Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of B2S3 additive on [111]-oriented diamond crystal synthesized under high pressure condition

WANG Shuai KANG Ruwei LI Yong XIAO Hongyu WANG Ying RAN Maowu MA Hongan

Citation:

Influence of B2S3 additive on [111]-oriented diamond crystal synthesized under high pressure condition

WANG Shuai, KANG Ruwei, LI Yong, XIAO Hongyu, WANG Ying, RAN Maowu, MA Hongan
cstr: 32037.14.aps.74.20250028
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Diamond is a kind of extremely functional material, which is widely used in the fields of industry, science and technology, military defense, medical and health, jewelry, and others. However, its application in the semiconductor field is still limited, because its electrical transport performance has not yet met the requirements of semiconductor devices. In order to improve the electrical transport performance of diamond as much as possible, the synthesis of diamond single crystal is studied by adding B2S3 to the synthesis system using temperature gradient growth (TGG) method at a pressure of 6.5 GPa in this work. The growth rate of the synthesized diamond crystal decreases from 2.19 mg/h to 1.26 mg/h, indicating that the growth rate of diamond is dependent not only on the growth driving force, but also on the impurity element in the synthetic cavity. Additionally, with the increase of additive dosage, the color of the synthesized diamond crystal changes from yellow to baby blue . Raman measurement results indicate that the obtained diamond appears as a single sp3 hybrid phase without the sp3 hybrid graphite phase. However, the corresponding Raman characteristic peak of the as-grown diamond crystal is located at about 1331 cm–1 and tends to move towards low wave number. According to Fourier Transform Infrared Spectrometer (FTIR) measurement results, the absorption peaks at 1130 cm–1 and 1344 cm–1 are attributed to nitrogen defects. It is found that the nitrogen defect concentration of the synthesized diamond crystal decreases gradually from about 300×10–6 to 60×10–6. Furthermore, the electrical transport performance of the synthesized diamond is characterized by Hall effect measurement. Diamond has insulating properties due to the absence of any additives in the synthetic cavity. However, the results indicate that when B2S3 is introduced into the synthetic system as additive, there is almost no difference in carrier Hall mobility, but the difference in carrier concentration is as high as two orders of magnitude. Furthermore, the resistivity of the synthesized [111]-oriented diamond crystal decreases to 45.4 Ω·cm, due to the addition of B2S3 to the synthesis system. However, it is worth noting that the resistivity of the diamond crystal synthesized with 0.002 g B2S3 and Ti/Cu additives in the synthesis system drops sharply to 0.43 Ω·cm. Therefore, the nitrogen defects in diamond will have an important effect on its conductivity. It provides an important experimental basis for applying diamond to semiconductor field.
      Corresponding author: LI Yong, likaiyong6@163.com ; MA Hongan, maha@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12064038), the Foundation for Excellent Scholars of Guizhou Province, China (Grant No. GCC[2023]087), and the Science and Technology Department of Guizhou Province, China (Grant Nos. ZK[2021]021, ZK [2023] 467).
    [1]

    Bhattacharyya P, Chen W, Huang X, et al. 2024 Nature 627 73Google Scholar

    [2]

    Tong K, Zhang X, Li Z H, et al. 2024 Nature 626 79Google Scholar

    [3]

    Rodrigo M A, Canizares P, Carretero A S, Saez C 2010 Catal. Today 151 173Google Scholar

    [4]

    Zhang D X, Zhao Q, Zang J H, Lu Y J, Dong L, Shan C X 2018 Carbon 27 170

    [5]

    Huang G F, Jia X P, Li Y, Hu M H, Li Z C, Yan B M, Ma H A 2011 Chin. Phys. B 20 78103Google Scholar

    [6]

    Li Y, Chen X Z, Ran M W, She Y C, Xiao Z G, Hu M H, Wang Y, An J 2022 Chin. Phys. B 31 046107Google Scholar

    [7]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Fang C, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101Google Scholar

    [8]

    Li Y, Jia X P, Song M S, Ma H A, Z X, Fang C, Wang F B, Chen N, Wang Y 2015 Mod. Phys. Lett. B 29 1550162

    [9]

    Du J B, Liu H Z, Yang N, Chen X Z, Zong W J 2023 Appl. Surf. Sci. 637 157882Google Scholar

    [10]

    Li Y, Liao J H, Wang Y, She Y C, Xiao Z G, An J 2020 Opt. Mater. 101 109735Google Scholar

    [11]

    Song Y W, Fang C, Mu Y H, Li Y D, Shen W X, Zhang Z F, Zhang Y W, Qang Q Q, Wan B, Chen L C, Jia X P 2023 CrystEngComm 25 357Google Scholar

    [12]

    Ekimov E A, Sidorov1 V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D, Stishov1 S M 2004 Nature 428 542

    [13]

    Zhang J Q, Ma H A, Jiang Y P, Liang Z Z, Tian Y, Jia X P 2007 Diamond Relat. Mater. 16 283Google Scholar

    [14]

    肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升 2023 物理学报 72 020701Google Scholar

    Xiao H Y, Li Y, Bao Z G, She Y C, Wang Y, Li S S 2023 Acta Phys. Sin. 72 020701Google Scholar

    [15]

    Gheeraert E, Koizumi S, Teraj T, Kanda H, Nesladek M 2000 Diamond Relat. Mater. 9 948Google Scholar

    [16]

    Jackson K, Pederson M R, Harrison J G 1990 Phys. Rev. B 41 12641Google Scholar

    [17]

    Katayama-Yoshida H, Nishimatsu T, Yamamoto T, Orita N 2001 J. Phys. Conderns. Matter 13 8901Google Scholar

    [18]

    Liu X B, Chen X, Singh D J, Stern R A, Wu J S, Petitgrard S, Bina C R, Jacobsen S D 2019 PANS 116 7703Google Scholar

    [19]

    Hu X J, Li R B, Shen H S, Dai Y B, He X C 2014 Carbon 42 1501

    [20]

    Li Y, Jia X P, Ma H A, Zhang J, Wang F B, Chen N, Feng Y G 2014 CrystEngComm 16 7547Google Scholar

    [21]

    马利秋, 马红安, 肖宏宇, 李尚升, 李勇, 贾晓鹏 2010 科学通报 55 418

    Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 418

    [22]

    Li Y, Tan D B, Wang Q, Xiao Z G, Tian C H, Chen L 2020 Chin. Phys. B 29 098103Google Scholar

    [23]

    Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932Google Scholar

    [24]

    Catledge S A, Vohra Y K, Ladi R, Rai G 1996 Diam. Relat. Mater. 5 1159Google Scholar

    [25]

    Li Y, Jia X P, Yan B M, Zhou Z X, Fang C, Zhang Z F, Sun S S, Ma H A 2012 J. Crys. Growth 359 49Google Scholar

  • 图 1  金刚石高温高压合成的组装剖面示意图 1, 导电钢帽; 2, 白云石; 3, 石墨管; 4, 叶蜡石; 5, 石墨; 6, 触媒; 7, 籽晶; 8, 绝缘材料

    Figure 1.  Schematic diagram of the cell for diamond HPHT synthesis: 1, conductive ring; 2, dolomite; 3, graphite heater; 4, pyrophyllite; 5, carbon source; 6, catalyst; 7, seed crystal; 8, insulation materials.

    图 2  温度梯度产生示意图

    Figure 2.  Schematic diagram of the temperature gradient generated.

    图 3  金刚石样品光学照片 (a) 无添加剂; (b)添加0.01 g B2S3; (c) 添加0.03 g B2S3; (d) 添加0.002 g B2S3+钛/铜

    Figure 3.  Optical morphology of the synthesized diamond crystals: (a) Without any additive; (b) with 0.01 g B2S3 additive; (c) with 0.03 g B2S3 additive; (d) with 0.002 g B2S3 + Ti/Cu additives.

    图 4  金刚石晶体Raman光谱

    Figure 4.  Raman spectra of the obtained diamond crystals.

    图 5  金刚石样品FTIR光谱

    Figure 5.  FTIR spectra of the synthesized diamond crystals

    表 1  金刚石合成实验参数

    Table 1.  Experimental parameters for diamond synthesis.

    金刚石样品B2S3/g合成温度/℃生长时间/h形貌生长速率/(mg·h–1)
    1133021六八面体2.19
    20.01133021六八面体1.98
    30.03132521六八面体1.83
    40.002+Ti/Cu133521六八面体1.26
    DownLoad: CSV

    表 2  金刚石晶体Raman测试结果

    Table 2.  Raman measurement results of the synthesized diamond crystals.

    金刚石样品特征峰位/cm–1FWHM/cm–1内应力/MPa
    11330.95.3370382
    21330.95.3175382
    31131.05.4276347
    41330.45.2285555
    DownLoad: CSV

    表 3  金刚石电输运性能参数

    Table 3.  Electric transport performance parameters of the obtained diamond crystals.

    样品B2S3/
    g
    电阻率/
    (Ω·cm)
    载流子浓度/
    cm–3
    迁移率/
    (cm–2·v–1·s–1)
    类型
    1
    20.018.98×106.63×10141.05×102p
    30.034.54×102.81×10144.88×102p
    40.002+Ti/Cu4.33×10–13.39×10164.25×102p
    DownLoad: CSV
  • [1]

    Bhattacharyya P, Chen W, Huang X, et al. 2024 Nature 627 73Google Scholar

    [2]

    Tong K, Zhang X, Li Z H, et al. 2024 Nature 626 79Google Scholar

    [3]

    Rodrigo M A, Canizares P, Carretero A S, Saez C 2010 Catal. Today 151 173Google Scholar

    [4]

    Zhang D X, Zhao Q, Zang J H, Lu Y J, Dong L, Shan C X 2018 Carbon 27 170

    [5]

    Huang G F, Jia X P, Li Y, Hu M H, Li Z C, Yan B M, Ma H A 2011 Chin. Phys. B 20 78103Google Scholar

    [6]

    Li Y, Chen X Z, Ran M W, She Y C, Xiao Z G, Hu M H, Wang Y, An J 2022 Chin. Phys. B 31 046107Google Scholar

    [7]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Fang C, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101Google Scholar

    [8]

    Li Y, Jia X P, Song M S, Ma H A, Z X, Fang C, Wang F B, Chen N, Wang Y 2015 Mod. Phys. Lett. B 29 1550162

    [9]

    Du J B, Liu H Z, Yang N, Chen X Z, Zong W J 2023 Appl. Surf. Sci. 637 157882Google Scholar

    [10]

    Li Y, Liao J H, Wang Y, She Y C, Xiao Z G, An J 2020 Opt. Mater. 101 109735Google Scholar

    [11]

    Song Y W, Fang C, Mu Y H, Li Y D, Shen W X, Zhang Z F, Zhang Y W, Qang Q Q, Wan B, Chen L C, Jia X P 2023 CrystEngComm 25 357Google Scholar

    [12]

    Ekimov E A, Sidorov1 V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D, Stishov1 S M 2004 Nature 428 542

    [13]

    Zhang J Q, Ma H A, Jiang Y P, Liang Z Z, Tian Y, Jia X P 2007 Diamond Relat. Mater. 16 283Google Scholar

    [14]

    肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升 2023 物理学报 72 020701Google Scholar

    Xiao H Y, Li Y, Bao Z G, She Y C, Wang Y, Li S S 2023 Acta Phys. Sin. 72 020701Google Scholar

    [15]

    Gheeraert E, Koizumi S, Teraj T, Kanda H, Nesladek M 2000 Diamond Relat. Mater. 9 948Google Scholar

    [16]

    Jackson K, Pederson M R, Harrison J G 1990 Phys. Rev. B 41 12641Google Scholar

    [17]

    Katayama-Yoshida H, Nishimatsu T, Yamamoto T, Orita N 2001 J. Phys. Conderns. Matter 13 8901Google Scholar

    [18]

    Liu X B, Chen X, Singh D J, Stern R A, Wu J S, Petitgrard S, Bina C R, Jacobsen S D 2019 PANS 116 7703Google Scholar

    [19]

    Hu X J, Li R B, Shen H S, Dai Y B, He X C 2014 Carbon 42 1501

    [20]

    Li Y, Jia X P, Ma H A, Zhang J, Wang F B, Chen N, Feng Y G 2014 CrystEngComm 16 7547Google Scholar

    [21]

    马利秋, 马红安, 肖宏宇, 李尚升, 李勇, 贾晓鹏 2010 科学通报 55 418

    Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 418

    [22]

    Li Y, Tan D B, Wang Q, Xiao Z G, Tian C H, Chen L 2020 Chin. Phys. B 29 098103Google Scholar

    [23]

    Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932Google Scholar

    [24]

    Catledge S A, Vohra Y K, Ladi R, Rai G 1996 Diam. Relat. Mater. 5 1159Google Scholar

    [25]

    Li Y, Jia X P, Yan B M, Zhou Z X, Fang C, Zhang Z F, Sun S S, Ma H A 2012 J. Crys. Growth 359 49Google Scholar

  • [1] XIAO Hongyu, WANG Shuai, KANG Ruwei, LI Yong, LI Shangsheng, TIAN Changhai, WANG Qiang, JIN Hui, MA Hongan. Study on the growth of Li3N doped diamond single crystals under HPHT. Acta Physica Sinica, 2025, 74(7): 070701. doi: 10.7498/aps.74.20241769
    [2] Xiao Hong-Yu, Li Yong, Bao Zhi-Gang, She Yan-Chao, Wang Ying, Li Shang-Sheng. Effect of catalyst composition on growth and crack defects of large diamond single crystal under high temperature and pressure. Acta Physica Sinica, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] You Yue, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Hu Qiang, Wang Jun-Zhuo, Gao Guang-Jin, Guo Ming-Ming, Nie Yuan. Research progress of large diamond single crystals under high pressure and high temperature. Acta Physica Sinica, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [4] Wang Kai-Yue, Guo Rui-Ang, Wang Hong-Xing. Temperature dependence of nitrogen-vacancy optical center in diamond. Acta Physica Sinica, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [5] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [6] Wang Jun-Zhuo, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Hu Qiang, Wu Yu-Min, Wang Jian-Kang, Han Fei, Yu Kun-Peng, Gao Guang-Jin, Guo Ming-Ming, Jia Xiao-Peng, Ma Hong-An, Xiao Hong-Yu. Shape controlled growth for type Ib large diamond crystals. Acta Physica Sinica, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [7] Zhang Jin-Feng, Yang Peng-Zhi, Ren Ze-Yang, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Xu Lei, Hao Yue. Characterization of high-transconductance long-channel hydrogen-terminated polycrystal diamond field effect transistor. Acta Physica Sinica, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [8] Ren Ze-Yang, Zhang Jin-Feng, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Quan Ru-Dai, Hao Yue. Characteristics of H-terminated single crystalline diamond field effect transistors. Acta Physica Sinica, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [9] Liu Yin-Juan, He Duan-Wei, Wang Pei, Tang Ming-Jun, Xu Chao, Wang Wen-Dan, Liu Jin, Liu Guo-Duan, Kou Zi-Li. Syntheses and studies of superhard composites under high pressure. Acta Physica Sinica, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [10] Xiao Hong-Yu, Liu Li-Na, Qin Yu-Kun, Zhang Dong-Mei, Zhang Yong-Sheng, Sui Yong-Ming, Liang Zhong-Zhu. Syntheses of B2O3-doped gem-diamond single crystals. Acta Physica Sinica, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [11] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [12] Zhang Xiu-Zhi, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Tian Yu-Ming, Chai Yue-Sheng. Effect of nitrogen on the defect luminescence in diamond. Acta Physica Sinica, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [13] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [14] Xiao Hong-Yu, Li Shang-Sheng, Qin Yu-Kun, Liang Zhong-Zhu, Zhang Yong-Sheng, Zhang Dong-Mei, Zhang Yi-Shun. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure. Acta Physica Sinica, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [15] Tian Yu-Ming, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Chai Yue-Sheng, Zeng Yu-Shun, Wang Qiang. Effect of high-energy electron exposure on the charge states of defects in diamond. Acta Physica Sinica, 2013, 62(18): 188101. doi: 10.7498/aps.62.188101
    [16] Wang Kai-Yue, Zhu Yu-Mei, Li Zhi-Hong, Tian Yu-Ming, Chai Yue-Sheng, Zhao Zhi-Gang, Liu Kai. The defect luminescences of {100} sector in nitrogen-doped diamond. Acta Physica Sinica, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [17] Qin Jie-Ming, Ying Zhang, Cao Jian-Ming, Tian Li-Fei. Synthesis and characterization of the grinding compoundlevel diamond by pure Fe catalyst. Acta Physica Sinica, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [18] Liu Yan-Yan, Bauer-Grosse E., Zhang Qing-Yu. Structure and growth behavior of low N-doped diamond film by microwave plasma assisted chemical vapor deposition. Acta Physica Sinica, 2007, 56(4): 2359-2368. doi: 10.7498/aps.56.2359
    [19] Wen Chao, Sun De-Yu, Li Xun, Guan Jin-Qing, Liu Xiao-Xin, Lin Ying-Rui, Tang Shi-Ying, Zhou Gang, Lin Jun-De, Jin Zhi-Hao. Nano-graphite synthesized by explosive detonation and its application in preparing diamond under high-pressure and high-temperature. Acta Physica Sinica, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [20] Hu Xiao-Jun, Li Rong-Bin, Shen He-Sheng, He Xian-Chang, Deng Wen, Luo Li-Xiong. Investigation of defect properties in doped diamond films. Acta Physica Sinica, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
Metrics
  • Abstract views:  479
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2025
  • Accepted Date:  23 January 2025
  • Available Online:  17 February 2025
  • Published Online:  20 April 2025

/

返回文章
返回