Physica Sinica, doi: 10.7498/aps.69.20200084
    [13] Preface to the special topic: Optical metamaterials. Acta Physica Sinica, doi: 10.7498/aps.69.150101
    [14] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, doi: 10.7498/aps.69.20200453
    [15] Xu Xiang-Xin, Chang Jun, Wu Chu-Han, Song Da-Lin. Local hybrid optical encryption system based on double random phase encoding. Acta Physica Sinica, doi: 10.7498/aps.69.20200478
    [16] Ma Ming-Yu, Wu Han, Chen Zhuo. Polarization state of second harmonic generation in split ring resonator based meta-molecule. Acta Physica Sinica, doi: 10.7498/aps.68.20190837
    [17] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, doi: 10.7498/aps.67.20180125
    [18] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, doi: 10.7498/aps.66.227803
    [19] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, doi: 10.7498/aps.66.147803
    [20] Xiao Xiao, Zhang Zhi-You, Xiao Zhi-Gang, Xu De-Fu, Deng Chi. The study on optical transfer function of silver superlens. Acta Physica Sinica, doi: 10.7498/aps.61.114201
Metrics
  • Abstract views:  51
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  01 July 2025
  • /

    返回文章
    返回