-
In view of the problems about imbalance of node energy consumption and obtaining the load of node or edge efficiently in wireless sensor network, a kind of weighted scale-free topological evolution model for energy heterogeneity is put forward within the scope of local areas. By modelling the relationship among the node energy, load, energy consumption, and the weight to node and edge, we then give the evolution of the network through combining node weight and weighted model, deduce the power-law distribution of the node weight, the edge weight, and node degree, respectively, and next analyze the load and energy consumption according to the node weight and edge weight. Simulation results show that the proposed model not only can make accurate calculation for node and edge loads, but also can alleviate the node energy consumption imbalance in scale-free network.
-
Keywords:
- wireless sensor network /
- weight /
- energy consumption balance /
- load
[1] Guidoni D L, Mini R A F, Loureiro A A F 2010 Computer Networks 54 1266
[2] [3] Yin R, Liu B, Li Y Q, Hao X C 2012 Journal of Electronics & Information Technology 34 2180
[4] [5] Qi H, Wang F B, Deng H 2013 Acta Phys. Sin. 62 104301 (in Chinese) [祁浩, 王福豹, 邓宏 2013 物理学报 62 104301]
[6] [7] Tong X J, Zuo K, Wang Z 2012 Acta Phys. Sin. 61 030502 (in Chinese) [佟晓筠, 左科, 王翥 2012 物理学报 61 030502]
[8] [9] Barabási A L, Albert R 1999 Science 286 509
[10] [11] [12] Zhu H L, Luo H, Peng H P, Li L X, Luo Q 2009 Chaos, Solitons and Fractals 41 1828
[13] Zheng G Z, Liu Q M 2013 Computers & Electrical Engineering 39 1779
[14] [15] [16] Wang Y Q, Yang X Y 2012 Acta Phys. Sin. 61 090202 (in Chinese) [王亚奇, 杨晓元 2012 物理学报 61 090202]
[17] [18] Zhu H L, Luo H, Peng H P Li LX, Luo Q 2009 Chaos, Solitons and Fractals 41 1828
[19] [20] Wen G H, Duan Z S, Chen G R, Geng X M 2011 Physica A 390 4012
[21] [22] Ferretti L, Cortelezzi M 2011 Phys. Rev. E 84 016103
[23] Baronchelli A, Castellano C, Pastor-Satorras R 2011 Phys. Rev. E 83 066117
[24] [25] [26] Barrat A, Barthélemy M, Vespignani A 2004 Phys. Rev. E 70 066149
[27] [28] Yakubo K, Korosak D 2011 Phys. Rev. E 83 066111
[29] Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Physics Review E 84 046114
[30] [31] [32] Liu H, Li Z Y, Lu J A 2006 Complex Systems and Complexity Science 3 36 (in Chinese) [刘慧, 李增扬, 陆君安 2006 复杂系统与复杂性科学 3 36]
[33] [34] Gao J X, Chen Z, Cai Y Z, Xu X M 2010 Phys. Rev. E 81 041918
[35] Chakraborty A, Manna S S 2010 Phys. Rev. E 81 016111
-
[1] Guidoni D L, Mini R A F, Loureiro A A F 2010 Computer Networks 54 1266
[2] [3] Yin R, Liu B, Li Y Q, Hao X C 2012 Journal of Electronics & Information Technology 34 2180
[4] [5] Qi H, Wang F B, Deng H 2013 Acta Phys. Sin. 62 104301 (in Chinese) [祁浩, 王福豹, 邓宏 2013 物理学报 62 104301]
[6] [7] Tong X J, Zuo K, Wang Z 2012 Acta Phys. Sin. 61 030502 (in Chinese) [佟晓筠, 左科, 王翥 2012 物理学报 61 030502]
[8] [9] Barabási A L, Albert R 1999 Science 286 509
[10] [11] [12] Zhu H L, Luo H, Peng H P, Li L X, Luo Q 2009 Chaos, Solitons and Fractals 41 1828
[13] Zheng G Z, Liu Q M 2013 Computers & Electrical Engineering 39 1779
[14] [15] [16] Wang Y Q, Yang X Y 2012 Acta Phys. Sin. 61 090202 (in Chinese) [王亚奇, 杨晓元 2012 物理学报 61 090202]
[17] [18] Zhu H L, Luo H, Peng H P Li LX, Luo Q 2009 Chaos, Solitons and Fractals 41 1828
[19] [20] Wen G H, Duan Z S, Chen G R, Geng X M 2011 Physica A 390 4012
[21] [22] Ferretti L, Cortelezzi M 2011 Phys. Rev. E 84 016103
[23] Baronchelli A, Castellano C, Pastor-Satorras R 2011 Phys. Rev. E 83 066117
[24] [25] [26] Barrat A, Barthélemy M, Vespignani A 2004 Phys. Rev. E 70 066149
[27] [28] Yakubo K, Korosak D 2011 Phys. Rev. E 83 066111
[29] Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Physics Review E 84 046114
[30] [31] [32] Liu H, Li Z Y, Lu J A 2006 Complex Systems and Complexity Science 3 36 (in Chinese) [刘慧, 李增扬, 陆君安 2006 复杂系统与复杂性科学 3 36]
[33] [34] Gao J X, Chen Z, Cai Y Z, Xu X M 2010 Phys. Rev. E 81 041918
[35] Chakraborty A, Manna S S 2010 Phys. Rev. E 81 016111
Catalog
Metrics
- Abstract views: 6141
- PDF Downloads: 399
- Cited By: 0