Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In-orbit Calibration Scheme for the Scale Factors and Center of Mass Offsets of Inertial Sensor of Taiji Program

LIU Chang WEI Xiaotong ZHANG Haoyue DENG Qiong LIANG Bo QIANG Li-E XU Peng QI Keqi WANG Shaoxin

Citation:

In-orbit Calibration Scheme for the Scale Factors and Center of Mass Offsets of Inertial Sensor of Taiji Program

LIU Chang, WEI Xiaotong, ZHANG Haoyue, DENG Qiong, LIANG Bo, QIANG Li-E, XU Peng, QI Keqi, WANG Shaoxin
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The Taiji program is a space mission designed to detect low-frequency gravitational waves. The mission's success hinges on the precise operation of its core payloads, particularly the inertial sensors, which are responsible for measuring the residual acceleration noise of the test masses. The duration of a space-based gravitational wave detection mission spans 3 to 5 years. During this period, the shift in the satellite’s center of mass due to propellant consumption and other factors, as well as the drift in the scale factors caused by electronic component aging, will gradually degrade the accuracy of inertial sensor data. Therefore, it is necessary to perform regular in-orbit calibration of inertial sensor parameters.
    In this work, we developed a calibration scheme that actively applies controlled satellite oscillations, tailored to the installation layout of the inertial sensors in the Taiji program and the noise models. For the calibration of scale factors, high-precision star sensors are used to measure the satellite attitude signal, which is then combined with the driving voltage data from inertial sensors. By leveraging the linear relationship between these signals, the scale factors are estimated using an extended Kalman Filter. For the calibration of center of mass (CoM) offsets, the calibrated scale factors are utilized, along with the driving voltage data from the front-end electronics of inertial sensors, to derive the test mass's angular acceleration, linear acceleration, and angular velocity. These parameters are then used to complete the CoM offset calibration according to the dynamic equation.
    The feasibility of the proposed calibration scheme was validated through a simulation experiment. The results demonstrate that the scale factors can be calibrated with a relative accuracy of 33 ppm, 27 ppm, and 173 ppm for the three axes, respectively, meeting the requirement of being within 300 ppm. The CoM offsets were calibrated with an accuracy of $\delta_{\boldsymbol{r}_1}=[15 \mu \mathrm{~m}, 31 \mu \mathrm{~m}, 34 \mu \mathrm{~m}], \delta_{\boldsymbol{r}_2}=[5 \mu \mathrm{~m}, 15 \mu \mathrm{~m}, 13 \mu \mathrm{~m}]$ satisfying the 75μm threshold. These results confirm that the proposed scheme can effectively maintain the inertial sensors' performance within the required accuracy range.
    In conclusion, the calibration scheme developed in this study is crucial for maintaining the high performance of inertial sensors in the Taiji program. By achieving precise calibration of the scale factors and center of mass offsets within the required accuracy ranges, the scheme ensures the reliability of inertial sensor data, thereby significantly enhance the sensitivity of space-based gravitational wave detection, paving the way for groundbreaking discoveries in astrophysics and cosmology.
  • [1]

    Marion F, LIGO Scientific Collaboration 2017Nuovo Cimento C 39 310

    [2]

    Pinard L, Michel C, Sassolas B, Balzarini L, Degallaix J, Dolique V, Flaminio R, Forest D, Granata M, Lagrange B, Straniero N, Teillon J, Cagnoli G 2017Appl. Opt. 56C11

    [3]

    Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H 2013 Phys. Rev. D 88173

    [4]

    KAGRA collaboration 2019Nat. Astron. 3 35

    [5]

    Black E D, Gutenkunst R N 2003Am. J. Phys. 71 365

    [6]

    Jani K, Shoemaker D, Cutler C 2019Nat. Astron. 4260

    [7]

    Jennrich O 2009Class. Quantum Grav. 26 153001

    [8]

    Sun Q C, Wang G Q, Gong X F, Lau Y K, Xu S N, Amaro-Seoane P, Bai S, Bian X, Cao Z J, Chen G R, Chen X, Ding Y W, Dong P, Gao W, Heinzel G, Li M, Li S, Liu F K, Luo Z R, Shao M X, Spurzem R, Sun B S, Tang W L, Wang Y, Xu P, Yu P, Yuan Y F, Zhang X M, Zhou Z B 2014J. Phys.: Conf. Ser. 610 12011

    [9]

    Karsten Danzmann and the LISA study team 1996Class. Quantum Grav. 3 A247

    [10]

    Audley H, Babak S, Baker J, Barausse E, Sopuerta C F 2017Tp.umu.se 548 411

    [11]

    Sato S, Aso Y, Mino Y, Miyakawa O, Somiya K 2017J. Phys.: Conf. Ser. 840 012010

    [12]

    Kawamura S, Ando M, Seto N, Sato S, Nakamura T, Tsubono K, Kanda N, Tanaka T, Yokoyama J, Funaki I, Numata K, Ioka K, Takashima T, Agatsuma K, Akutsu T, Aoyanagi K, Arai K, Araya A, Asada H, Aso Y, Chen D, Chiba T, Ebisuzaki T, Ejiri Y, Enoki M, Eriguchi Y, Fujimoto M-K, Fujita R, Fukushima M, Futamase T, Harada T, Hashimoto T, Hayama K, Hikida W, Himemoto Y, Hirabayashi H, Hiramatsu T, Hong F-L, Horisawa H, Hosokawa M, Ichiki K, Ikegami T, Inoue K, Ishidoshiro K, Ishihara H, Ishikawa T, Ishizaki H, Ito H, Itoh Y, Izumi K, Kawano I, Kawashima N, Kawazoe F, Kishimoto N, Kiuchi K, Kobayashi S, Kohri K, Koizumi H, Kojima Y, Kokeyama K, Kokuyama W, Kotake K, Kozai Y, Kunimori H, Kuninaka H, Kuroda K, Kuroyanagi S, Maeda K-i, Matsuhara H, Matsumoto N, Michimura Y, Miyakawa O, Miyamoto U, Miyamoto S, Miyoki S, Morimoto M Y, Morisawa T, Moriwaki S, Mukohyama S, Musha M, Nagano S, Naito I, Nakamura K, Nakano H, Nakao K, Nakasuka S, Nakayama Y, Nakazawa K, Nishida E, Nishiyama K, Nishizawa A, Niwa Y, Noumi T, Obuchi Y, Ohashi M, Ohishi N, Ohkawa M, Okada K, Okada N, Oohara K, Sago N, Saijo M, Saito R, Sakagami M, Sakai S-i, Sakata S, Sasaki M, Sato T, Shibata M, Shinkai H, Shoda A, Somiya K, Sotani H, Sugiyama N, Suwa Y, Suzuki R, Tagoshi H, Takahashi F, Takahashi K, Takahashi K, Takahashi R, Takahashi R, Takahashi T, Takahashi H, Takahashi T, Takano T, Tanaka N, Taniguchi K, Taruya A, Tashiro H, Torii Y, Toyoshima M, Tsujikawa S, Tsunesada Y, Ueda A, Ueda K-i, Utashima M, Wakabayashi Y, Yagi K, Yamakawa H, Yamamoto K, Yamazaki T, Yoo C-M, Yoshida S, Yoshino T, Sun K-X 2011Class. Quantum Grav. 289

    [13]

    Hu W R, Wu Y L 2017Natl. Sci. Rev. 4 685

    [14]

    Wu Y L, Luo Z R, Wang J Y, Bai M, Zou Z M 2021Commun. Phys. 4 34

    [15]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S, Ji J, Liu Q, Mei J, Milyukov V, Sazhin M 2015Class. Quantum Grav. 33 035010

    [16]

    Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020J. Deep Space Explor. 7 3(in Chinese) [罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞2020深空探测学报7 3]

    [17]

    Luo Z R, Zhang M, Wu Y L 2022Chinese Journal of Space Science 42536

    [18]

    Sun K X, Johann U, Debra1 D B, Byer R L 2007 J. Phys. Conf. Ser. 60 272

    [19]

    Wang S X, Guo W C, Zhao P -A, Wang J, Dong P, Xu P, Luo Z R, Qi K Q 2024Sci Sin-Phys Mech Astron.54 91(in Chinese) [王少鑫,郭纬川,赵平安,王娟,董鹏,徐鹏,罗子人,齐克奇2024中国科学:物理学力学天文学54 91]

    [20]

    Wei X T, Huang L, Shen T Y, Cai Z M, He J B 2023Phys. Rev. D 108082001

    [21]

    Visser P N A M, Ijssel J V D 2003Adv. Space Res. 311905

    [22]

    Lenoir B, Christophe B, Reynaud S 2012Measurement 46 1411

    [23]

    Visser P N A M 2008J. Geod. 82591

    [24]

    Wang F R 2003Ph. D. Dissertation (Austin:The University of Texas at Austin)

    [25]

    Zhang H Y, Xu P, Ye Z, Ye D, Qiang L-E, Luo Z R, Qi K Q, Wang S X, Cai Z M, Wang Z L, Lei J G, Wu Y L 2023Remote Sens. 15 3817

    [26]

    Ruan Y D, Zhang Z H, Jia J X, Gu Y N, Zhang S D, Cui X G, Hong W, Bai Y Z, Tian P F 2024Acta Phys. Sin. 73 220401(in Chinese)[阮远东,章志昊,贾茳勰,顾煜宁,张善端,崔旭高,洪葳,白彦峥,田朋飞2024物理学报73220401]

    [27]

    Lupi F 2019M.S. Thesis (Delft:Delft University of Technology)

    [28]

    Blarre L, Ouaknine J, Oddos-Marcel L, Brévannes L, Martinez P-E, Belin É 2006AIAA Guidance, Navigation and Control Conference, Colorado, August 21–24, 2006 p6046

    [29]

    Yuan L, Wang M M, Wu Y P, Wang L, Zheng R 2020Chin. J. Aeronaut. 417(in Chinese) [袁利,王苗苗,武延鹏,王利,郑然航空学报417]

    [30]

    Liu H, Niu X, Zeng M, Wang S, Cui K, Yu D 2022 Acta Astronaut. 193 496510

    [31]

    Yu D R,Niu X, Wang T B,Wang S S,Zeng M,Cui K,Liu H,Tu L C,Li Z,Huang X Q, Liu J P, Shen Y, Peng H S, Yang C, Song P Y, Kuang S Y, Zhang K, Suo X C, Huang X B, Liu X H, Wang X D, Long J, Fu X J, Gao C G, Yang Juan, Xia Xu, Fu Y L, Hu Z, Kang X M, Wu Q Q, Pang A P, Zhou H B 2021Acta Sci. Nat. Univ. Sunyatseni 60 194(in Chinese)[于达仁, 牛翔, 王泰卜, 王尚胜, 曾明, 崔凯, 刘辉, 涂良成, 李祝, 黄祥青, 刘建平,沈岩,彭慧生,杨铖,宋培义,匡双阳,张开,索晓晨,黄潇博,刘旭辉,汪旭东,龙军,付新菊,高晨光,杨涓,夏旭,付瑜亮,胡展,康小明,吴勤勤,庞爱平,周鸿博2021中山大学学报: 自然科学版60194]

    [32]

    Zhang J 2016Ph. D. Dissertation(Beijing: Beijing Institute of Control Engineering, Chinese Academy of Space Technology) (in Chinese) [张俊2016博士学位论文(北京:中国空间技术研究院,北京控制工程研究所)]

    [33]

    Montenbruck O, Gill E (translated by Wang J S, Zhu K J, Hu X G) 2012Satellite Orbits: Models, Methods and Applications (Beijing:National Defense Industry Press) pp73-79(in Chinese) [门斯布吕克, 吉尔(王家松、祝开建、胡小工译)2012卫星轨道:模型、方法和应用(北京:国防工业出版社)第73—79页]

  • [1] CHENG Aodi, YU Huiyang, WANG Chentao, FAN Ziyang, ZHANG Jiaqi, WU Keying, HUANG Jianqiu. Study on the piezoelectric properties of PVDF-EtP nanofiber membranes and its application in pressure sensors. Acta Physica Sinica, doi: 10.7498/aps.74.20241680
    [2] Zhou Zi-Tong, Yan Shao-Hua, Zhao Wei-Sheng, Leng Qun-Wen. Research progress of tunneling magnetoresistance sensor. Acta Physica Sinica, doi: 10.7498/aps.71.20211883
    [3] Liu Zhen, Yang Xiao-Chao, Zhang Xiao-Xin, Zhang Shen-Yi, Yu Qing-Long, Zhang Xin, Xue Bing-Sen, Guo Jian-Guang, Zong Wei-Guo, Shen Guo-Hong, Bai Chao-Ping, Zhou Ping, Ji Wen-Tao. On-orbit cross-calibration and assimilation for relativistic electron observations from FengYun 4A and GOES-13. Acta Physica Sinica, doi: 10.7498/aps.68.20190433
    [4] Zhou Qing-Yong, Wei Zi-Qing, Jiang Kun, Deng Lou-Lou, Liu Si-Wei, Ji Jian-Feng, Ren Hong-Fei, Wang Yi-Di, Ma Gao-Feng. A method of calibrating effective area of focusing X-ray detector by using normal spectrum of Crab pulsar. Acta Physica Sinica, doi: 10.7498/aps.67.20172352
    [5] Jiang Rui, Yang Zhen. An improved centroid localization algorithm based on iterative computation for wireless sensor network. Acta Physica Sinica, doi: 10.7498/aps.65.030101
    [6] Huang Jin-Wang, Feng Jiu-Chao, Lü Shan-Xiang. Blind source separation of chaotic signals in wireless sensor networks. Acta Physica Sinica, doi: 10.7498/aps.63.050502
    [7] Liu Hao-Ran, Yin Wen-Xiao, Dong Ming-Ru, Liu Bin. Study on the scale-free topology model with strong intrusion-tolerance ability in wireless sensor networks. Acta Physica Sinica, doi: 10.7498/aps.63.090503
    [8] Liu Bin, Dong Ming-Ru, Liu Hao-Ran, Yin Rong-Rong, Han Li. A scale-free fault tolerant topology model in wireless sensor network for toleration of comprehensive fault. Acta Physica Sinica, doi: 10.7498/aps.63.170506
    [9] Han Li, Liu Bin, Li Ya-Qian, Zhao Lei-Jing. Studies on weighted scale-free topology in energy heterogeneous wireless sensor network. Acta Physica Sinica, doi: 10.7498/aps.63.150504
    [10] Liu Zhou-Zhou, Wang Fu-Bao. Research on weighted scale-free topology with balancing energy consumption characteristics in wireless sensor networks. Acta Physica Sinica, doi: 10.7498/aps.63.190504
    [11] Yin Rong-Rong, Liu Bin, Liu Hao-Ran, Li Ya-Qian. Dynamic fault-tolerance analysis of scale-free topology in wireless sensor networks. Acta Physica Sinica, doi: 10.7498/aps.63.110205
    [12] Liu Xiang-Li, Li Zan, Hu Yi-Su. A coordinate compression algorithm based on centroid for wireless sensor networks. Acta Physica Sinica, doi: 10.7498/aps.62.070201
    [13] Kong Yan-Mei, Gao Chao-Qun, Jing Yu-Peng, Chen Da-Peng. The research of the air-sensitive sensor based on thephotonic crystal beam splitter. Acta Physica Sinica, doi: 10.7498/aps.60.054215
    [14] Ou Jun, Jiang Yue-Song, Li Fang, Liu Li. Shifts of beam centroid of Laguerre-Gaussian beams reflected and refracted at a dielectric interface. Acta Physica Sinica, doi: 10.7498/aps.60.114203
    [15] Xie Dong-Hai, Gu Xing-Fa, Chen Xing-Feng, Li Zheng-Qiang, Cheng Tian-Hai, Yu Tao, Xu Hua. In-flight polarization calibration methods of directional polarizedremote sensing camera DPC. Acta Physica Sinica, doi: 10.7498/aps.60.070702
    [16] Huang Qin, Leng Feng-Chun, Liang Wen-Yao, Dong Jian-Wen, Wang He-Zhou. Sensitive temperature sensor based on phase properties of photonic crystal. Acta Physica Sinica, doi: 10.7498/aps.59.4014
    [17] Zhang Yan-Yan, Rao Chang-Hui, Li Mei, Ma Xiao-Yu. The detection error analysis of Hartmann-Shack wavefront sensor based on electron multiplying charge-coupled devices. Acta Physica Sinica, doi: 10.7498/aps.59.5904
    [18] Li Zheng-Ying, Wang Hong-Hai, Jiang Ning, Cheng Song-Lin, Zhao Lei, Yu Xin. Demodulation method for second harmonic signal in optical fiber gas sensor. Acta Physica Sinica, doi: 10.7498/aps.58.3821
    [19] Li Jian-Jun, Zheng Xiao-Bing, Lu Yun-Jun, Zhang-Wei, Xie Ping, Zou Peng. Accurate calibration of the spectral responsivity of silicon trap detectors between 350 and 1064 nm. Acta Physica Sinica, doi: 10.7498/aps.58.6273
    [20] Guo Wen-Gang, Yang Xiu-Feng, Luo Shao-Jun, Li Yong-Nan, Tu Cheng-Hou, Lü Fu-Yun, Wang Hong-Jie, Li En-Bang, Lü Chao. A fiber sensor for measuring gas concentration based on laser’s transient regime. Acta Physica Sinica, doi: 10.7498/aps.56.308
Metrics
  • Abstract views:  173
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Available Online:  24 February 2025

/

返回文章
返回