-
The spatially modulated snapshot imaging polarimeter (SMSIP) can measure two-dimensional state of polarization through using the spatial carrier to encode the Stokes vectors in a single image. The traditional reference calibration is not suitable for dynamic environment (such as temperature change), and the dynamic calibration of linear shear spatial modulation snapshot imaging is proposed in this paper. In the dynamic calibration used are two modified Savart polariscopes with shear along the same direction as the core modulation device. In addition, the thickness ratio of the two modified Savart polariscopes is 1∶2. The spatial modulation phase factor generated by the core modulation device can be deduced from the interferogram and thickness ratio so as to demodulate all the polarization information of the target. The significant advantage of the dynamic calibration is that the target detection and the system calibration are carried out simultaneously. The reference target is not required in the process. In this work, the detailed theoretical analysis of the dynamic calibration is presented. In addition, a laboratory experiment and numerical simulation are conducted to demonstrate the validity of the proposed dynamic calibration. The present study provides a new idea for calibrating the spatially modulated snapshot imaging polarimeter, and effectively promotes its applications in engineering under dynamic environment.
[1] Snik F, Craven J J, Escuti M, Fineschi S, Harrington D, David M, Antonello D M, Dimitri M, Jerome R, Tyo J S 2014 SPIE Sensing Technology and Applications International Society for Optics and Photonics Maryland, USA, May 5–9, 2014 p90990B
[2] Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453Google Scholar
[3] Bass M, Mahajan N 2010 Handbook of Optics (3rd Ed.) (Vol. 1: Geometrical and Physical Optics, Polarized Light, Components and Instruments) (New York: McGraw Hill) pp413–512
[4] 何宏辉, 曾楠, 廖然, 马辉 2015 生物与化学进展 42 419Google Scholar
He H F, Zeng N, Liao R, Ma H 2015 Progress in Biochemistry and Biophysics 42 419Google Scholar
[5] Goldstein D, Goldstein D H 2003 Polarized Light, revised and expanded (Florida: CRC Press) pp513–538
[6] Kudenov M W, Escuti M J, Dereniak E L, Oka K 2011 Appl. Opt. 50 2283Google Scholar
[7] Oka K, Kaneko T 2003 Opt. Express 11 1510Google Scholar
[8] Luo H T, Oka K, Dehoog E, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413Google Scholar
[9] Luo H T 2008 Ph. D. Dissertation (Arizona: University of Arizona)
[10] Cao Q Z, Zhang C, DeHoog E 2012 Appl. Opt. 51 5791Google Scholar
[11] Cao Q Z, Zhang J, DeHoog E, Zhang C M 2016 Appl. Opt. 55 954Google Scholar
[12] 曹奇志 2014 博士学位论文 (西安: 西安交通大学)
Cao Q Z 2014 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University)
[13] Zhang Z Y, Ye S, Wang S C, Li S, Zhang Y T, Zhang W T, Wang F Y, Wang J J, Wang X Q, Li H Y, Qu X W 2021 Opt. Laser Technol. 143 107297Google Scholar
[14] Taniguchi A, Oka K, Okabe H, Hayakawa M 2006 Opt. Lett. 31 3279Google Scholar
[15] [16] Chrysler B D, Otani Y, Nathan H 2019 SPIE Polarization Science and Remote Sensing IX California, United States, September 6, 2019 p111320P
[17] 曹奇志, 张晶, Edward DeHoog, 卢远, 胡宝清, 李武钢, 李建映, 樊东鑫, 邓婷, 闫妍 2016 物理学报 65 050702Google Scholar
Cao Q Z, Zhang J, Edward D, Lu Y, Hu B Q, Li W G, Li J Y, Fan D X, Deng T, Yan Y 2016 Acta Phys. Sin. 65 050702Google Scholar
-
表 1 各个通道的SSIM
Table 1. SSIM of each channel.
通道 SSIM S0 0.9761 S 1 0.9710 S 2 0.9375 S 3 0.9252 -
[1] Snik F, Craven J J, Escuti M, Fineschi S, Harrington D, David M, Antonello D M, Dimitri M, Jerome R, Tyo J S 2014 SPIE Sensing Technology and Applications International Society for Optics and Photonics Maryland, USA, May 5–9, 2014 p90990B
[2] Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453Google Scholar
[3] Bass M, Mahajan N 2010 Handbook of Optics (3rd Ed.) (Vol. 1: Geometrical and Physical Optics, Polarized Light, Components and Instruments) (New York: McGraw Hill) pp413–512
[4] 何宏辉, 曾楠, 廖然, 马辉 2015 生物与化学进展 42 419Google Scholar
He H F, Zeng N, Liao R, Ma H 2015 Progress in Biochemistry and Biophysics 42 419Google Scholar
[5] Goldstein D, Goldstein D H 2003 Polarized Light, revised and expanded (Florida: CRC Press) pp513–538
[6] Kudenov M W, Escuti M J, Dereniak E L, Oka K 2011 Appl. Opt. 50 2283Google Scholar
[7] Oka K, Kaneko T 2003 Opt. Express 11 1510Google Scholar
[8] Luo H T, Oka K, Dehoog E, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413Google Scholar
[9] Luo H T 2008 Ph. D. Dissertation (Arizona: University of Arizona)
[10] Cao Q Z, Zhang C, DeHoog E 2012 Appl. Opt. 51 5791Google Scholar
[11] Cao Q Z, Zhang J, DeHoog E, Zhang C M 2016 Appl. Opt. 55 954Google Scholar
[12] 曹奇志 2014 博士学位论文 (西安: 西安交通大学)
Cao Q Z 2014 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University)
[13] Zhang Z Y, Ye S, Wang S C, Li S, Zhang Y T, Zhang W T, Wang F Y, Wang J J, Wang X Q, Li H Y, Qu X W 2021 Opt. Laser Technol. 143 107297Google Scholar
[14] Taniguchi A, Oka K, Okabe H, Hayakawa M 2006 Opt. Lett. 31 3279Google Scholar
[15] [16] Chrysler B D, Otani Y, Nathan H 2019 SPIE Polarization Science and Remote Sensing IX California, United States, September 6, 2019 p111320P
[17] 曹奇志, 张晶, Edward DeHoog, 卢远, 胡宝清, 李武钢, 李建映, 樊东鑫, 邓婷, 闫妍 2016 物理学报 65 050702Google Scholar
Cao Q Z, Zhang J, Edward D, Lu Y, Hu B Q, Li W G, Li J Y, Fan D X, Deng T, Yan Y 2016 Acta Phys. Sin. 65 050702Google Scholar
Catalog
Metrics
- Abstract views: 3335
- PDF Downloads: 47
- Cited By: 0