Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Algorithms for calculating polarization direction based on spatial modulation of vector optical field

Wang Fu-Jie Cao Xiao-Yu Gao Chao Wen Xue-Ke Lei Bing

Citation:

Algorithms for calculating polarization direction based on spatial modulation of vector optical field

Wang Fu-Jie, Cao Xiao-Yu, Gao Chao, Wen Xue-Ke, Lei Bing
PDF
HTML
Get Citation
  • Polarization is an important property of electromagnetic waves, and measuring their polarization properties fast and precisely is a very important issue in many applications, such as skylight polarization navigation, optical activity measurement, imaging polarimetry, spectroscopic ellipsometry, and fluorescence polarization immunoassay . The polarization measurement method based on vector optical field modulation and image processing is a new type of spatial modulation polarization detection technology. The key step of this technique moving to practical application is determined by effective polarization measuring algorithms with high speed and accuracy. In order to find out the method of fast and precisely calculating polarization direction, the principle of polarization direction measurement based on vector optical field and spatial modulation is introduced briefly, and the basic characteristics of the spatially modulated intensity distribution images are analyzed. According to the properties of spatially modulated image, we propose and implement four different polarization direction calculation methods, which are the Radon transform, intensity modulation curve detection, radial integration, and image correlation detection, and also introduce their working principles and physical thoughts elaborately. To compare the detailed performances of these four algorithms, an experimental setup is constructed to collect the images and perform the algorithm verification, and the stabilities, speeds and accuracies of the four algorithms are compared. The research results indicate that all the four methods can achieve their stable and reliable polarization direction detections. The three methods, intensity modulation curve detection, radial integration and image correlation detection, can achieve the polarization direction measuring accuracy better than 0.01° . The intensity modulation curve detection and radial integration have relatively fast calculation speed and the best comprehensive performances , and are the most promising methods to realize real-time and high-precision polarization measurement.
      Corresponding author: Lei Bing, leibing_2000@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61975235), and the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ40342).
    [1]

    Zhang W J, Zhang X Z, Cao Y, Liu H B, Liu Z J 2016 Appl. Opt. 55 3518Google Scholar

    [2]

    Tang J, Zhang N, Li D L, Wang F, Zhang B Z, Wang C G, Shen C, Ren J B, Xue C Y, Liu J 2016 Opt. Express 24 15834Google Scholar

    [3]

    王成, 范之国, 金海红, 汪先球, 华豆 2021 物理学报 70 104201Google Scholar

    Wang C, Fan Z G, Jing H H, Wang X Q, Hua D 2021 Acta Phys. Sin. 70 104201Google Scholar

    [4]

    康健, 马伟, 李沅 2022 科学技术与工程 22 02696

    Kang J, Ma W, Li Y 2022 Sci. Technol. Eng. 22 02696

    [5]

    Qiu X D, Xie L G, Liu X, Luo L, Zhang Z Y, Du J L 2011 Opt. Lett. 41 4032Google Scholar

    [6]

    Eom I, Ahn S H, Rhee H J, Cho M H 2011 Opt. Express 19 10017Google Scholar

    [7]

    章慧, 齐爱华, 李丹, 李荣兴 2022 大学化学 37 2105009Google Scholar

    Zhang H, Qi A H, Li D, Li R X 2022 Univ. Chem. 37 2105009Google Scholar

    [8]

    李子骏, 贾宏志 2016 光学仪器 38 288Google Scholar

    Li Z J, Jia H Z 2016 Opt. Instrum. 38 288Google Scholar

    [9]

    汪杰君, 刘少晖, 李树, 叶松, 王新强, 王方原 2021 光子学报 50 0228001Google Scholar

    Wang J J, Liu S H, Li S, Ye S, Wang X Q, Wang F Y 2021 Acta Photonica Sin. 50 0228001Google Scholar

    [10]

    王宇瑶, 麻金继, 李婧晗, 洪津, 李正强 2022 遥感学报 26 0852Google Scholar

    Wang Y Y, Ma J J, Li J H, Hong J, Li Z Q 2022 J. Remote Sens. 26 0852Google Scholar

    [11]

    Jiang S X, Jia H Z, Lei Y, Shen X R, Cao J J, Wang N 2017 Opt. Express 25 7445Google Scholar

    [12]

    Vishnyakov G N, Levin G G, Lomakin A G 2011 J. Opt. Technol. 78 124Google Scholar

    [13]

    李荣华, 朴俊峰, 唐智超, 褚清清 2020 传感器与微系统 39 89Google Scholar

    Li R H, Piao J F, Tang Z C, Chu Q Q 2020 Transducer Microsys. Technol. 39 89Google Scholar

    [14]

    简小华, 张淳民, 赵葆常, 张霖, 朱兰艳 2009 物理学报 58 2286Google Scholar

    Jian X H, Zhang C M, Zhao B C, Zhang L, Zhu L Y 2009 Acta Phys. Sin. 58 2286Google Scholar

    [15]

    陈强华, 周胜, 丁锦红, 韩文远, 孔祥悦, 罗会甫 2022 光学学报 42 0712004Google Scholar

    Chen Q H, Zhou S, Ding J H, Han W Y, Kong X Y, Luo H F 2022 Acta Opt. Sin. 42 0712004Google Scholar

    [16]

    2020-11-06] [刘振, 葛惊寰, 高桂爱, 解学军, 刘莉, 杨孟杰 2020 中国专利 CN 111896489 A [2020-11-06

    Liu Z, Ge J H, Gao G A, Xie X J, Liu L, Yang M J 2020 Chin. Patent CN 111896489 A (in Chinese)

    [17]

    张伟, 朱秋东, 张旭升 2018 光学学报 38 0426001Google Scholar

    Zhang W, Zhu Q D, Zhang X S 2018 Acta Opt. Sin. 38 0426001Google Scholar

    [18]

    Liu X, Yang J L, Geng Z H, Jia H Z 2020 Chirality 32 1072Google Scholar

    [19]

    Ma X 2019 Sens. Actuators, B 283 857Google Scholar

    [20]

    2021-09-28] [李艳秋, 宁天磊, 周国栋 2021 中国专利 CN 113447126 A [2021-09-28

    Li Y Q, Ning T L, Zhou G D 2021 Chin. Patent CN 113447126 A (in Chinese)

    [21]

    曹奇志, 张晶, 爱德华·德霍格, 卢远, 胡宝清, 李武刚, 李建映, 樊东鑫, 邓婷, 闫妍 2016 物理学报 65 050702Google Scholar

    Cao Q Z, Zhang J, Edward D H, Lu Y, Hu B Q, Li W G, Li J Y, Fan D X, Deng T, Yan Y 2016 Acta Phys. Sin. 65 050702Google Scholar

    [22]

    Lei B, Liu S G 2018 Opt. Lett. 43 2969Google Scholar

    [23]

    Gao C, Lei B 2021 Chin. Opt. Lett. 19 21201Google Scholar

    [24]

    Wang F J, Lei B, Gao C, Wen X K, Lei Y 2022 Appl. Opt. 61 1965Google Scholar

    [25]

    Zhan Q W 2013 Vectorial Optical Fields: Fundamentals and Application (Singapore: World Scientific Publishing Co Pte. Ltd.) pp28–74

    [26]

    2014-07-07] [齐晓岩, 单旭晨, 马宇, 曹远 2014 中国专利 CN 203705145 U [2014-07-07

    Qi X Y, Shan X C, Ma Y, Cao Y, Liu S G 2014 Chin. Patent CN 203705145 U (in Chinese)

    [27]

    Zhang W J, Zhang Z W 2019 Sens. Actuators, B 286 119Google Scholar

    [28]

    拉斐尔·C. 冈萨雷斯, 理查德·E. 伍兹 著 (阮秋琦, 阮宇智 译) 2020 数字图像处理 (第4版) (北京: 电子工业出版社) 第206—263页

    Gonzalez R C, Woods R E (translated by Ruan Q Q, Ruan Y Z) 2020 Digital Image Processing (4th Ed.) (Beijing: Publishing House of Electronics Industry) pp260–263 (in Chinese)

  • 图 1  基于矢量光场空间调制的偏振方向检测技术原理示意图

    Figure 1.  Sketch of polarization direction measurement system based on the spatial modulating of vector light field.

    图 2  典型的矢量光场空间调制后的光强分布图 (a) 理论仿真图像; (b) 实验采集图像

    Figure 2.  Typical intensity distribution of the spatial modulated vector light field: (a) The calculated pattern in theory; (b) the observed pattern in experiment.

    图 3  不同半径处的光强调制曲线图(R = 50, R = 250, R = 450, R = 650, R = 850 像素)

    Figure 3.  Intensity modulated curves with different radii in experimental image (R = 50, R = 250, R = 450, R = 650, R = 850 pixels).

    图 4  Radon变换原理图

    Figure 4.  Schematic image of the Radon transform.

    图 5  Radon变换的正弦图及其光强分布 (a) Radon变换的正弦图; (b) Radon变换时积分直线距离为零时的光强分布

    Figure 5.  The sinogram and the intensity distribution of Radon transform: (a) The sinogram of Radon transform; (b) the intensity distribution of zero integral distance in Radon transform.

    图 6  16幅角度间隔为1°图像的光强调制曲线 (a) 360°范围内的光强调制曲线; (b) 45°范围内局部放大图

    Figure 6.  Intensity modulated curves of 16 images with 1 degree angular interval: (a) Intensity modulated curves in 360°; (b) partial enlargement within 45°.

    图 7  径向积分法的原理示意图

    Figure 7.  Schematic diagram of radial integration method.

    图 8  四种算法解算的15个旋转角对比

    Figure 8.  Comparison of 15 rotation angles obtained by four algorithms.

    表 1  四种解算方法对同一位置数据处理结果的对比

    Table 1.  Comparison of the calculation results by using four algorithms with the data in the same location.

    解算方法平均值/(°)最大误差/(°)平均误差/(°)误差标准差/(°)耗费时间/s
    Radon变换128.93800.00850.00260.003669.6582
    光强调制曲线129.14500.00600.00480.00150.2997
    径向积分129.00900.00800.00320.00400.4783
    图像相关检测129.03100.00500.00500.00500.8909
    DownLoad: CSV

    表 2  四种解算方法对15个旋转角数据处理结果的对比

    Table 2.  Comparison of the calculation results by using four algorithms in 15 rotation angles.

    解算方法平均转角/(°)最大误差/(°)平均误差/(°)标准差/(°)平均耗时/s
    Radon变换0.99200.08000.01600.022867.1860
    光强调制曲线0.99600.01000.00400.00630.3019
    径向积分0.99600.01000.00400.00630.4335
    图像相关检测0.99670.01000.00450.00670.8810
    DownLoad: CSV
  • [1]

    Zhang W J, Zhang X Z, Cao Y, Liu H B, Liu Z J 2016 Appl. Opt. 55 3518Google Scholar

    [2]

    Tang J, Zhang N, Li D L, Wang F, Zhang B Z, Wang C G, Shen C, Ren J B, Xue C Y, Liu J 2016 Opt. Express 24 15834Google Scholar

    [3]

    王成, 范之国, 金海红, 汪先球, 华豆 2021 物理学报 70 104201Google Scholar

    Wang C, Fan Z G, Jing H H, Wang X Q, Hua D 2021 Acta Phys. Sin. 70 104201Google Scholar

    [4]

    康健, 马伟, 李沅 2022 科学技术与工程 22 02696

    Kang J, Ma W, Li Y 2022 Sci. Technol. Eng. 22 02696

    [5]

    Qiu X D, Xie L G, Liu X, Luo L, Zhang Z Y, Du J L 2011 Opt. Lett. 41 4032Google Scholar

    [6]

    Eom I, Ahn S H, Rhee H J, Cho M H 2011 Opt. Express 19 10017Google Scholar

    [7]

    章慧, 齐爱华, 李丹, 李荣兴 2022 大学化学 37 2105009Google Scholar

    Zhang H, Qi A H, Li D, Li R X 2022 Univ. Chem. 37 2105009Google Scholar

    [8]

    李子骏, 贾宏志 2016 光学仪器 38 288Google Scholar

    Li Z J, Jia H Z 2016 Opt. Instrum. 38 288Google Scholar

    [9]

    汪杰君, 刘少晖, 李树, 叶松, 王新强, 王方原 2021 光子学报 50 0228001Google Scholar

    Wang J J, Liu S H, Li S, Ye S, Wang X Q, Wang F Y 2021 Acta Photonica Sin. 50 0228001Google Scholar

    [10]

    王宇瑶, 麻金继, 李婧晗, 洪津, 李正强 2022 遥感学报 26 0852Google Scholar

    Wang Y Y, Ma J J, Li J H, Hong J, Li Z Q 2022 J. Remote Sens. 26 0852Google Scholar

    [11]

    Jiang S X, Jia H Z, Lei Y, Shen X R, Cao J J, Wang N 2017 Opt. Express 25 7445Google Scholar

    [12]

    Vishnyakov G N, Levin G G, Lomakin A G 2011 J. Opt. Technol. 78 124Google Scholar

    [13]

    李荣华, 朴俊峰, 唐智超, 褚清清 2020 传感器与微系统 39 89Google Scholar

    Li R H, Piao J F, Tang Z C, Chu Q Q 2020 Transducer Microsys. Technol. 39 89Google Scholar

    [14]

    简小华, 张淳民, 赵葆常, 张霖, 朱兰艳 2009 物理学报 58 2286Google Scholar

    Jian X H, Zhang C M, Zhao B C, Zhang L, Zhu L Y 2009 Acta Phys. Sin. 58 2286Google Scholar

    [15]

    陈强华, 周胜, 丁锦红, 韩文远, 孔祥悦, 罗会甫 2022 光学学报 42 0712004Google Scholar

    Chen Q H, Zhou S, Ding J H, Han W Y, Kong X Y, Luo H F 2022 Acta Opt. Sin. 42 0712004Google Scholar

    [16]

    2020-11-06] [刘振, 葛惊寰, 高桂爱, 解学军, 刘莉, 杨孟杰 2020 中国专利 CN 111896489 A [2020-11-06

    Liu Z, Ge J H, Gao G A, Xie X J, Liu L, Yang M J 2020 Chin. Patent CN 111896489 A (in Chinese)

    [17]

    张伟, 朱秋东, 张旭升 2018 光学学报 38 0426001Google Scholar

    Zhang W, Zhu Q D, Zhang X S 2018 Acta Opt. Sin. 38 0426001Google Scholar

    [18]

    Liu X, Yang J L, Geng Z H, Jia H Z 2020 Chirality 32 1072Google Scholar

    [19]

    Ma X 2019 Sens. Actuators, B 283 857Google Scholar

    [20]

    2021-09-28] [李艳秋, 宁天磊, 周国栋 2021 中国专利 CN 113447126 A [2021-09-28

    Li Y Q, Ning T L, Zhou G D 2021 Chin. Patent CN 113447126 A (in Chinese)

    [21]

    曹奇志, 张晶, 爱德华·德霍格, 卢远, 胡宝清, 李武刚, 李建映, 樊东鑫, 邓婷, 闫妍 2016 物理学报 65 050702Google Scholar

    Cao Q Z, Zhang J, Edward D H, Lu Y, Hu B Q, Li W G, Li J Y, Fan D X, Deng T, Yan Y 2016 Acta Phys. Sin. 65 050702Google Scholar

    [22]

    Lei B, Liu S G 2018 Opt. Lett. 43 2969Google Scholar

    [23]

    Gao C, Lei B 2021 Chin. Opt. Lett. 19 21201Google Scholar

    [24]

    Wang F J, Lei B, Gao C, Wen X K, Lei Y 2022 Appl. Opt. 61 1965Google Scholar

    [25]

    Zhan Q W 2013 Vectorial Optical Fields: Fundamentals and Application (Singapore: World Scientific Publishing Co Pte. Ltd.) pp28–74

    [26]

    2014-07-07] [齐晓岩, 单旭晨, 马宇, 曹远 2014 中国专利 CN 203705145 U [2014-07-07

    Qi X Y, Shan X C, Ma Y, Cao Y, Liu S G 2014 Chin. Patent CN 203705145 U (in Chinese)

    [27]

    Zhang W J, Zhang Z W 2019 Sens. Actuators, B 286 119Google Scholar

    [28]

    拉斐尔·C. 冈萨雷斯, 理查德·E. 伍兹 著 (阮秋琦, 阮宇智 译) 2020 数字图像处理 (第4版) (北京: 电子工业出版社) 第206—263页

    Gonzalez R C, Woods R E (translated by Ruan Q Q, Ruan Y Z) 2020 Digital Image Processing (4th Ed.) (Beijing: Publishing House of Electronics Industry) pp260–263 (in Chinese)

  • [1] Zhang Yin-Sheng, Tong Jun-Yi, Chen Ge, Shan Meng-Jiao, Wang Shuo-Yang, Shan Hui-Lin. Synthetic aperture optical image restoration based on multi-scale feature enhancement. Acta Physica Sinica, 2024, 73(6): 064203. doi: 10.7498/aps.73.20231761
    [2] Cao Qi-Zhi, Tang Jin-Feng, Pan Yang-Liu, Jiang Min, Jiang Si-Yue, Zhang Jing, Jia Chen-Ling, Fan Dong-Xin, Deng Ting, Wang Hua-Hua, Duan Lian. Dynamic calibration of linear shear spatial modulation snapshot imaging polarimeter. Acta Physica Sinica, 2022, 71(15): 154205. doi: 10.7498/aps.71.20220229
    [3] Bai Li-Chun, Sun Jin-Guang, Gao Yan-Dong. High-speed photography and image analysis of orbital motion of gas bubbles in ultrasonic field. Acta Physica Sinica, 2021, 70(5): 054701. doi: 10.7498/aps.70.20201381
    [4] Qi Shu-Xia, Liu Sheng, Li Peng, Han Lei, Cheng Hua-Chao, Wu Dong-Jing, Zhao Jian-Lin. A method of efficiently generating arbitrary vector beams. Acta Physica Sinica, 2019, 68(2): 024201. doi: 10.7498/aps.68.20181816
    [5] Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2Graphene-based broadband all-optical spatial modulator. Acta Physica Sinica, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [6] Yuan Qiang, Zhao Wen-Xuan, Ma Rui, Zhang Chen, Zhao Wei, Wang Shuang, Feng Xiao-Qiang, Wang Kai-Ge, Bai Jin-Tao. Sub-diffraction-limit spatially structured light pattern based on polarized beam phase modulation. Acta Physica Sinica, 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [7] Lan Bin, Feng Guo-Ying, Zhang Tao, Liang Jing-Chuan, Zhou Shou-Huan. A single-element interferometer for measuring parallelism and uniformity of transparent plate. Acta Physica Sinica, 2017, 66(6): 069501. doi: 10.7498/aps.66.069501
    [8] Zheng Dian-Chun, Ding Ning, Shen Xiang-Dong, Zhao Da-Wei, Zheng Qiu-Ping, Wei Hong-Qing. Study on discharge phenomena of short-air-gap in needle-plate electrode based on fractal theory. Acta Physica Sinica, 2016, 65(2): 024703. doi: 10.7498/aps.65.024703
    [9] Cao Qi-Zhi, Zhang Jing, Edward DeHoog, Lu Yuang, Hu Bao-Qing, Li Wu-Gang, Li Jian-Ying, Fan Dong-Xin, Deng Ting, Yan Yan. Static subminiature snapshot imaging polarimeter using spatial modulation. Acta Physica Sinica, 2016, 65(5): 050702. doi: 10.7498/aps.65.050702
    [10] Wang Ji-Ming, He Chong-Jun, Liu You-Wen, Yang Feng, Tian Wei, Wu Tong. The focused vectorial fields with ultra-long depth of focus generated by the tunable complex filter. Acta Physica Sinica, 2016, 65(4): 044202. doi: 10.7498/aps.65.044202
    [11] Xia Jun, Chang Chen-Liang, Lei Wei. Holographic display based on liquid crystal spatial light modulator. Acta Physica Sinica, 2015, 64(12): 124213. doi: 10.7498/aps.64.124213
    [12] Xi Si-Xing, Wang Xiao-Lei, Huang Shuai, Chang Sheng-Jiang, Lin Lie. Generation of vector beams in terms of the partial light modulator of a twisted nematic liquid crystal. Acta Physica Sinica, 2015, 64(11): 114204. doi: 10.7498/aps.64.114204
    [13] Zhou Shu-Bo, Yuan Yan, Su Li-Juan. A regularized super resolution algorithm based on the double threshold Huber norm estimation. Acta Physica Sinica, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [14] Zhong Dong-Zhou, Wu Zheng-Mao. Manipulation of the vector chaotic polarization of VCSEL output with external optical feedback by electro-optic modulation. Acta Physica Sinica, 2012, 61(3): 034203. doi: 10.7498/aps.61.034203
    [15] Wang Bo, Liang Zhong-Zhu, Kong Yan-Mei, Liang Jing-Qiu, Fu Jian-Guo, Zheng Ying, Zhu Wan-Bin, Lü Jin-Guang, Wang Wei-Biao, Pei Shu, Zhang Jun. Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer. Acta Physica Sinica, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [16] Li Qin, Cai Li, Feng Chao-Wen. Cellular neural network with hybrid single-electron and MOS transistors architecture and its application. Acta Physica Sinica, 2009, 58(6): 4183-4188. doi: 10.7498/aps.58.4183
    [17] Gao Peng, Yao Bao-Li, Han Jun-He, Chen Li-Ju, Wang Ying-Li, Lei Ming. Modulation of the azimuth of polarization of reconstruction beam on the diffraction efficiency of anisotropic gratings recorded in bacteriorhodopsin films by two parallel linearly polarized beams. Acta Physica Sinica, 2008, 57(5): 2952-2958. doi: 10.7498/aps.57.2952
    [18] Jian Xiao-Hua, Zhang Chun-Min, Zhao Bao-Chang. A new method for spectrum reproduction and interferogram processing. Acta Physica Sinica, 2007, 56(2): 824-829. doi: 10.7498/aps.56.824
    [19] Jia Wei-Guo, Yang Xing-Yu. Vector modulation instability in an arbitrary polarized direction in strong birefringence fibers. Acta Physica Sinica, 2005, 54(3): 1053-1058. doi: 10.7498/aps.54.1053
    [20] YANG SHI-XIN, LI FANG-HUA, LIU YU-DONG, GU YUAN-XIN, FAN HAI-FU. APPLICATION OF DIRECT METHOD TO ELECTRON CRYSTALLOGRAPHIC IMAGE PROCESSING FOR T WO-DIMENSIONAL PROTEIN CRYSTALS. Acta Physica Sinica, 2000, 49(10): 1982-1987. doi: 10.7498/aps.49.1982
Metrics
  • Abstract views:  4267
  • PDF Downloads:  107
  • Cited By: 0
Publishing process
  • Received Date:  06 September 2022
  • Accepted Date:  30 September 2022
  • Available Online:  23 December 2022
  • Published Online:  05 January 2023

/

返回文章
返回