Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coherent excitation energy transfer processes in two-dimensional para-sexiphenyl molecular clusters

Fang De-Yin Fan Xu-Yang Wei An Wang Lu-Xia

Citation:

Coherent excitation energy transfer processes in two-dimensional para-sexiphenyl molecular clusters

Fang De-Yin, Fan Xu-Yang, Wei An, Wang Lu-Xia
PDF
HTML
Get Citation
  • Excitation energy transfer is one of the most important factors affecting the applications of para-sexiphenyl devices. The study of exciton dynamics and exciton coherence effect of para-sexiphenyl clusters under external field excitation is important in order to improve the performance of molecular devices composed of para-sexiphenyl and its related derivatives. In this work, the two-dimensional disc-like para-sexiphenyl molecular cluster is used as the object of study. The molecular system is simplified into a two-level model based on its structural features and energy level distribution. Within the framework of density matrix theory, the exciton dynamics and exciton coherence behavior of disk-like para-hexaphene molecular clusters excited by different pulse fields are analyzed through using the mathematical mean value approximation of the operator. The results show that when long pulses are used to excite para-sexiphenyl clusters, the single exciton state characteristic appears and is insensitive to the change of excited external field strength. When the clusters are subjected to strong pulsed fields with short pulse widths, multiple excitons are excited simultaneously in the cluster, forming multiple exciton states, with the exciton energy levels shifting toward lower energy and new hybrid states appearing. In the optical response spectrum, there appear multiple resonance peaks. And as the pulse field is enhanced, the multi-exciton effect becomes apparent and the hybridization energy level increases. Under short pulse excitation, the excited states are distributed differently in different energy regions, but all of them show obvious symmetry. As the highest-energy exciton states of H-type clusters are preferentially excited, we analyze the exciton state population and the exciton coherence evolution with time in the high-energy exciton state. With the pulse field increases, Rabi oscillations appear and the exciton coherence effect increases. When the pulsed field reaches a certain field strength, the exciton oscillation cooperativity disappears in the first 100 fs, showing the non-local characteristic. The position of the wave trough of the exciton state population corresponds to the peak in the exciton coherence size. It indicates that when the pulse field is intense enough, a large number of molecules are in the exciton coherent state during the pulsed excitation, and transient out-of-domain phenomena occur.
      Corresponding author: Wang Lu-Xia, luxiawang@sas.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21961132023, 11774026).
    [1]

    O’ Carroll D M, Petoukhoff C E, Kohl J, Yu B X, Carter C M, Goodman S 2013 Polym. Chem. 4 5181Google Scholar

    [2]

    Reineke S, Thomschke M, Lussem B, Leo K 2013 Rev. Mod. Phys. 85 1245Google Scholar

    [3]

    Zhang C X, Liu R G, Mak C H, Zou X L, Shen H H, Leu S Y, Ji L, Hsu H Y 2018 J. Photonics Energy 8 021001Google Scholar

    [4]

    Spano F C, Silva C 2014 Annu. Rev. Phys. Chem. 65 477Google Scholar

    [5]

    Brixner T, Hildner R, Kohler J, Lambert C, Wurthner F 2017 Adv. Energy Mater. 7 1700236Google Scholar

    [6]

    Tamai Y, Ohkita H, Benten H, Ito S 2015 J. Phys. Chem. Lett. 6 3417Google Scholar

    [7]

    Resel R 2003 Thin Solid Films 433 1Google Scholar

    [8]

    Zojer E, Koch N, Puschnig P, Meghdadi F, Niko A, Resel R, Ambrosch-Draxl C, Knupfer M, Fink J, Bredas J L, Leising G 2000 Phys. Rev. B 61 16538Google Scholar

    [9]

    Palczynski K, Heimel G, Heyda J, Dzubiella J 2014 Cryst. Growth Des. 14 3791Google Scholar

    [10]

    Choi A, Kwon Y N, Chung J W, Yun Y, Park J I, Lee Y U 2020 AIP Adv. 10 025127Google Scholar

    [11]

    Zhang Y, Wei X C, Zhang H, Chen X, Wang J 2018 Appl. Surf. Sci. 427 452Google Scholar

    [12]

    Li Y, Wang H, Zhang X H, Zhang Q, Wang X S, Cao D F, Shi Z S, Yan D H, Cui Z C 2016 RSC Adv. 6 5377Google Scholar

    [13]

    Katiyar S, Verma N, Jogi J 2022 Semicond. Sci. Technol. 37 025008Google Scholar

    [14]

    Yang X X, Feng X, Xin J H, Zhang P L, Wang H B, Yan D H 2018 J. Mater. Chem. C 6 8879Google Scholar

    [15]

    Usluer O, Demic S , Kus M, Ozel F, Sariciftci N S 2014 J. Lumines. 146 6Google Scholar

    [16]

    Simbrunner C, Hernandez-Sosa G, Baumgartner E, Hesser G, Roither J, Heiss W, Sitter H 2009 Appl. Phys. Lett. 94 073505Google Scholar

    [17]

    Jiang X X, Dai J G, Wang H B, Geng Y H, Yan D H 2007 Chem. Phys. Lett. 446 329Google Scholar

    [18]

    Winder C, Andreev A, Sitter H, Matt G, Sariciftci N S, Meissner D 2003 Synth. Met. 139 573Google Scholar

    [19]

    Qian C, Sun J, Kong L A, Gou G Y, Zhu M L, Yuan Y B, Huang H, Gao Y L, Yang J L 2017 Adv. Funct. Mater. 27 1604933Google Scholar

    [20]

    Simbrunner C 2013 Semicond. Sci. Technol. 28 053001Google Scholar

    [21]

    Wang L, Plehn T, May V 2020 Phys. Rev. B 102 075401Google Scholar

    [22]

    Lee J, Zhang Q, Park S, Choe A, Fan Z, Ko H 2016 ACS Appl. Mater. Interfaces 8 634Google Scholar

    [23]

    Li G C, Zhang Q, Maier S A, Lei D 2018 Nanophotonics 7 1865Google Scholar

    [24]

    Fernandes J D, Pazin W M, Aroca R F, Macedo W D J, Teixeira S R, Constantino C J L 2019 Spectroc. Acta A 211 221Google Scholar

    [25]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225Google Scholar

    [26]

    Han X B, Li F, He Z C, Liu Y H, Hu H T, Wang K, Lu P X 2022 Nanophotonics 11 603Google Scholar

    [27]

    Kramer S N, Brown J, Rice M, Peteanu L A 2021 J. Phys. Chem. Lett. 12 5919Google Scholar

    [28]

    Wang L, May V 2016 Phys. Rev. B 94 195413Google Scholar

    [29]

    Wang L, May V 2018 J. Phys. B 51 064002Google Scholar

    [30]

    Kasha M 1963 Radiat. Res. 20 55Google Scholar

    [31]

    Chakraborty S, Debnath P, Dey D, Bhattacharjee D, Hussain S A 2014 J. Photochem. Photobiol. A Chem. 293 57Google Scholar

    [32]

    Wu F P, Lu Y X, Mu X L E, Chen Z T, Liu S S, Zhou X F, Liu S F, Li Z B 2020 ACS Appl. Mater. Interfaces 12 32388Google Scholar

    [33]

    Zhao X J, Zhao H J, Wang S, Fan Z W, Ma Y, Yin Y M, Wang W, Xi R M, Meng M 2021 J. Am. Chem. Soc. 143 20828Google Scholar

    [34]

    Gomez-Sosa G, Beristain M F, Ortega A, Martínez-Viramontes J, Ogawa T, Fernández-Hernández R C, Tamayo-Rivera L, Reyes-Esqueda J A, Isoshima T, Hara M 2012 Opt. Mater. 34 856Google Scholar

    [35]

    Plehn T, Ziemann D, May V 2018 Phys. Chem. Chem. Phys. 20 26870Google Scholar

    [36]

    Plehn T, Ziemann D, May V 2019 J. Phys. Chem. C 122 27925Google Scholar

    [37]

    May V 2014 J. Chem. Phys. 140 054103Google Scholar

    [38]

    Hader K, Consani C, Brixner T, Engel V 2017 Phys. Chem. Chem. Phys. 19 31989Google Scholar

    [39]

    Zheng F L, Chen L P, Gao J B, Zhao Y 2021 Materials 14 3291Google Scholar

    [40]

    Fassioli F, Dinshaw R, Arpin P C, Scholes G D 2014 J. R. Soc. Interface 11 20130901Google Scholar

  • 图 1  二维对六苯团簇结构图 (a) 俯视图; (b) 沿x轴侧视图; (c) 沿y轴侧视图

    Figure 1.  Structure of the two-dimensional 6P clusters: (a) Top view; (b) side view along x axis; (c) side view along y axis.

    图 2  二维对六苯团簇静电位移示意图 (a) 分子激发能的相对静电位移; (b) 分子激发能无(红色)及有(蓝色)静电位移时的Frenkel激子能带[21]

    Figure 2.  Schematic diagram of the electrostatic displacement of two-dimensional 6P clusters: (a) Relative electrostatic shift of the molecular excitation energies; (b) Frenkel exciton energy band without (red) and with (blue) electrostatic shift of the molecular excitation energies[21].

    图 3  $\kappa = 2 \times {10^{11}}{\text{ }}{{\text{s}}^{{{ - 1}}}}$时, 团簇内激发态布居$ P_{{\text{tot}}}^{\left( {{\text{ss}}} \right)} $随激光$\hbar {\omega _0}$、脉冲宽度${\tau _{\text{p}}}$变化 (a) 弱场${a_{\text{p}}}=5 \times {10^5}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$; (b) 强场${a_{\text{p}}}{\text{ = 2}}.5 \times {10^6}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$

    Figure 3.  Excited-state populations $ P_{{\text{tot}}}^{\left( {{\text{ss}}} \right)} $ in clusters vary with photon energy $\hbar {\omega _0}$ of the laser and pulse length ${\tau _{\text{p}}}$ at $\kappa = 2 \;\times $$ {10^{11}}{\text{ }}{{\text{s}}^{{{ - 1}}}}$: (a) In weak fields ${a_{\text{p}}}=5 \times {10^5}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$; (b) in strong fields $ a_{\text{p}}\text{ = 2}.5\times10^{6}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}} $.

    图 4  $\kappa = 2 \times {10^{11}}{\text{ }}{{\text{s}}^{{{ - 1}}}}$时, 在长脉冲场 (a) ${\tau _{\text{p}}}=1{\text{ ps}}$和短脉冲场(b) ${\tau _{\text{p}}}=50{\text{ fs}}$下, 团簇内激发态布居$ P_{{\text{tot}}}^{\left( {{\text{ss}}} \right)} $随激光$\hbar {\omega _0}$、脉冲能量${a_{\text{p}}}$变化

    Figure 4.  Excited-state populations $ P_{{\text{tot}}}^{\left( {{\text{ss}}} \right)} $ in clusters in long ${\tau _{\text{p}}}=1{\text{ ps}}$ (a) and short ${\tau _{\text{p}}}=50{\text{ fs}}$ (b) pulsed fields vary with photon energy $\hbar {\omega _0}$ of the laser and pulse energy ${a_{\text{p}}}$, $\kappa = 2 \times {10^{11}}{\text{ }}{{\text{s}}^{{{ - 1}}}}$.

    图 5  $\hbar {\omega _0} = 4.2483{\text{ eV}}$, $\kappa = 2 \times {10^{11}}{\text{ }}{{\text{s}}^{{{ - 1}}}}$时, 弱场短脉冲作用下(${a_{\text{p}}} = 5 \times {10^5}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$, ${\tau _{\text{p}}} = 50~{\text{fs}}$), 4个不同时刻的分子激发态布居$ {P_m} $ (a) $t = 100{\text{ fs}}$; (b) $t = 200{\text{ fs}}$; (c) $t = 500{\text{ fs}}$; (d) $t = 1{\text{ ps}}$

    Figure 5.  Molecular excited state populations $ {P_m} $ at four different moments in the weak field with short pulses (${a_{\text{p}}} = $$ 5 \times {10^5}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$, ${\tau _{\text{p}}} = 50{\text{ fs}}$), $\hbar {\omega _0} = 4.2483{\text{ eV}}$, $\kappa = 2 \times $$ {10^{11}}{\text{ }}{{\text{s}}^{{{ - 1}}}}$: (a) $t = 100{\text{ fs}}$; (b) $t = 200{\text{ fs}}$; (c) $t = 500{\text{ fs}}$; (d) $t = 1{\text{ ps}}$.

    图 6  $\hbar {\omega _0} = 4.9243{\text{ eV}}$, $\kappa = 2 \times {10^{11}}{\text{ }}{{\text{s}}^{{{ - 1}}}}$时, 弱场短脉冲作用下(${a_{\text{p}}} = 5 \times {10^5}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$, ${\tau _{\text{p}}}{=}50{\text{ fs}}$), 4个不同时刻的分子激发态布居$ {P_m} $ (a) $t = 100{\text{ fs}}$; (b) $t = 200{\text{ fs}}$; (c) $t = 500{\text{ fs}}$; (d) $t = 1{\text{ ps}}$

    Figure 6.  Molecular excited state populations $ {P_m} $at four different moments in the weak field with short pulses (${a_{\text{p}}} = $$ 5 \times {10^5}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$, ${\tau _{\text{p}}}{=}50{\text{ fs}}$), $\hbar {\omega _0} = 4.9243{\text{ eV}}$, $\kappa = 2 \times $$ {10^{11}}{\text{ }}{{\text{s}}^{{{ - 1}}}}$: (a) $t = 100{\text{ fs}}$; (b) $t = 200{\text{ fs}}$; (c) $t = 500{\text{ fs}}$; (d) $t = 1{\text{ ps}}$.

    图 7  二维对六苯团簇选取分子示意图

    Figure 7.  Schematic diagram of selected molecules in two-dimensional 6P clusters clusters.

    图 8  $\kappa = 2 \times {10^{11}}{\text{ }}{{\text{s}}^{{{ - 1}}}}$时, 短脉冲(${\tau _{\text{p}}} = 50{\text{ fs}}$, $\hbar {\omega _0} = 4.9243{\text{ eV}}$)场下, 分子激发态布居$ {P_m} $随时间的演变 (a) ${a_{\text{p}}} = 5 \times $$ {10^5}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$; (b) $ {a_{\text{p}}} = {10^6}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}} $; (c) ${a_{\text{p}}} = 2.5 \times {10^6}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$; (d) ${a_{\text{p}}} = 5 \times {10^6}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$

    Figure 8.  Molecular excited state populations $ {P_m} $ in short pulsed fields (${\tau _{\text{p}}} = 50{\text{ fs}}$, $\hbar {\omega _0} = 4.9243{\text{ eV}}$) vary with time, $\kappa = 2 \times $$ {10^{11}}{\text{ }}{{\text{s}}^{{{ - 1}}}}$: (a) ${a_{\text{p}}} = 5 \times {10^5}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$; (b) $ {a_{\text{p}}} = {10^6}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$; (c) ${a_{\text{p}}} = 2.5 \times {10^6}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$; (d) ${a_{\text{p}}} = 5 \times {10^6}{\text{ ps}} {\cdot} {\rm{V{\cdot}m^{-1}}}$.

    图 9  $\kappa = 2 \times {10^{11}}{\text{ }}{{\text{s}}^{{{ - 1}}}}$, 短脉冲(${\tau _{\text{p}}} = 50{\text{ fs}}$, $\hbar {\omega _0} = $$ 4.9243{\text{ eV}}$)场下, 激子相干尺寸$ {L_\rho } $随时间的演变

    Figure 9.  Exciton coherence size $ {L_\rho } $ in short pulsed fields (${\tau _{\text{p}}} = $$ 50{\text{ fs}}$, $\hbar {\omega _0} = 4.9243{\text{ eV}}$) vary with time at $\kappa = 2 \times $$ {10^{11}}{\text{ }}{{\text{s}}^{{{ - 1}}}}$.

    表 1  参数设置

    Table 1.  Parameters used.

    名称/单位数值
    分子数${N_{{\text{mol}}}}$59
    分子本征态能量$ {E_{{\text{mol}}}} $/eV4.02
    分子偶极矩$ {d_{{\text{mol}}}} $/D12.4
    分子间激发能量转移速率$\kappa $/(1011 s–1)2
    脉冲场频率${\omega _0}$随${E_0}/\hbar $变化
    脉冲场强度${E_0}$/(V·m–1)105—108
    脉冲宽度${\tau _{\text{p}}}$/fs20—1000
    DownLoad: CSV
  • [1]

    O’ Carroll D M, Petoukhoff C E, Kohl J, Yu B X, Carter C M, Goodman S 2013 Polym. Chem. 4 5181Google Scholar

    [2]

    Reineke S, Thomschke M, Lussem B, Leo K 2013 Rev. Mod. Phys. 85 1245Google Scholar

    [3]

    Zhang C X, Liu R G, Mak C H, Zou X L, Shen H H, Leu S Y, Ji L, Hsu H Y 2018 J. Photonics Energy 8 021001Google Scholar

    [4]

    Spano F C, Silva C 2014 Annu. Rev. Phys. Chem. 65 477Google Scholar

    [5]

    Brixner T, Hildner R, Kohler J, Lambert C, Wurthner F 2017 Adv. Energy Mater. 7 1700236Google Scholar

    [6]

    Tamai Y, Ohkita H, Benten H, Ito S 2015 J. Phys. Chem. Lett. 6 3417Google Scholar

    [7]

    Resel R 2003 Thin Solid Films 433 1Google Scholar

    [8]

    Zojer E, Koch N, Puschnig P, Meghdadi F, Niko A, Resel R, Ambrosch-Draxl C, Knupfer M, Fink J, Bredas J L, Leising G 2000 Phys. Rev. B 61 16538Google Scholar

    [9]

    Palczynski K, Heimel G, Heyda J, Dzubiella J 2014 Cryst. Growth Des. 14 3791Google Scholar

    [10]

    Choi A, Kwon Y N, Chung J W, Yun Y, Park J I, Lee Y U 2020 AIP Adv. 10 025127Google Scholar

    [11]

    Zhang Y, Wei X C, Zhang H, Chen X, Wang J 2018 Appl. Surf. Sci. 427 452Google Scholar

    [12]

    Li Y, Wang H, Zhang X H, Zhang Q, Wang X S, Cao D F, Shi Z S, Yan D H, Cui Z C 2016 RSC Adv. 6 5377Google Scholar

    [13]

    Katiyar S, Verma N, Jogi J 2022 Semicond. Sci. Technol. 37 025008Google Scholar

    [14]

    Yang X X, Feng X, Xin J H, Zhang P L, Wang H B, Yan D H 2018 J. Mater. Chem. C 6 8879Google Scholar

    [15]

    Usluer O, Demic S , Kus M, Ozel F, Sariciftci N S 2014 J. Lumines. 146 6Google Scholar

    [16]

    Simbrunner C, Hernandez-Sosa G, Baumgartner E, Hesser G, Roither J, Heiss W, Sitter H 2009 Appl. Phys. Lett. 94 073505Google Scholar

    [17]

    Jiang X X, Dai J G, Wang H B, Geng Y H, Yan D H 2007 Chem. Phys. Lett. 446 329Google Scholar

    [18]

    Winder C, Andreev A, Sitter H, Matt G, Sariciftci N S, Meissner D 2003 Synth. Met. 139 573Google Scholar

    [19]

    Qian C, Sun J, Kong L A, Gou G Y, Zhu M L, Yuan Y B, Huang H, Gao Y L, Yang J L 2017 Adv. Funct. Mater. 27 1604933Google Scholar

    [20]

    Simbrunner C 2013 Semicond. Sci. Technol. 28 053001Google Scholar

    [21]

    Wang L, Plehn T, May V 2020 Phys. Rev. B 102 075401Google Scholar

    [22]

    Lee J, Zhang Q, Park S, Choe A, Fan Z, Ko H 2016 ACS Appl. Mater. Interfaces 8 634Google Scholar

    [23]

    Li G C, Zhang Q, Maier S A, Lei D 2018 Nanophotonics 7 1865Google Scholar

    [24]

    Fernandes J D, Pazin W M, Aroca R F, Macedo W D J, Teixeira S R, Constantino C J L 2019 Spectroc. Acta A 211 221Google Scholar

    [25]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225Google Scholar

    [26]

    Han X B, Li F, He Z C, Liu Y H, Hu H T, Wang K, Lu P X 2022 Nanophotonics 11 603Google Scholar

    [27]

    Kramer S N, Brown J, Rice M, Peteanu L A 2021 J. Phys. Chem. Lett. 12 5919Google Scholar

    [28]

    Wang L, May V 2016 Phys. Rev. B 94 195413Google Scholar

    [29]

    Wang L, May V 2018 J. Phys. B 51 064002Google Scholar

    [30]

    Kasha M 1963 Radiat. Res. 20 55Google Scholar

    [31]

    Chakraborty S, Debnath P, Dey D, Bhattacharjee D, Hussain S A 2014 J. Photochem. Photobiol. A Chem. 293 57Google Scholar

    [32]

    Wu F P, Lu Y X, Mu X L E, Chen Z T, Liu S S, Zhou X F, Liu S F, Li Z B 2020 ACS Appl. Mater. Interfaces 12 32388Google Scholar

    [33]

    Zhao X J, Zhao H J, Wang S, Fan Z W, Ma Y, Yin Y M, Wang W, Xi R M, Meng M 2021 J. Am. Chem. Soc. 143 20828Google Scholar

    [34]

    Gomez-Sosa G, Beristain M F, Ortega A, Martínez-Viramontes J, Ogawa T, Fernández-Hernández R C, Tamayo-Rivera L, Reyes-Esqueda J A, Isoshima T, Hara M 2012 Opt. Mater. 34 856Google Scholar

    [35]

    Plehn T, Ziemann D, May V 2018 Phys. Chem. Chem. Phys. 20 26870Google Scholar

    [36]

    Plehn T, Ziemann D, May V 2019 J. Phys. Chem. C 122 27925Google Scholar

    [37]

    May V 2014 J. Chem. Phys. 140 054103Google Scholar

    [38]

    Hader K, Consani C, Brixner T, Engel V 2017 Phys. Chem. Chem. Phys. 19 31989Google Scholar

    [39]

    Zheng F L, Chen L P, Gao J B, Zhao Y 2021 Materials 14 3291Google Scholar

    [40]

    Fassioli F, Dinshaw R, Arpin P C, Scholes G D 2014 J. R. Soc. Interface 11 20130901Google Scholar

  • [1] Fu Xiao-Qian, Lü Si-Yuan, Wang Lu-Xia. Theoretical study of nonlinear multi-exciton dynamics in coupled molecular chains. Acta Physica Sinica, 2020, 69(19): 197301. doi: 10.7498/aps.69.20200104
    [2] Qin Chao-Chao, Cui Ming-Huan, Song Di-Di, He Wei. Ultrafast multiexciton Auger recombination of CdSeS. Acta Physica Sinica, 2019, 68(10): 107801. doi: 10.7498/aps.68.20190291
    [3] Liu Chang-Ju, Lu Min, Su Wei-An, Dong Tai-Yuan, Shen Wen-Zhong. Recent advance in multiple exciton generation in semiconductor nanocrystals. Acta Physica Sinica, 2018, 67(2): 027302. doi: 10.7498/aps.67.20171917
    [4] Li Mu-Ye, Li Fang, Wei Lai, He Zhi-Cong, Zhang Jun-Pei, Han Jun-Bo, Lu Pei-Xiang. Fluorescence resonance energy transfer in a aqueous system of CdTe quantum dots and Rhodamine B with two-photon excitation. Acta Physica Sinica, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [5] He Yue-Di, Xu Zheng, Zhao Su-Ling, Liu Zhi-Min, Gao Song, Xu Xu-Rong. Electroluminescent energy transfer of hybrid quantum dotsdevice. Acta Physica Sinica, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [6] Zeng Kuan-Hong, Wang Deng-Long, She Yan-Chao, Zhang Wei-Xi. Spatial optical soliton pairs in a quantum dot with exciton-biexciton coherence. Acta Physica Sinica, 2013, 62(14): 147801. doi: 10.7498/aps.62.147801
    [7] Shen Man, Zhang Liang, Liu Jian-Jun. Effects of magneic field and quantum dot size on properties of exciton. Acta Physica Sinica, 2012, 61(21): 217103. doi: 10.7498/aps.61.217103
    [8] Gong Ming-Yan. Rotational excitation of He-BH collision system. Acta Physica Sinica, 2011, 60(7): 073401. doi: 10.7498/aps.60.073401
    [9] Luo Zhi-Hua, Yu Chao-Fan. The kinematic and dynamic nonlinear effects in the exciton-soliton motion in one-dimensional molecular crystals. Acta Physica Sinica, 2008, 57(6): 3720-3729. doi: 10.7498/aps.57.3720
    [10] Liu Yun-Fei, Xiao Jing-Lin. Effects of LA phonon on pure dephasing for exciton qubit. Acta Physica Sinica, 2008, 57(6): 3324-3327. doi: 10.7498/aps.57.3324
    [11] Song Shu-Fang, Zhao De-Wei, Xu Zheng, Xu Xu-Rong. Energy transfer in organic quantum well structures. Acta Physica Sinica, 2007, 56(6): 3499-3503. doi: 10.7498/aps.56.3499
    [12] Xiong Wen, Zhao Hua. Calculation of exciton energies and binding energies in ZnO film. Acta Physica Sinica, 2007, 56(2): 1061-1065. doi: 10.7498/aps.56.1061
    [13] Shi Qing-Fan, Yan Xue-Qun. Characterization of the nonlinearly excited magnon pair. Acta Physica Sinica, 2003, 52(1): 225-228. doi: 10.7498/aps.52.225
    [14] WANG JIN, HU ZHENG-FA, ZHANG DENG-YU, ZHAN MING-SHENG. EXCITATION ENERGY TRANSFER BY COLLISIONS BETWEEN EXCITED RUBIDIUM ATOMS. Acta Physica Sinica, 1998, 47(8): 1265-1271. doi: 10.7498/aps.47.1265
    [15] PAN DUO-HAI, MA YONG-HONG. A STUDY OF SURFACE-ENHANCED ENERGY TRANSFER EFFECT BETWEEN MOLECULES. Acta Physica Sinica, 1995, 44(12): 1914-1920. doi: 10.7498/aps.44.1914
    [16] SHEN YI-FAN, LI WAN-XING. ENERGY TRANSFER IN COLLISIONS BETWEEN TWO EXCITED CESIUM ATOMS. Acta Physica Sinica, 1993, 42(11): 1766-1773. doi: 10.7498/aps.42.1766
    [17] YANG LI-SHU, WANG ZHENG-MIN, WU CHUAN-XIU, LIU ZONG-CAI, GE LI-HE. V-V ENERGY TRANSFER IN DISSOCIATION PROCESS OF FREON 113 MOLECULES IN MULTIFREQUENCY INTENSE IR LASER FIELDS. Acta Physica Sinica, 1987, 36(2): 259-263. doi: 10.7498/aps.36.259
    [18] ZHENG HANG, FANG JUN-XIN. THE CHARGE TRANSFER EXCITON IN ALKALI HALIDE CRYSTALS. Acta Physica Sinica, 1986, 35(8): 1019-1028. doi: 10.7498/aps.35.1019
    [19] JIA WEI-YI, YAN. W. M.. ENERGY TRANSFER OF THE EXCITON IN THE QUASI-ONE-DIMENSIONAL ANTIFERROMAGNET CsMnCl3·2D2O. Acta Physica Sinica, 1983, 32(7): 867-874. doi: 10.7498/aps.32.867
    [20] ТЕОРИЯ ВОЗБУЖДЕНИЯ МОЛЕКУЛ Н-АЛКАНОВ И ВОПРОСЫ МИГРАЦИИ ЭНЕРГИИ ВНУТРИ МОЛЕКУЛЫ. Acta Physica Sinica, 1964, 20(5): 436-443. doi: 10.7498/aps.20.436
Metrics
  • Abstract views:  3179
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  10 April 2023
  • Accepted Date:  28 July 2023
  • Available Online:  02 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回