Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of in-orbit calibration scheme for scale factor and center-of-mass deviation of inertial sensor of Taiji program for space gravitational wave detection

LIU Chang WEI Xiaotong ZHANG Haoyue DENG Qiong LIANG Bo QIANG Li’E XU Peng QI Keqi WANG Shaoxin

Citation:

Design of in-orbit calibration scheme for scale factor and center-of-mass deviation of inertial sensor of Taiji program for space gravitational wave detection

LIU Chang, WEI Xiaotong, ZHANG Haoyue, DENG Qiong, LIANG Bo, QIANG Li’E, XU Peng, QI Keqi, WANG Shaoxin
cstr: 32037.14.aps.74.20241376
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The Taiji program-frequency gravitational waves. The mission's success hinges on the precise operation of its core payloads, particularly the inertial sensors, which are responsible for measuring the residual acceleration noise of the test masses. The duration of a space-based gravitational wave detection mission is 3 to 5 years. During this period, the shift in the satellite’s center of mass due to propellant consumption and other factors, as well as the drift in the scale factors caused by electronic component aging, will gradually degrade the accuracy of inertial sensor data. Therefore, it is necessary to regularly perform in-orbit calibration of inertial sensor parameters.In this work, we develop a calibration scheme, which actively applies controlled satellite oscillations and is tailored according to the installation layout of the inertial sensors in the Taiji program and the noise models. For the calibration of scale factors, high-precision star sensors are used to measure the satellite attitude signal, which is then combined with the driving voltage data from inertial sensors. By using the linear relationship between these signals, the scale factors are estimated using an extended Kalman Filter. For the calibration of center of mass (CoM) offsets, the calibrated scale factors are utilized, along with the driving voltage data from the front-end electronics of inertial sensors, to derive the test mass’s angular acceleration, linear acceleration, and angular velocity. These parameters are then used to complete the CoM offset calibration according to the dynamic equation.The feasibility of the proposed calibration scheme is validated through a simulation experiment. The results demonstrate that the scale factors of the three axes can be calibrated to relative accuracies of 33×10–6 and 173×10–6, respectively, meeting the requirement within 300×10–6. The CoM deviation are calibrated with accuracies of $ {\delta }_{{\boldsymbol{r}}_{1}}= $[15 μm, 31 μm, 34 μm], $ {\delta }_{{\boldsymbol{r}}_{2}}= $[5 μm, 15 μm, 13 μm], satisfying the 75 μm threshold. These results confirm that the proposed scheme can effectively maintain the inertial sensors’ performance within the required accuracy range.All in all, the calibration scheme developed in this study is crucial for maintaining the high performance of inertial sensors in the Taiji program. By achieving the precise calibration of the scale factors and deviation of center of mass within the required accuracy ranges, the scheme ensures the reliability of inertial sensor data, thereby significantly enhancing the sensitivity of space-based gravitational wave detection, which paves the way for groundbreaking discoveries in astrophysics and cosmology.
      Corresponding author: QIANG Li’E, qianglie@nssc.ac.cn ; XU Peng, xupeng@imech.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2020YFC2200603, 2020YFC2200601, 2020YFC2200602, 2021YFC2201901), the National Natural Science Foundation for Young Scientists of China (Grant No. 11905017), and the Strategic Priority Science and Technology Project of the Chinese Academy of Sciences (Grant Nos. XDA15020700, XDA15018000).
    [1]

    Marion F, LIGO Scientific Collaboration 2017 Nuovo Cimento C 39 310

    [2]

    Pinard L, Michel C, Sassolas B, Balzarini L, Degallaix J, Dolique V, Flaminio R, Forest D, Granata M, Lagrange B, Straniero N, Teillon J, Cagnoli G 2017 Appl. Opt. 56 C11Google Scholar

    [3]

    Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H 2013 Phys. Rev. D 88 173Google Scholar

    [4]

    KAGRA Collaboration 2019 Nat. Astron. 3 35Google Scholar

    [5]

    Black E D, Gutenkunst R N 2003 Am. J. Phys. 71 365Google Scholar

    [6]

    Jani K, Shoemaker D, Cutler C 2019 Nat. Astron. 4 260Google Scholar

    [7]

    Jennrich O 2009 Class. Quantum Grav. 26 153001Google Scholar

    [8]

    Gong X F, Lau Y K, Xu S N, Amaro-Seoane P, Bai S, Bian X, Cao Z J, Chen G R, Chen X, Ding Y W, Dong P, Gao W, Heinzel G, Li M, Li S, Liu F K, Luo Z R, Shao M X, Spurzem R, Sun B S, Tang W L, Wang Y, Xu P, Yu P, Yuan Y F, Zhang X M, Zhou Z B 2014 J. Phys.: Conf. Ser. 610 12011

    [9]

    Karsten D, the LISA study team 1996 Class. Quantum Grav. 3 A247Google Scholar

    [10]

    Audley H, Babak S, Baker J, et al. 2017 arXiv.1702.00786 [astro-ph.IM]

    [11]

    Sato S, Aso Y, Mino Y, Miyakawa O, Somiya K 2017 J. Phys. Conf. Ser. 840 012010Google Scholar

    [12]

    Kawamura S, Ando M, Seto N, et al. 2011 Class. Quantum Grav. 28 9Google Scholar

    [13]

    Hu W R, Wu Y L 2017 Natl. Sci. Rev. 4 685Google Scholar

    [14]

    Wu Y L, Luo Z R, Wang J Y, Bai M, Zou Z M 2021 Commun. Phys. 4 34Google Scholar

    [15]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S, Ji J, Liu Q, Mei J, Milyukov V, Sazhin M 2015 Class. Quantum Grav. 33 035010Google Scholar

    [16]

    罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞 2020 深空探测学报 7 3

    Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020 J. Deep Space Explor. 7 3

    [17]

    Luo Z R, Zhang M, Wu Y L 2022 Chin. J. Space Sci. 42 536Google Scholar

    [18]

    Sun K X, Johann U, Debra1 D B, Byer R L 2007 J. Phys. Conf. Ser. 60 272Google Scholar

    [19]

    王少鑫, 郭纬川, 赵平安, 王娟, 董鹏, 徐鹏, 罗子人, 齐克奇 2024 中国科学: 物理学 力学 天文学 54 91Google Scholar

    Wang S X, Guo W C, Zhao P A, Wang J, Dong P, Xu P, Luo Z R, Qi K Q 2024 Sci. Sin. Phys. Mech. Astron. 54 91Google Scholar

    [20]

    Wei X T, Huang L, Shen T Y, Cai Z M, He J B 2023 Phys. Rev. D 108 082001Google Scholar

    [21]

    Visser P N A M, Ijssel J V D 2003 Adv. Space Res. 31 1905Google Scholar

    [22]

    Lenoir B, Christophe B, Reynaud S 2012 Measurement 46 1411

    [23]

    Visser P N A M 2008 J. Geod. 82 591Google Scholar

    [24]

    Wang F R 2003 Ph. D. Dissertation (Austin: The University of Texas at Austin

    [25]

    Zhang H Y, Xu P, Ye Z, Ye D, Qiang L E, Luo Z R, Qi K Q, Wang S X, Cai Z M, Wang Z L, Lei J G, Wu Y L 2023 Remote Sens. 15 3817Google Scholar

    [26]

    阮远东, 章志昊, 贾茳勰, 顾煜宁, 张善端, 崔旭高, 洪葳, 白彦峥, 田朋飞 2024 物理学报 73 220401Google Scholar

    Ruan Y D, Zhang Z H, Jia J X, Gu Y N, Zhang S D, Cui X G, Hong W, Bai Y Z, Tian P F 2024 Acta Phys. Sin. 73 220401Google Scholar

    [27]

    Lupi F 2019 M. S. Thesis (Delft: Delft University of Technology

    [28]

    Blarre L, Ouaknine J, Oddos-Marcel L, Brévannes L, Martinez P-E, Belin É 2006 AIAA Guidance, Navigation and Control Conference, Colorado, August 21–24, 2006 p6046

    [29]

    袁利, 王苗苗, 武延鹏, 王利, 郑然 2020 航空学报 4 17

    Yuan L, Wang M M, Wu Y P, Wang L, Zheng R 2020 Chin. J. Aeronaut. 4 17

    [30]

    Liu H, Niu X, Zeng M, Wang S, Cui K, Yu D R 2022 Acta Astronaut. 193 496Google Scholar

    [31]

    于达仁, 牛翔, 王泰卜, 王尚胜, 曾明, 崔凯, 刘辉, 涂良成, 李祝, 黄祥青, 刘建平, 沈岩, 彭慧生, 杨铖, 宋培义, 匡双阳, 张开, 索晓晨, 黄潇博, 刘旭辉, 汪旭东, 龙军, 付新菊, 高晨光, 杨涓, 夏旭, 付瑜亮, 胡展, 康小明, 吴勤勤, 庞爱平, 周鸿博 2021 中山大学学报: 自然科学版 60 194

    Yu D R, Niu X, Wang T B, Wang S S, Zeng M, Cui K, Liu H, Tu L C, Li Z, Huang X Q, Liu J P, Shen Y, Peng H S, Yang C, Song P Y, Kuang S Y, Zhang K, Suo X C, Huang X B, Liu X H, Wang X D, Long J, Fu X J, Gao C G, Yang Juan, Xia Xu, Fu Y L, Hu Z, Kang X M, Wu Q Q, Pang A P, Zhou H B 2021 Acta Sci. Nat. Univ. Sunyatseni. 60 194

    [32]

    张俊 2016 博士学位论文 (北京: 中国空间技术研究院北京控制工程研究所)

    Zhang J 2016 Ph. D. Dissertation (Beijing: Beijing Institute of Control Engineering, Chinese Academy of Space Technology

    [33]

    门斯布吕克, 吉尔 (王家松, 祝开建, 胡小工 译) 2012卫星轨道: 模型、方法和应用 (北京: 国防工业出版社)第73—79页

    Montenbruck O, Gill E (translated by Wang J S, Zhu K J, Hu X G) 2012 Satellite Orbits: Models, Methods and Applications (Beijing: National Defense Industry Press) pp73–79

  • 图 1  太极计划测试质量坐标系下的敏感结构

    Figure 1.  Taiji inertial sensor sensitive structure in the local coordinate system.

    图 2  标度因数与质心偏差的定标流程图

    Figure 2.  Calibration flowchart for scale factor and mass center offset.

    图 3  卫星机动效果 (a)参数定标期间推进器前500 s的力矩仿真信号; (b)参数定标期间卫星角度仿真信号

    Figure 3.  Satellite maneuvering effect: (a) Propeller moment simulation signal for the first 500 s during parameter calibration; (b) satellite angle simulation signal during parameter calibration.

    图 4  标度因数定标过程测量数据仿真信号 (a) 惯性传感器感应电极前500 s驱动电压; (b) 星敏感器获取角加速度前500 s仿真信号

    Figure 4.  Scaling factor calibration process measurement data simulation signal: (a) Inertial sensor induction electrode drive voltage before 500 s; (b) star sensor to obtain angular acceleration simulation signal before 500 s.

    图 5  质心偏差定标期间惯性传感器测量数据模拟信号 (a) 角加速度前500 s仿真信号; (b) 线加速度前500 s仿真信号; (c) 角速度仿真信号; (d)太阳光压仿真信号及处理结果

    Figure 5.  Simulation signal of measurement data during mass center offset calibration of inertial sensor: (a) Angular acceleration simulation signal before 500 s; (b) simulation signal of linear acceleration before 500 s; (c) angular velocity simulation signal; (d) simulation signal of sunlight pressure and processing results.

    图 6  角标度因数定标估计收敛过程

    Figure 6.  Angular scale factor calibration estimation convergence process.

    图 7  质心偏差定标估计的收敛过程 (a) 质心偏差$ {\boldsymbol{r}}_{1} $; (b)质心偏差$ {\boldsymbol{r}}_{2} $

    Figure 7.  Mass center offset calibration estimation convergence process: (a) Mass center offset $ {\boldsymbol{r}}_{1} $; (b) mass center offset $ {\boldsymbol{r}}_{2} $.

    图 8  定标后质心偏差耦合加速度噪声识别效果图(8000—10000 s) (a)第一套惯性传感器系统; (b)第二套惯性传感器系统

    Figure 8.  Mass center offset coupled acceleration noise recognition effect after calibration (8000–10000 s): (a) The first inertial sensor system; (b) the second inertial sensor system.

    表 1  施加的加速度与驱动电压的对应关系

    Table 1.  Acceleration corresponds to the excitation voltage.

    角加速度和线加速度 标度因数和电压读出
    $ {\dot{\omega }}_{x}$ $ \beta_x({V}_{y, 1}-{V}_{y, 2}) $
    $ {\dot{\omega }}_{y}$ $ {{{\beta }}}_{{{y}}}({V}_{z, 1}-{V}_{z, 2}) $
    $ {\dot{\omega }}_{z}$ $ {{{\beta }}}_{{{z}}}( {V}_{x, 1}-{V}_{x, 2}) $
    $ {a}_{x}$ $ {{{k}}}_{{{x}}}({V}_{x, 1}+{V}_{x, 2}) $
    $ {a}_{y}$ $ {{{k}}}_{{{y}}}({V}_{y, 1}+{V}_{y, 2}) $
    $ {a}_{z} $ $ {{{k}}}_{{{z}}}({V}_{z, 1}+{V}_{z, 2}) $
    DownLoad: CSV

    表 2  标度因数真值与定标结果

    Table 2.  Comparison of true scale factor values and calibration results.

    标度因数真值定标值
    βx/(10–8 rad·s–2·V–1)5.521435.52125$ \pm $0.000029
    βy/(10–8 rad·s–2·V–1)5.521435.52158$ \pm $0.000022
    βz/(10–8 rad·s–2·V–1)7.361917.36318$ \pm $0.000022
    kx/(10–9 m·s–2·V–1)2.257652.25804$ \pm 0 $.000007
    ky/(10–9 m·s–2·V–1)1.128831.12879$ \pm 0 $.000006
    kz/(10–9 m·s–2·V–1)1.128831.12886$ \pm 0 $.000004
    DownLoad: CSV

    表 3  质心偏差真值与定标结果对比

    Table 3.  Comparison of true values and calibration results of mass center offset.

    质心偏差 真值/m 定标值/m
    $ {\boldsymbol{r}}_{1} $ $ {r}_{x, 1} $ 0.216400 0.216385$ \pm $0.0000014
    $ {r}_{y, 1} $ –0.125100 –0.125131$ \pm $0.0000005
    $ {r}_{z, 1} $ 0.000200 0.000234$ \pm $0.0000009
    $ {\boldsymbol{r}}_{2} $ $ {r}_{x, 2} $ 0.216400 0.216405$ \pm $0.0000067
    $ {r}_{y, 2} $ 0.125100 0.125085$ \pm $0.0000022
    $ {r}_{z, 2} $ 0.000200 0.000213$ \pm $0.0000046
    DownLoad: CSV
  • [1]

    Marion F, LIGO Scientific Collaboration 2017 Nuovo Cimento C 39 310

    [2]

    Pinard L, Michel C, Sassolas B, Balzarini L, Degallaix J, Dolique V, Flaminio R, Forest D, Granata M, Lagrange B, Straniero N, Teillon J, Cagnoli G 2017 Appl. Opt. 56 C11Google Scholar

    [3]

    Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H 2013 Phys. Rev. D 88 173Google Scholar

    [4]

    KAGRA Collaboration 2019 Nat. Astron. 3 35Google Scholar

    [5]

    Black E D, Gutenkunst R N 2003 Am. J. Phys. 71 365Google Scholar

    [6]

    Jani K, Shoemaker D, Cutler C 2019 Nat. Astron. 4 260Google Scholar

    [7]

    Jennrich O 2009 Class. Quantum Grav. 26 153001Google Scholar

    [8]

    Gong X F, Lau Y K, Xu S N, Amaro-Seoane P, Bai S, Bian X, Cao Z J, Chen G R, Chen X, Ding Y W, Dong P, Gao W, Heinzel G, Li M, Li S, Liu F K, Luo Z R, Shao M X, Spurzem R, Sun B S, Tang W L, Wang Y, Xu P, Yu P, Yuan Y F, Zhang X M, Zhou Z B 2014 J. Phys.: Conf. Ser. 610 12011

    [9]

    Karsten D, the LISA study team 1996 Class. Quantum Grav. 3 A247Google Scholar

    [10]

    Audley H, Babak S, Baker J, et al. 2017 arXiv.1702.00786 [astro-ph.IM]

    [11]

    Sato S, Aso Y, Mino Y, Miyakawa O, Somiya K 2017 J. Phys. Conf. Ser. 840 012010Google Scholar

    [12]

    Kawamura S, Ando M, Seto N, et al. 2011 Class. Quantum Grav. 28 9Google Scholar

    [13]

    Hu W R, Wu Y L 2017 Natl. Sci. Rev. 4 685Google Scholar

    [14]

    Wu Y L, Luo Z R, Wang J Y, Bai M, Zou Z M 2021 Commun. Phys. 4 34Google Scholar

    [15]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S, Ji J, Liu Q, Mei J, Milyukov V, Sazhin M 2015 Class. Quantum Grav. 33 035010Google Scholar

    [16]

    罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞 2020 深空探测学报 7 3

    Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020 J. Deep Space Explor. 7 3

    [17]

    Luo Z R, Zhang M, Wu Y L 2022 Chin. J. Space Sci. 42 536Google Scholar

    [18]

    Sun K X, Johann U, Debra1 D B, Byer R L 2007 J. Phys. Conf. Ser. 60 272Google Scholar

    [19]

    王少鑫, 郭纬川, 赵平安, 王娟, 董鹏, 徐鹏, 罗子人, 齐克奇 2024 中国科学: 物理学 力学 天文学 54 91Google Scholar

    Wang S X, Guo W C, Zhao P A, Wang J, Dong P, Xu P, Luo Z R, Qi K Q 2024 Sci. Sin. Phys. Mech. Astron. 54 91Google Scholar

    [20]

    Wei X T, Huang L, Shen T Y, Cai Z M, He J B 2023 Phys. Rev. D 108 082001Google Scholar

    [21]

    Visser P N A M, Ijssel J V D 2003 Adv. Space Res. 31 1905Google Scholar

    [22]

    Lenoir B, Christophe B, Reynaud S 2012 Measurement 46 1411

    [23]

    Visser P N A M 2008 J. Geod. 82 591Google Scholar

    [24]

    Wang F R 2003 Ph. D. Dissertation (Austin: The University of Texas at Austin

    [25]

    Zhang H Y, Xu P, Ye Z, Ye D, Qiang L E, Luo Z R, Qi K Q, Wang S X, Cai Z M, Wang Z L, Lei J G, Wu Y L 2023 Remote Sens. 15 3817Google Scholar

    [26]

    阮远东, 章志昊, 贾茳勰, 顾煜宁, 张善端, 崔旭高, 洪葳, 白彦峥, 田朋飞 2024 物理学报 73 220401Google Scholar

    Ruan Y D, Zhang Z H, Jia J X, Gu Y N, Zhang S D, Cui X G, Hong W, Bai Y Z, Tian P F 2024 Acta Phys. Sin. 73 220401Google Scholar

    [27]

    Lupi F 2019 M. S. Thesis (Delft: Delft University of Technology

    [28]

    Blarre L, Ouaknine J, Oddos-Marcel L, Brévannes L, Martinez P-E, Belin É 2006 AIAA Guidance, Navigation and Control Conference, Colorado, August 21–24, 2006 p6046

    [29]

    袁利, 王苗苗, 武延鹏, 王利, 郑然 2020 航空学报 4 17

    Yuan L, Wang M M, Wu Y P, Wang L, Zheng R 2020 Chin. J. Aeronaut. 4 17

    [30]

    Liu H, Niu X, Zeng M, Wang S, Cui K, Yu D R 2022 Acta Astronaut. 193 496Google Scholar

    [31]

    于达仁, 牛翔, 王泰卜, 王尚胜, 曾明, 崔凯, 刘辉, 涂良成, 李祝, 黄祥青, 刘建平, 沈岩, 彭慧生, 杨铖, 宋培义, 匡双阳, 张开, 索晓晨, 黄潇博, 刘旭辉, 汪旭东, 龙军, 付新菊, 高晨光, 杨涓, 夏旭, 付瑜亮, 胡展, 康小明, 吴勤勤, 庞爱平, 周鸿博 2021 中山大学学报: 自然科学版 60 194

    Yu D R, Niu X, Wang T B, Wang S S, Zeng M, Cui K, Liu H, Tu L C, Li Z, Huang X Q, Liu J P, Shen Y, Peng H S, Yang C, Song P Y, Kuang S Y, Zhang K, Suo X C, Huang X B, Liu X H, Wang X D, Long J, Fu X J, Gao C G, Yang Juan, Xia Xu, Fu Y L, Hu Z, Kang X M, Wu Q Q, Pang A P, Zhou H B 2021 Acta Sci. Nat. Univ. Sunyatseni. 60 194

    [32]

    张俊 2016 博士学位论文 (北京: 中国空间技术研究院北京控制工程研究所)

    Zhang J 2016 Ph. D. Dissertation (Beijing: Beijing Institute of Control Engineering, Chinese Academy of Space Technology

    [33]

    门斯布吕克, 吉尔 (王家松, 祝开建, 胡小工 译) 2012卫星轨道: 模型、方法和应用 (北京: 国防工业出版社)第73—79页

    Montenbruck O, Gill E (translated by Wang J S, Zhu K J, Hu X G) 2012 Satellite Orbits: Models, Methods and Applications (Beijing: National Defense Industry Press) pp73–79

  • [1] CHENG Aodi, YU Huiyang, WANG Chentao, FAN Ziyang, ZHANG Jiaqi, WU Keying, HUANG Jianqiu. Piezoelectric properties of PVDF-EtP nanofiber membrane and its application in pressure sensors. Acta Physica Sinica, 2025, 74(7): 075201. doi: 10.7498/aps.74.20241680
    [2] Zhou Zi-Tong, Yan Shao-Hua, Zhao Wei-Sheng, Leng Qun-Wen. Research progress of tunneling magnetoresistance sensor. Acta Physica Sinica, 2022, 71(5): 058504. doi: 10.7498/aps.71.20211883
    [3] Liu Zhen, Yang Xiao-Chao, Zhang Xiao-Xin, Zhang Shen-Yi, Yu Qing-Long, Zhang Xin, Xue Bing-Sen, Guo Jian-Guang, Zong Wei-Guo, Shen Guo-Hong, Bai Chao-Ping, Zhou Ping, Ji Wen-Tao. On-orbit cross-calibration and assimilation for relativistic electron observations from FengYun 4A and GOES-13. Acta Physica Sinica, 2019, 68(15): 159401. doi: 10.7498/aps.68.20190433
    [4] Zhou Qing-Yong, Wei Zi-Qing, Jiang Kun, Deng Lou-Lou, Liu Si-Wei, Ji Jian-Feng, Ren Hong-Fei, Wang Yi-Di, Ma Gao-Feng. A method of calibrating effective area of focusing X-ray detector by using normal spectrum of Crab pulsar. Acta Physica Sinica, 2018, 67(5): 050701. doi: 10.7498/aps.67.20172352
    [5] Jiang Rui, Yang Zhen. An improved centroid localization algorithm based on iterative computation for wireless sensor network. Acta Physica Sinica, 2016, 65(3): 030101. doi: 10.7498/aps.65.030101
    [6] Huang Jin-Wang, Feng Jiu-Chao, Lü Shan-Xiang. Blind source separation of chaotic signals in wireless sensor networks. Acta Physica Sinica, 2014, 63(5): 050502. doi: 10.7498/aps.63.050502
    [7] Liu Hao-Ran, Yin Wen-Xiao, Dong Ming-Ru, Liu Bin. Study on the scale-free topology model with strong intrusion-tolerance ability in wireless sensor networks. Acta Physica Sinica, 2014, 63(9): 090503. doi: 10.7498/aps.63.090503
    [8] Liu Zhou-Zhou, Wang Fu-Bao. Research on weighted scale-free topology with balancing energy consumption characteristics in wireless sensor networks. Acta Physica Sinica, 2014, 63(19): 190504. doi: 10.7498/aps.63.190504
    [9] Liu Bin, Dong Ming-Ru, Liu Hao-Ran, Yin Rong-Rong, Han Li. A scale-free fault tolerant topology model in wireless sensor network for toleration of comprehensive fault. Acta Physica Sinica, 2014, 63(17): 170506. doi: 10.7498/aps.63.170506
    [10] Han Li, Liu Bin, Li Ya-Qian, Zhao Lei-Jing. Studies on weighted scale-free topology in energy heterogeneous wireless sensor network. Acta Physica Sinica, 2014, 63(15): 150504. doi: 10.7498/aps.63.150504
    [11] Yin Rong-Rong, Liu Bin, Liu Hao-Ran, Li Ya-Qian. Dynamic fault-tolerance analysis of scale-free topology in wireless sensor networks. Acta Physica Sinica, 2014, 63(11): 110205. doi: 10.7498/aps.63.110205
    [12] Liu Xiang-Li, Li Zan, Hu Yi-Su. A coordinate compression algorithm based on centroid for wireless sensor networks. Acta Physica Sinica, 2013, 62(7): 070201. doi: 10.7498/aps.62.070201
    [13] Kong Yan-Mei, Gao Chao-Qun, Jing Yu-Peng, Chen Da-Peng. The research of the air-sensitive sensor based on thephotonic crystal beam splitter. Acta Physica Sinica, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [14] Ou Jun, Jiang Yue-Song, Li Fang, Liu Li. Shifts of beam centroid of Laguerre-Gaussian beams reflected and refracted at a dielectric interface. Acta Physica Sinica, 2011, 60(11): 114203. doi: 10.7498/aps.60.114203
    [15] Xie Dong-Hai, Gu Xing-Fa, Chen Xing-Feng, Li Zheng-Qiang, Cheng Tian-Hai, Yu Tao, Xu Hua. In-flight polarization calibration methods of directional polarizedremote sensing camera DPC. Acta Physica Sinica, 2011, 60(7): 070702. doi: 10.7498/aps.60.070702
    [16] Huang Qin, Leng Feng-Chun, Liang Wen-Yao, Dong Jian-Wen, Wang He-Zhou. Sensitive temperature sensor based on phase properties of photonic crystal. Acta Physica Sinica, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [17] Zhang Yan-Yan, Rao Chang-Hui, Li Mei, Ma Xiao-Yu. The detection error analysis of Hartmann-Shack wavefront sensor based on electron multiplying charge-coupled devices. Acta Physica Sinica, 2010, 59(8): 5904-5913. doi: 10.7498/aps.59.5904
    [18] Li Zheng-Ying, Wang Hong-Hai, Jiang Ning, Cheng Song-Lin, Zhao Lei, Yu Xin. Demodulation method for second harmonic signal in optical fiber gas sensor. Acta Physica Sinica, 2009, 58(6): 3821-3826. doi: 10.7498/aps.58.3821
    [19] Li Jian-Jun, Zheng Xiao-Bing, Lu Yun-Jun, Zhang-Wei, Xie Ping, Zou Peng. Accurate calibration of the spectral responsivity of silicon trap detectors between 350 and 1064 nm. Acta Physica Sinica, 2009, 58(9): 6273-6278. doi: 10.7498/aps.58.6273
    [20] Guo Wen-Gang, Yang Xiu-Feng, Luo Shao-Jun, Li Yong-Nan, Tu Cheng-Hou, Lü Fu-Yun, Wang Hong-Jie, Li En-Bang, Lü Chao. A fiber sensor for measuring gas concentration based on laser’s transient regime. Acta Physica Sinica, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
Metrics
  • Abstract views:  411
  • PDF Downloads:  23
  • Cited By: 0
Publishing process
  • Received Date:  30 September 2024
  • Accepted Date:  10 January 2025
  • Available Online:  24 February 2025
  • Published Online:  20 April 2025

/

返回文章
返回