Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons

Zhang Chao-Jie Zhou Ting Du Xin-Peng Wang Tong-Biao Liu Nian-Hua

Citation:

Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons

Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In our daily life, frictions are very common when two bodies in direct contact relatively move. However, when two bodies are separated by a finite distance, due to the quantum fluctuations inside the bodies, they may still experience a friction when they relatively move. Such a phenomenon is often called quantum friction, which has been studied for more than a decade. It has shown in previous studies that the surface modes, such as surface phonon polaritions (SPhPs) or surface plasmon polaritions (SPPs) have significant contribution to enhancing the quantum friction. However, to the best of our knowledge, the contribution of coupling from SPhPs and SPPs to quantum friction is still unknown. Here, we report a detailed study on the quantum frictions between two graphene sheets with the silicon carbide (SiC) substrates. For comparison, the quantum frictions between two other samples, i.e., SiC/SiC and graphene/graphene are also studied. As indicated in previous studies, SPhPs and SPPs, supported by SiC and graphene, respectively, can couple together in special frequency ranges. The coupling of SPhPs and SPPs can be tuned by varying the chemical potential of graphene. The coupling modes shift toward higher frequency as the chemical potential increases. Firstly, we analyze qualitatively the effects of coupled surface modes on quantum friction with the help of dispersion relation. Secondly, we calculate the quantum friction coefficients numerically for the three different samples. We find that due to the coupling of SPhPs and SPPs, the quantum friction between graphene sheets with SiC substrates is larger than that between the SiC or monolayer graphene sheets. We demonstrate that the coupling of SPhPs and SPPs can be modulated by chemical potential of graphene; therefore, the relationship between quantum friction coefficient and chemical potential is also studied. We observe that with the increase of chemical potential, quantum friction coefficient follows a non-monotonic trend, i.e., it first increases to its maximum value then decreases. We believe that our studies are not only helpful in understanding the micro mechanisms of friction, but also meaningful in the fabrications of micro- and nano-electromechanical systems.
      Corresponding author: Wang Tong-Biao, tbwang@ncu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264029, 11264030) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB202017).
    [1]

    Dorofeyev I, Fuchs H, Wenning G, Gotsmann B 1999 Phys. Rev. Lett. 83 2402

    [2]

    Stipe B C, Mamin H J, Stowe T D, Kenny T W, Rugar D 2001 Phys. Rev. Lett. 87 096801

    [3]

    Kuehn S, Loring R F, Marohn J A 2006 Phys. Rev. Lett. 96 156103

    [4]

    Buchanan M 2007 Nat. Phys. 3 827

    [5]

    Saitoh K, Hayashi K, Shibayama Y, Shirahama K 2010 Phys. Rev. Lett. 105 236103

    [6]

    She J H, Balatsky A V 2012 Phys. Rev. Lett. 108 136101

    [7]

    Pendry J B 1997 J. Phys. Condens. Matter 9 10301

    [8]

    Volokitin A I, Persson B N J 2001 J. Phys. Condens. Matter 13 859

    [9]

    Volokitin A I, Persson B N J 2002 Phys. Rev. B 65 115419

    [10]

    Volokitin A I, Persson B N J 2003 Phys. Rev. Lett. 91 106101

    [11]

    Volokitin A I, Persson B N J 2002 Phys. Rev. B 65 115420

    [12]

    Volokitin A I, Persson B N J 2005 Phys. Rev. Lett. 94 086104

    [13]

    Volokitin A I, Persson B N J 2007 Rev. Mod. Phys. 79 1291

    [14]

    Volokitin A I, Persson B N J 2011 Phys. Rev. Lett. 106 094502

    [15]

    Philbin T G, Leonhardt U 2009 New J. Phys. 11 033035

    [16]

    Pendry J B 2010 New J. Phys. 12 033028

    [17]

    Leonhardt U 2010 New J. Phys. 12 068001

    [18]

    Pendry J B 2010 New J. Phys. 12 068002

    [19]

    Volokitin A I, Persson B N J 2011 New J. Phys. 13 068001

    [20]

    Philbin T G, Leonhardt U 2011 New J. Phys. 13 068002

    [21]

    Silveririnha M G 2014 New J. Phys. 16 063011

    [22]

    Manjavacas A, García de Abajo F J 2010 Phys. Rev. Lett. 105 113601

    [23]

    Manjavacas A, García de Abajo F J 2010 Phys. Rev. A 82 063827

    [24]

    Zhao R, Manjavacas A, García de Abajo F J, Pendry J B 2012 Phys. Rev. Lett. 109 123604

    [25]

    Bercegol H, Lehoucq R 2015 Phys. Rev. Lett. 115 090402

    [26]

    Intravaia F, Behunin R O, Dalvit D A R 2014 Phys. Rev. A 89 050101

    [27]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [28]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451

    [29]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [30]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [31]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [32]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [33]

    Freitag M, Low T, Xia F, Avouris P 2013 Nat. Photonics 7 53

    [34]

    Stauber T, Peres N M R, Geim A K 2008 Phys. Rev. B 78 085432

    [35]

    Falkovsky L A 2008 J. Phys. Conf. Ser. 129 012004

    [36]

    Falkovsky L A, Pershoguba S S 2007 Phys. Rev. B 76 153410

    [37]

    Mikhailov S A, Ziegler K 2007 Phys. Rev. Lett. 99 016803

    [38]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [39]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [40]

    Wang T B, Liu N H, Liu J T, Yu T B 2014 Eur. Phys. J. B 87 185

  • [1]

    Dorofeyev I, Fuchs H, Wenning G, Gotsmann B 1999 Phys. Rev. Lett. 83 2402

    [2]

    Stipe B C, Mamin H J, Stowe T D, Kenny T W, Rugar D 2001 Phys. Rev. Lett. 87 096801

    [3]

    Kuehn S, Loring R F, Marohn J A 2006 Phys. Rev. Lett. 96 156103

    [4]

    Buchanan M 2007 Nat. Phys. 3 827

    [5]

    Saitoh K, Hayashi K, Shibayama Y, Shirahama K 2010 Phys. Rev. Lett. 105 236103

    [6]

    She J H, Balatsky A V 2012 Phys. Rev. Lett. 108 136101

    [7]

    Pendry J B 1997 J. Phys. Condens. Matter 9 10301

    [8]

    Volokitin A I, Persson B N J 2001 J. Phys. Condens. Matter 13 859

    [9]

    Volokitin A I, Persson B N J 2002 Phys. Rev. B 65 115419

    [10]

    Volokitin A I, Persson B N J 2003 Phys. Rev. Lett. 91 106101

    [11]

    Volokitin A I, Persson B N J 2002 Phys. Rev. B 65 115420

    [12]

    Volokitin A I, Persson B N J 2005 Phys. Rev. Lett. 94 086104

    [13]

    Volokitin A I, Persson B N J 2007 Rev. Mod. Phys. 79 1291

    [14]

    Volokitin A I, Persson B N J 2011 Phys. Rev. Lett. 106 094502

    [15]

    Philbin T G, Leonhardt U 2009 New J. Phys. 11 033035

    [16]

    Pendry J B 2010 New J. Phys. 12 033028

    [17]

    Leonhardt U 2010 New J. Phys. 12 068001

    [18]

    Pendry J B 2010 New J. Phys. 12 068002

    [19]

    Volokitin A I, Persson B N J 2011 New J. Phys. 13 068001

    [20]

    Philbin T G, Leonhardt U 2011 New J. Phys. 13 068002

    [21]

    Silveririnha M G 2014 New J. Phys. 16 063011

    [22]

    Manjavacas A, García de Abajo F J 2010 Phys. Rev. Lett. 105 113601

    [23]

    Manjavacas A, García de Abajo F J 2010 Phys. Rev. A 82 063827

    [24]

    Zhao R, Manjavacas A, García de Abajo F J, Pendry J B 2012 Phys. Rev. Lett. 109 123604

    [25]

    Bercegol H, Lehoucq R 2015 Phys. Rev. Lett. 115 090402

    [26]

    Intravaia F, Behunin R O, Dalvit D A R 2014 Phys. Rev. A 89 050101

    [27]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [28]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451

    [29]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [30]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [31]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [32]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [33]

    Freitag M, Low T, Xia F, Avouris P 2013 Nat. Photonics 7 53

    [34]

    Stauber T, Peres N M R, Geim A K 2008 Phys. Rev. B 78 085432

    [35]

    Falkovsky L A 2008 J. Phys. Conf. Ser. 129 012004

    [36]

    Falkovsky L A, Pershoguba S S 2007 Phys. Rev. B 76 153410

    [37]

    Mikhailov S A, Ziegler K 2007 Phys. Rev. Lett. 99 016803

    [38]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [39]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [40]

    Wang T B, Liu N H, Liu J T, Yu T B 2014 Eur. Phys. J. B 87 185

  • [1] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan. Sensing and slow light applications of graphene plasmonic terahertz structure. Acta Physica Sinica, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [3] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [4] Wang Wei-Hua. Study of magnetoplasmons in graphene rings with two-dimensional finite element method. Acta Physica Sinica, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [5] Liu Qing-Yang, Xu Qing-Song, Li Rui. Effect of N-doping on tribological properties of graphene by molecular dynamics simulation. Acta Physica Sinica, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [6] Wang Yan-Qing, Li Jia-Hao, Peng Yong, Zhao You-Hong, Bai Li-Chun. Current-carrying friction behavior of graphene with intervention of interfacial current. Acta Physica Sinica, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [7] Li Ze-Yu, Jiang Qu-Han, Ma Teng-Zhou, Yuan Ying-Hao, Chen Lin. Multi-parameter tunable phase transition based terahertz graphene plasmons and its application. Acta Physica Sinica, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [8] Li Liang-Liang, Meng Fan-Wei, Zou Kun, Huang Yao, Peng Yi-Tian. Friction properties of suspended graphene. Acta Physica Sinica, 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [9] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [10] Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing. Multiband plasmon-induced transparency based on nanometals-graphene hybrid model. Acta Physica Sinica, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [11] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [12] Xu Fei-Xiang, Li Xiao-Guang, Zhang Zhen-Yu. Some recent advances on quantum plasmonics. Acta Physica Sinica, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [13] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [14] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [15] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [16] Wu Reng-Lai, Xiao Shi-Fa, Xue Hong-Jie, Quan Jun. Quantization of plasmon in two-dimensional square quantum dot system. Acta Physica Sinica, 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [17] Yang Guang-Min, Xu Qiang, Li Bing, Zhang Han-Zhuang, He Xiao-Guang. Quantum capacitance performance of different nitrogen doping configurations of graphene. Acta Physica Sinica, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [18] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [19] Yin Hai-Feng, Zhang Hong, Yue Li. Plasmon excitation in C60 fullerene dimers. Acta Physica Sinica, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [20] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
Metrics
  • Abstract views:  7462
  • PDF Downloads:  403
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2016
  • Accepted Date:  30 August 2016
  • Published Online:  05 December 2016

/

返回文章
返回