Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rotational analysis of the perpendicular vibrational bands of 32SF6-Ar and 32SF6-34SF6 complexes at 10.6 μm

YUAN Hongrui LIU Yun LI Xiang DUAN Chuanxi

Citation:

Rotational analysis of the perpendicular vibrational bands of 32SF6-Ar and 32SF6-34SF6 complexes at 10.6 μm

YUAN Hongrui, LIU Yun, LI Xiang, DUAN Chuanxi
cstr: 32037.14.aps.74.20250726
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Sulfur hexafluoride (SF6) is widely used in the electrical and electronic industries. It is also an important green-house gas. The study of spectra and structures of weakly bound complexes containing SF6 is helpful to gain a deep understanding of the intermolecular interactions between SF6 and other atoms or molecules. The rotationally resolved spectrum of the perpendicular vibrational band of 32SF6-Ar in the 32SF6 v3 band region has been reported previously but the rotational analysis was not completed. In this work, this vibrational band of 32SF6-Ar is re-investigated. The jet-cooled rovibrational spectra of SF6/Ar/He gas mixtures are measured by a continuous-wave distributed feed-back quantum cascade laser (DFB-QCL) at 10.6 μm with a segmented- rapid-scan data acquisition scheme. The gas mixture (SF6∶Ar∶He = 0.12∶1∶100) is expanded into a cylinder vacuum chamber through a 0.8 mm pin-hole nozzle. The probe laser is reflected about 90 times by a pair of astigmatic mirrors inside the chamber. The observed spectrum is analyzed by the standard symmetric-top Hamiltonian with the program PGOPHER. When the resonance interaction between the l = $ \pm 1 $ levels in the double-degenerate excited vibrational state of 32SF6-Ar is considered, which was ignored in previous studies, a successful rotational analysis of the perpendicular vibrational band is conducted. The band-origin of the perpendicular band is determined to be v0 = 947.45300(58) cm–1 and the resonance interaction parameter is q = –0.002325(70) cm–1. A set of absorption lines close to the Q branch of the 32SF6 v3 band is tentatively assigned to the perpendicular vibrational band of 32SF6-34SF6 complex. This band is heavily overlapped by the monomer lines so that very few lines can be assigned. The band-origin of this band is estimated to be 948.1181(12) cm–1. These results will be useful for developing highly accurate intermolecular potential energy surfaces for SF6-Ar complex and SF6 dimer in the future.
      Corresponding author: DUAN Chuanxi, duanchx@ccnu.edu.cn
    • Funds: Project supported by the Young Talents Research Project of China National Nuclear Corporation, the National Key Laboratory of Particle Transport and Separation Technology (Grant No. KGKF-2024-4) and the Fundamental Research Funds for the Central Universities of China (Grant No. CCNU25JC021).
    [1]

    Makarov G N 2005 Phys. -Usp. 48 37Google Scholar

    [2]

    Zellweger J M, Philippoz J M, Melinon P, Monot, van den Bergh H 1984 Phys. Rev. Lett. 52 522Google Scholar

    [3]

    Eerkens J W 1998 Laser Part. Beams 16 295Google Scholar

    [4]

    Makarov G N 2015 Phys. -Usp. 58 670Google Scholar

    [5]

    李业军, 郭静, 马俊平, 唐显, 李鑫, 闫冰 2022 物理学报 71 243401Google Scholar

    Li Y G, Guo J, Ma J P, Tang X, Li X, Yan B 2022 Acta Phys. Sin. 71 243401Google Scholar

    [6]

    Geraedts J, Setiadi S, Stolte S, Reuss J 1981 Chem. Phys. Lett. 78 277Google Scholar

    [7]

    Geraedts J, Stolte S, Reuss J 1982 Zeit. Phys. A 304 167Google Scholar

    [8]

    Urban R D, Takami M 1995 J. Chem. Phys. 103 9132Google Scholar

    [9]

    Asselin P, Potapov A, Turner A C, Boudon V, Bruel L, Gaveau M A, Mons M 2017 Phy. Chem. Chem. Phys. 19 17224Google Scholar

    [10]

    Kolomiitsova T D, Mielke Z, Shchepkin D N, Tokhadze K G 2002 Chem. Phys. Lett. 357 181Google Scholar

    [11]

    Tokhadze I K, Kolomiitsova T D, Shchepkin D N, Tokhadze K G, Mielke Z 2009 J. Phys. Chem. A 113 6334Google Scholar

    [12]

    van Bladel J W I, van der Avoird A 1990 J. Chem. Phys. 92 2837Google Scholar

    [13]

    Vazhappilly T, Marjolin A, Jordan K J 2016 J. Phys. Chem. B 120 1788Google Scholar

    [14]

    Hartmann M, Miller R E, Toennies J P, Vilesov A F 1996 Science 272 1631Google Scholar

    [15]

    Asselin P, Turner A C, Bruel L, Brenner V, Gaveau M A, Mons M 2018 Phy. Chem. Chem. Phys. 20 28105Google Scholar

    [16]

    Luo W, Zhang Y L, Li W G, Duan C X 2017 J. Mol. Spectrosc. 334 22Google Scholar

    [17]

    袁洪瑞, 刘涛, 朱天鑫, 刘云, 李响, 陈杨, 段传喜 2023 物理学报 72 063301Google Scholar

    Yuan H R, Liu T, Zhu T X, Liu Y, Li X, Chen Y, Duan C X 2023 Acta Phys. Sin. 72 063301Google Scholar

    [18]

    Liu Y, Li X, Qing T, Duan C X 2025 J. Phys. Chem. A 129 2259Google Scholar

    [19]

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar

    [20]

    Western C M 2017 J. Quant. Spectrosc. Radiat. Transfer. 186 221Google Scholar

    [21]

    Suas-David N, Kulkarni V, Benidar A, Kassi S, Georges R 2016 Chem. Phys. Lett. 659 209Google Scholar

  • 图 1  SF6/Ar/He混合气体在32SF6单体v3带附近的超声射流吸收光谱, 图中标(*), (⊥)和(//)的谱峰分别是32SF6单体v3带、32SF6-Ar复合物的垂直谱带和平行谱带的带心对应的频率位置

    Figure 1.  The absorption spectrum of supersonic jet with SF6/Ar/He gas mixtures at the v3 band region of 32SF6, the approximate band-origin position is marked with (*) for the v3 band of 32SF6 monomer, (⊥) for the perpendicular band, and (//) for the parallel band of 32SF6-Ar complex, respectively.

    图 2  32SF6单体和32SF6-Ar复合物的吸收光谱 (a) 实验测量光谱; (b) 32SF6-Ar复合物平行和垂直谱带的模拟光谱; (c) 32SF6单体的模拟光谱(考虑多普勒分裂); (d) 32SF6单体的模拟光谱(不考虑多普勒分裂)

    Figure 2.  The absorption spectrum of 32SF6 monomer and 32SF6-Ar complex: (a) Observed spectrum; (b) simulated spectrum of the parallel and perpendicular bands of 32SF6-Ar; (c) simulated spectrum of 32SF6 monomer with Doppler splitting; (d) simulated spectrum of 32SF6 monomer without Doppler splitting.

    图 3  32SF6单体v3基频带头附近的吸收光谱 (a) 实验测量光谱, 为了放大显示复合物的谱线, 单体的吸收谱线上部已被截断; (b) 32SF6-34SF6的模拟光谱, 线宽0.005 cm–1, 转动温度 3 K

    Figure 3.  An expanded view of the absorption spectrum close to the v3 band-origin of 32SF6: (a) Observed spectrum, the absorption lines of the monomer are truncated in order to view the lines of the complex; (b) simulated spectrum of 32SF6-34SF6, assuming a linewidth of 0.005 cm–1 and a rotational temperature of 3 K.

    表 1  32SF6-Ar复合物的分子参数 (单位: cm–1)a

    Table 1.  Molecular parameters of 32SF6-Ar complex (in cm–1)a.

    参数 Ref. [15] This work
    基态 A" 0.0874b 0.0874b
    B'' 0.022765(45) 0.022739(39)
    平行谱带 v0 946.97950(48) 946.97987(46)
    A' 0.086804(85) 0.08726(11)
    B' 0.020733(36) 0.020739(31)
    垂直谱带 v0 947.392c 947.45300(58)
    A' 0.08844(12)
    B' 0.023750(57)
    ξ 0.6974(19)
    q –0.002325(70)
    注: a 括号中的数字为标准偏差, 与参数值的最后两位对齐; b 固定于从头计算得到的值; c RQ(J, 0)支的峰值位置.
    DownLoad: CSV

    表 2  32SF6-Ar复合物的谱线频率 (单位: cm–1)

    Table 2.  Spectral line frequency of 32SF6-Ar complex (in cm–1).

    J' K' J'' K'' Obs. freq. Cal. freq. vobs–vcal
    5 0 6 0 946.6470 946.6470 0
    4 0 5 0 946.7109 946.7125 –0.0016
    3 0 4 0 946.7724 946.7740 –0.0016
    2 0 3 0 946.8324 946.8314 0.0010
    2 1 3 1 946.8326 946.8333 –0.0007
    2 2 3 2 946.8393 946.8389 0.0005
    1 0 2 0 946.8879 946.8849 0.0030
    1 1 2 1 946.8882 946.8868 0.0015
    3 3 3 3 946.9726 946.9726 0
    2 2 2 2 946.9785 946.9753 0.0032
    1 0 0 0 947.0217 947.0213 0.0004
    2 0 1 0 947.0586 947.0588 –0.0003
    2 1 1 1 947.0598 947.0607 –0.0009
    3 0 2 0 947.0914 947.0923 –0.0009
    3 1 2 1 947.0932 947.0942 –0.0010
    4 0 3 0 947.1204 947.1218 –0.0014
    4 1 3 1 947.1220 947.1236 –0.0017
    4 2 3 2 947.1283 947.1292 –0.0009
    4 3 3 3 947.1364 947.1385 –0.0021
    5 0 4 0 947.1476 947.1473 0.0003
    5 1 4 1 947.1479 947.1491 –0.0012
    5 2 4 2 947.1557 947.1547 0.0010
    6 0 5 0 947.1709 947.1687 0.0021
    6 2 5 2 947.1768 947.1762 0.0006
    7 0 6 0 947.1846 947.1862 –0.0016
    7 2 6 2 947.1949 947.1936 0.0012
    8 0 7 0 947.2007 947.1997 0.0010
    3 1 4 2 947.2095 947.2096 –0.0001
    3 1 4 0 947.2375 947.2385 –0.0010
    2 1 3 2 947.2528 947.2520 0.0008
    2 1 3 0 947.2719 947.2710 0.0010
    1 1 2 2 947.2935 947.2935 0
    1 1 2 0 947.3059 947.3077 –0.0019
    3 1 3 0 947.3920 947.3925 –0.0005
    4 0 4 1 947.3920 947.3917 0.0003
    3 3 3 2 947.4224 947.4216 0.0007
    4 3 4 2 947.4366 947.4367 –0.0001
    1 1 0 0 947.4441 947.4442 0
    2 1 1 0 947.5001 947.4983 0.0018
    2 2 1 1 947.5002 947.4997 0.0005
    3 3 2 2 947.5575 947.5581 –0.0006
    3 1 2 0 947.5578 947.5569 0.0009
    4 4 3 3 947.6189 947.6186 0.0003
    4 1 3 0 947.6197 947.6197 0
    5 4 4 3 947.6821 947.6825 –0.0004
    5 3 4 2 947.6843 947.6846 –0.0004
    DownLoad: CSV

    表 3  SF6二聚体的分子参数 (单位: cm–1)a

    Table 3.  Molecular parameters of SF6 dimer (in cm–1)a.

    Parameter (32SF6)2b 32SF6-34SF6
    A'' 0.04554(6) 0.04554c
    B'' 0.0083811(26) 0.0083811c
    $ {\nu }_{0}^{\perp } $ 956.09502(37) 948.1181(12)
    A' 0.04551(fixed) 0.04551c
    B' 0.0083803(28) 0.0083803c
    ξ (unitless) 0.66796(70) 0.66796c
    注: a 括号中的数字为标准偏差, 与参数值的最后两位对齐; b 文献[9]; c 固定于(32SF6)2对应参数的值.
    DownLoad: CSV

    表 4  32SF6-34SF6复合物的谱线频率 (单位: cm–1)

    Table 4.  Spectral line frequency of 32SF6-34SF6 complex (in cm–1).

    J' K' J'' K'' Obs. freq. Cal. freq. vobs-vcal
    3 2 4 3 947.9943 947.9876 0.0068
    2 2 3 3 948.0101 948.0043 0.0058
    4 1 5 0 948.0178 948.0110 0.0068
    12 3 12 4 948.0422 948.0412 0.0010
    11 2 11 3 948.0574 948.0545 0.0029
    11 1 11 2 948.0665 948.0678 –0.0013
    11 0 11 1 948.0803 948.0812 –0.0010
    11 2 11 1 948.1048 948.1082 –0.0034
    11 3 11 2 948.1132 948.1218 –0.0086
    12 4 12 3 948.1283 948.1354 –0.0071
    5 1 4 0 948.1766 948.1786 –0.0020
    DownLoad: CSV
  • [1]

    Makarov G N 2005 Phys. -Usp. 48 37Google Scholar

    [2]

    Zellweger J M, Philippoz J M, Melinon P, Monot, van den Bergh H 1984 Phys. Rev. Lett. 52 522Google Scholar

    [3]

    Eerkens J W 1998 Laser Part. Beams 16 295Google Scholar

    [4]

    Makarov G N 2015 Phys. -Usp. 58 670Google Scholar

    [5]

    李业军, 郭静, 马俊平, 唐显, 李鑫, 闫冰 2022 物理学报 71 243401Google Scholar

    Li Y G, Guo J, Ma J P, Tang X, Li X, Yan B 2022 Acta Phys. Sin. 71 243401Google Scholar

    [6]

    Geraedts J, Setiadi S, Stolte S, Reuss J 1981 Chem. Phys. Lett. 78 277Google Scholar

    [7]

    Geraedts J, Stolte S, Reuss J 1982 Zeit. Phys. A 304 167Google Scholar

    [8]

    Urban R D, Takami M 1995 J. Chem. Phys. 103 9132Google Scholar

    [9]

    Asselin P, Potapov A, Turner A C, Boudon V, Bruel L, Gaveau M A, Mons M 2017 Phy. Chem. Chem. Phys. 19 17224Google Scholar

    [10]

    Kolomiitsova T D, Mielke Z, Shchepkin D N, Tokhadze K G 2002 Chem. Phys. Lett. 357 181Google Scholar

    [11]

    Tokhadze I K, Kolomiitsova T D, Shchepkin D N, Tokhadze K G, Mielke Z 2009 J. Phys. Chem. A 113 6334Google Scholar

    [12]

    van Bladel J W I, van der Avoird A 1990 J. Chem. Phys. 92 2837Google Scholar

    [13]

    Vazhappilly T, Marjolin A, Jordan K J 2016 J. Phys. Chem. B 120 1788Google Scholar

    [14]

    Hartmann M, Miller R E, Toennies J P, Vilesov A F 1996 Science 272 1631Google Scholar

    [15]

    Asselin P, Turner A C, Bruel L, Brenner V, Gaveau M A, Mons M 2018 Phy. Chem. Chem. Phys. 20 28105Google Scholar

    [16]

    Luo W, Zhang Y L, Li W G, Duan C X 2017 J. Mol. Spectrosc. 334 22Google Scholar

    [17]

    袁洪瑞, 刘涛, 朱天鑫, 刘云, 李响, 陈杨, 段传喜 2023 物理学报 72 063301Google Scholar

    Yuan H R, Liu T, Zhu T X, Liu Y, Li X, Chen Y, Duan C X 2023 Acta Phys. Sin. 72 063301Google Scholar

    [18]

    Liu Y, Li X, Qing T, Duan C X 2025 J. Phys. Chem. A 129 2259Google Scholar

    [19]

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar

    [20]

    Western C M 2017 J. Quant. Spectrosc. Radiat. Transfer. 186 221Google Scholar

    [21]

    Suas-David N, Kulkarni V, Benidar A, Kassi S, Georges R 2016 Chem. Phys. Lett. 659 209Google Scholar

  • [1] Fang De-Yin, Fan Xu-Yang, Wei An, Wang Lu-Xia. Coherent excitation energy transfer processes in two-dimensional para-sexiphenyl molecular clusters. Acta Physica Sinica, 2023, 72(19): 197301. doi: 10.7498/aps.72.20230476
    [2] Li Xiang, Liu Yun, Zhu Tian-Xin, Duan Chuan-Xi. New rovibrational subbands of Ar-D2O complex in the D2O bending mode region. Acta Physica Sinica, 2023, 72(1): 013401. doi: 10.7498/aps.72.20221728
    [3] Yuan Hong-Rui, Liu Tao, Zhu Tian-Xin, Liu Yun, Li Xiang, Chen Yang, Duan Chuan-Xi. High-resolution jet-cooled laser absorption spectra of SF6 at 10.6 μm. Acta Physica Sinica, 2023, 72(6): 063301. doi: 10.7498/aps.72.20222285
    [4] Zhao Hai-Sheng, Xu Zhao-Hui, Gao Jing-Fan, Xu Zheng-Wen, Wu Jian, Feng Jie, Xu Bin, Xue Kun, Li Hui, Ma Zheng-Zheng. Early time effects produced by neutral gas ionospheric chemical release. Acta Physica Sinica, 2018, 67(1): 019401. doi: 10.7498/aps.67.20171620
    [5] Zhao Hai-Sheng, Xu Zheng-Wen, Wu Zhen-Sen, Feng Jie, Wu Jian, Xu Bin, Xu Tong, Hu Yan-Li. A three-dimensional refined modeling for the effects of SF6 release in ionosphere. Acta Physica Sinica, 2016, 65(20): 209401. doi: 10.7498/aps.65.209401
    [6] Zhang Xiu-Rong, Wu Li-Qing, Rao Qian. Theoretical study of electronic structure and optical properties of OsnN0,(n=1 6) clusters. Acta Physica Sinica, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [7] Wu Yang, Duan Hai-Ming. Study of structure evolution of (C60)N clusters usingLennard-Jones atom-atom potential. Acta Physica Sinica, 2011, 60(7): 076102. doi: 10.7498/aps.60.076102
    [8] Peng Zhi-Min, Ding Yan-Jun, Zhai Xiao-Dong. Measurements of rotational and vibrational temperatures based on flame emission spectroscopy. Acta Physica Sinica, 2011, 60(10): 104702. doi: 10.7498/aps.60.104702
    [9] Fan Qun-Chao, Feng Hao, Sun Wei-Guo. Studies on the full vibrational spectra and dissociation energies of some diatomic ions. Acta Physica Sinica, 2010, 59(1): 203-209. doi: 10.7498/aps.59.203
    [10] Miao Jing-Wei, Wang Pei-Lu, Zhu Zhou-Sen, Yuan Xue-Dong, Wang Hu, Yang Chao-Wen, Shi Mian-Gong, Miao Lei, Sun Wei-Li, Zhang Jing, Liao Xue-Hua. Photoluminescence spectrum of monocrystalline Si implanted by nitrogen cluster ions. Acta Physica Sinica, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [11] Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe, Ma Heng, Yang Xiang-Dong. Investigation on vibrational levels, inertial rotation and centrifugal distortion constants of 7Li2(X1Σ+g). Acta Physica Sinica, 2008, 57(1): 165-171. doi: 10.7498/aps.57.165
    [12] Shi De-Heng, Sun Jin-Feng, Liu Yu-Fang, Ma Heng, Zhu Zun-Lue, Yang Xiang-Dong. Investigation of analytic potential energy function, vibrational levels and inertial rotation constants for the 23Πu state of spin-aligned dimer 7Li2. Acta Physica Sinica, 2007, 56(8): 4454-4460. doi: 10.7498/aps.56.4454
    [13] Chen Xiao-Hong, Gao Tao, Zhu Zheng-He, Luo Shun-Zhong. Study on the structure and stability of the Al2O3Hx(x=1—3) molecules by density function theory. Acta Physica Sinica, 2007, 56(1): 178-185. doi: 10.7498/aps.56.178
    [14] Fang Fang, Jiang Gang, Wang Hong-Yan. Structures and properties of small bimetallic PdnPbm(n+m≤5) clusters. Acta Physica Sinica, 2006, 55(5): 2241-2248. doi: 10.7498/aps.55.2241
    [15] Ye Zi-Yan, Zhang Qing-Yu. Moleculardynamicssimulationsoflow energyPtclusterdeposition. Acta Physica Sinica, 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
    [16] WANG PEI-LU, LIU ZHONG-YANG, ZHENG SI-XIAO, LIAO XIAO-DONG, YANG CHAO-WEN, TANG A-YOU, SHI MIAN-GONG, YANG BEI-FANG, MIAO JING-WEI. STUDIES ON THE FEATURE OF Si(111) SURFACE IMPLANTED BY NITROGEN ATOM,MOLECULE AND CLUSTER IONS. Acta Physica Sinica, 2001, 50(5): 860-864. doi: 10.7498/aps.50.860
    [17] YAN HONG, CHANG ZHE, GUO HAN-YING. q-ROTATING OSCILLATOR MODEL (I)——q-Oscillator and Vibrational Spectra of Diatomic Molecules. Acta Physica Sinica, 1991, 40(9): 1377-1387. doi: 10.7498/aps.40.1377
    [18] . Acta Physica Sinica, 1965, 21(8): 1570-1572. doi: 10.7498/aps.21.1570
    [19] A. T. Kiang. Vibrational-Rotational Spectrum and Potential Function of a Linenr Asymmetrical Triatomlc Molecule. Acta Physica Sinica, 1944, 5(1): 49-63. doi: 10.7498/aps.5.49
    [20] . Acta Physica Sinica, 1933, 1(1): 1-37. doi: 10.7498/aps.1.1
Metrics
  • Abstract views:  388
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  04 June 2025
  • Accepted Date:  26 June 2025
  • Available Online:  15 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回